Меню Рубрики

Анализ питательной воды для котельной

Основные показатели качества воды котельных установок. Ведение журнала водоконтроля и производство анализа воды котельных установок

Показатели качества воды. Воду, находящуюся постоянно в природном круговороте, условно делят на атмосферную, поверхностную, подземную (грунтовую) и морскую. Каждая из этих видов воды имеет свои качественные показатели, от которых зависит возможность ее использования в тех или иных целях. В судовой энергетике применение воды сводится обычно к роли теплоносителя и с этой точки зрения предпочтительнее среда с минимальной минерализацией. Однако обычная пресная вода (поверхностная) всегда содержит примеси солей и растворенные газы.

По химическому составу примеси природных вод делят на минеральные и органические.

Минеральные примеси обусловливаются содержанием в воде различных солей, кислот, оснований, находящихся преимущественно в диссоциированной форме, т. е. в виде катионов и анионов. К этой же группе примесей относятся и растворенные газы N2,О2, СО2, NH3, CH4, H2S.

Органические примеси состоят из гумусовых веществ, вымываемых из почв, а также органических веществ различных типов, поступающих из всевозможных стоков (сельскохозяйственных, промышленных).

Природные воды характеризуются высоким содержанием катионов Na+, К+, Са+, Mg+ со следами NH+, Fe2+, Мп2+, Cu2+, Zn2+, Ni2+, Al3+. Среди анионов в составе примесей основными являются НСО3, Сl-, SO2-4, HsiO-3, NO3, CO2-3. При этом натрий и калий практически не образуют труднорастворимых соединений, в то время как кальций и магний являются важнейшими примесями в процессе загрязнения теплопередающих поверхностей. Они вступают в реакцию с анионами и образуют соли с низкими коэффициентами растворимости.

В судовых условиях различают воду следующих видов:

загрязненную нефтепродуктами (сточную, льяльную).

Для котлов питательной водой служат конденсаты пара, отработавшего в главном турбоагрегате, турбогенераторах, турбоприводных насосах, подогревателях и других потребителях пара. Во время работы котла имеют место неизбежные потери воды и пара через неплотности в арматуре и трубопроводах, на сажеобдувочные устройства, на форсунки, с продувками котла и пр. Для восполнения этих утечек используют добавочную воду, в качестве которой используют дистилляты от испарителей или запасы пресной воды. Для приготовления дистиллята применяют забортную воду. Котловой водой называется вода, находящаяся внутри котла (во всех его элементах).

Рассмотренные виды воды существенно различаются по качеству, которое оценивают по таким показателям, как жесткость, содержание хлоридов, щелочность, фосфатное число, концентрация водородных ионов, содержание кислорода, масла и других нефтепродуктов и различных примесей.

Жесткость — это одна из основных характеристик качества воды. Самым распространенным показателем является общая жесткость ЖO — сумма всех растворимых в воде солей кальция (кальциевая жесткость) и магния (магниевая жесткость), выраженная в миллиграмм-эквивалентах на литр (мг-экв/л).

Для пересчета выраженных в единице мг/л концентраций кальция и магния в единице мг-экв/л их значения делят на эквивалентные массы этих катионов, т. е. используют следующие соотношения: 1 мг-экв/л жесткости = 20,04 мг/л Са+2 , 1 мг-экв/л жесткости = 12,16 мг/л Mg2+, где 20,04 и 12,16 — эквивалентные массы кальция и магния.

Таким образом, общая жесткость может быть представлена суммой карбонатной ЖKи некарбонатной ЖНК составляющих или кальциевой ЖСа и магниевой ЖMg жесткостью: ЖO= ЖK + ЖНК = ЖСа + ЖMg.

С повышением общей минерализации воды возрастает магниевая составляющая, а кальциевая уменьшается. Например, вода в Неве содержит около 0,44 мг-экв/л Са2+ и 0,1 мг-экв/л Mg2+, а для воды Средиземного моря эти показатели соответственно 3,3 и 223 мг-экв/л.

Карбонатная жесткость обусловливается присутствием в воде бикарбонатов кальция и магния: Са(НСО3)2 и Mg(HCО3)2. Карбонатную жесткость иногда называют временной, так как в процессе работы котла она уменьшается. Это вызывается тем, что бикарбонаты при нагреве воды разлагаются и образуют нерастворимые соли, которые скапливаются на поверхности нагрева (накипь). Например, растворенный в воде бикарбонат кальция при нагревании и кипении воды распадается на карбонат кальция СаСОз и угольную кислоту НСОз. Карбонат кальция выпадает в осадок.

Некарбонатная жесткость обусловливается другими солями кальция и магния, которые при нагреве воды химически не изменяются и остаются растворенными. Эти соли жесткости выпадают лишь в зоне испарения, когда концентрация их превысит предел растворимости. К этой группе относятся соли, образующиеся в результате взаимодействия Са и Mg с сильными кислотами (хлориды, сульфаты, силикаты, нитраты). Некарбонатную жесткость иногда называют постоянной (остаточной).

Хлориды — это соли соляной кислоты. Наиболее распространенной солью является хлорид натрия NaCl. Вследствие хорошей растворимости в воде (26,4 % при 15 °С; 28,4 % при 100 °С) хлорид натрия является основной составляющей солености воды, т. е., говоря о содержании хлоридов в воде, имеют в виду ее соленость. Выражается соленость через концентрацию NaCl или хлор-иона и измеряется единицей мг/л. Однако следует иметь в виду, что есть и отдельный показатель — общее солесодержание, под которым подразумевается суммарная концентрация (мг/кг) в воде молекулярно-дисперсных веществ.

При использовании пресной береговой воды в качестве добавочной происходит приток хлористых солей (наряду с другими) в котловую воду в большей степени, чем при использовании для этой цели дистиллята, в котором содержание хлоридов не превышает 5-10 мг/л. Таким образом, одним из источников увеличения хлоридов в котловой воде является добавочная вода.

Для охлаждения конденсаторов СЭУ морских судов используют морскую забортную воду. Ее характерной особенностью является высокое общее солесодержание (до 35 000 мг/л). Основными составляющими солесодержания являются хлористые соли СаСl2, MgCl2, NaCl. Через неплотности в соединениях конденсатора часть морской воды может поступать в конденсат пара, вследствие чего ухудшается качество питательной воды, а значит, и качество котловой воды (в частности, возрастает содержание хлоридов).

Щелочность, являющаяся одним из важнейших показателей качества котловой воды, представляет собой сумму миллинормальных концентраций всех анионов слабых кислот и ионов гидроксила. Она обусловливается прежде всего присутствием в воде ионов ОН-, СO2-3, НСО3, РО3-4.

В зависимости от того, какой вид ионов присутствует в воде, щелочность называют соответственно гидратной ЩГ(OH-), карбонатной ЩК(СO2-3), бикарбонатной ЩБК(НСО3), фосфатной ЩФ(РО3-4). Общая щелочность равна их сумме: ЩО= ЩГ+ ЩК+ ЩБК+ ЩФ.

Оценивается щелочность содержанием щелочных солей, пересчитанных на NaOH. Эта величина называется щелочным числом и выражается в мг/л NaOH.

В судовой документации (особенно судов зарубежной постройки) иногда щелочность выражается содержанием ионов водорода, т. е. используется водородный показатель рН. Для котловой воды рН ? 9,0 -10. Водородный показатель рН является наиболее достоверным показателем коррозионной активности воды.

При определении щелочности судовой лабораторией водоконтроля результаты получаются в нормальных единицах измерения — мг-экв/л. В нормативных документах указываются объемные единицы измерения — мг/л. Для перехода от единицы мг-экв/л к мг/л при определении показателя щелочности воды используют коэффициент 40, соответствующий химическому эквиваленту NaOH, т. е. результат анализа умножают на 40.

Фосфатное число котловой воды контролируют при поддержании фосфатно-нитратного водного режима. Фосфаты — это растворенные в воде соли фосфорной кислоты. В котловой воде должен быть всегда избыток фосфатных ионов РО3-4, что исключает выпадение в осадок накипеобразующих соединений кальция и магния. Следовательно, это приводит к предотвращению образования накипи.

Содержание фосфатов определяется обычно количеством ионов РО3-4 или выражается в виде окисла Р2О5 и измеряется в единице мг/л. Перейти от РО3-4 к Р2О5 можно расчетным путем.

Для поддержания фосфатно-нитратного водного режима в котловую воду вводят нитраты в виде натриевой селитры NaNO3 Нитраты образуют на поверхности металла, т. е. на внутренних стенках котла, защитную пленку, которая препятствует развитию коррозии. Нитрат натрия не принимает участия во внутрикотловых процессах, и его количество в котловой воде уменьшается в процессе работы вследствие уноса паром и продувания котла.

Содержание нитратов в котловой воде выражается нитратным числом в мг/л NaNО3. Его значение обычно составляет около 50 % щелочного числа котловой воды.

При исследовании влияния качества воды на внутрикотловые процессы для оценки качественного и количественного составов воды используют показатели ее электропроводности.

Накипеобразование на поверхностях нагрева. В процессе работы котла в котловой воде протекают различные физико-химические процессы, обусловливающие разрушение одних соединений и образование других. Это приводит к возникновению веществ с различной степенью растворимости. Труднорастворимые вещества выделяются из воды в виде осадка, образующего при определенных условиях накипь или шлам.

Накипью называют плотные отложения, возникающие на поверхности нагрева. К шламу относятся выпадающие вещества в виде подвижного осадка, которые могут также образовывать вторичную накипь, прикипая к поверхности труб.

Образование осадка в виде накипи или шлама происходит при наличии пересыщенного раствора, т. е. высокой концентрации солей. Испарение котловой воды, подача питательной и добавочной воды с более высокой минерализацией создают благоприятные условия для этого процесса. Произведение концентраций находящихся в растворе ионов труднорастворимого вещества называется произведением растворимости, т.е.

где СКТ ,САН — концентрация соответственно катиона и аниона труднорастворимого соединения.

Произведение концентраций при данной температуре является постоянной величиной и, если СКТСАН > ПР, происходит выпадение осадка (твердой фазы). Образующиеся в толще воды кристаллические частицы осаждаются на поверхности нагрева в виде слоя накипи или остаются во взвешенном состоянии как подвижный шлам.

Накипь может появиться в результате увеличения концентрации одного из ионов, образующих труднорастворимые соединения, что является следствием химических процессов.

Таким образом, низкое содержание Са в воде еще не означает, что не будет кальциевых отложений.

Наибольшее влияние на процесс накипеобразования оказывают катионы Са2+ и Mg2+ и анионы С2-3, ОН-, SO2-4, SiO2-3. Определенные сочетания этих катионов и анионов в виде солей представляют собой труднорастворимые вещества. Накипеобразующими соединениями, например, являются: карбонат кальция и магния (СаСО3, MgCO3), гидрат магния (Mg(OH)2), сульфат кальция (CaSO4), силикаты кальция и магния СаSiO3, MgSiO3).

Карбонат кальция образуется в результате нагрева из бикарбоната:

Повышение концентрации в воде углекислоты СО2 может смещать равновесие реакции влево, т. е. ведет к образованию бикарбоната. Однако для котловой воды, где идет процесс кипения и СО2 удаляется, наиболее характерен переход Са(НСО3)2 в карбонат СаСО3.

Аналогичная реакция идет и с бикарбонатом магния при нагревании:

При нагревании воды с высокой щелочностью происходит гидролиз карбоната магния с образованием труднорастворимого соединения гидроокиси магния:

MgCO3 + 2Н2О > Mg(OH)2 + H2CO3.

Карбонаты кальция образуют в котле карбонатную накипь. С повышением щелочности воды они осаждаются в грубодисперсном состоянии и входят в состав шлама.

Соединение Mg(OH)2 находится в воде преимущественно в виде шлама и может образовывать вторичную накипь (прикипание осаждающегося шлама).

Силикаты CaSiO3 и MgSiO3 в природной воде находятся в коллоидальной форме в небольшом количестве. Однако в случае образования силикатной накипи на поверхности нагрева слой загрязнения становится прочным, трудноудаляемым.

Одной из причин образования насыщенных растворов и выпадения осадка является понижение растворимости некоторых соединений при повышении температуры воды. Такие соединения имеют отрицательный коэффициент растворимости. К ним относятся СаСО3, CaSO4, Mg(OH)2, CaSiO4, MgSiO3.

Вторичную накипь могут образовывать продукты коррозии металла, заносимые в котел с питательной водой.

  • 1. Журнал водоконтроля (в дальнейшем — журнал) является официальным документом отражающим действия обслуживающего персонала по выполнению установленного водного режима судовой котельной установки.
  • 2. Журнал ведётся лицом, в заведовании которого находятся котлы. Вести его надлежит на всех судах, оборудованных паровыми котлами (главными, вспомогательными, утилизационными) с рабочим давлением пара ),07 МПа и более.
  • 3. Все записи в журнале производятся чернилами чётко и разборчиво. Подчистка текста, исправление его вменением написанных букв (цифр) запрещается. При необходимости внесения в текст записи исправления, они записываются в конце страницы. Текст, подлежащий исправлению должен быть зачёркнут тонкой линией так, чтобы удержание его было легко читаемо, а в конце страницы исправление или дополнение должно быть специально оговорено и скреплено подписью лица, производившего его.
  • 4. Главный (старший) механик обязан еженедельно проверять ведение журнала и удостоверять записи в нём своей подписью.

По приходу в порт ведение журнала проверяется механико-судовой службой судовладельца. Результаты проверки записываются в разделе «Замечания лиц, проверяющих ведение водного режима».

  • 5. Все листы журнала водоконтроля должны быть пронумерованы, и скреплены подписью капитана и судовой печатью.
  • 6. Законченный журнал хранится на судне в течение года, а затем, после оформления соответствующего акта, уничтожается.
  • 7. Все записи в журнале должны производиться сразу после выполнения химанализа или после снятия замеров и удостоверяться подписью лица, производившего анализ или замер.
  • 8. При составлении рейсового донесения по технической эксплуатации главный (старший) механик должен отметить случаи нарушения установленного водного режима котлов с указанием причин, вызвавших эти нарушения, и меры, принятые для предупреждения подобных случаев в дальнейшем.

Судовой обслуживающий персонал должен быть хорошо знаком с практическими методами определения качества воды и их характеристик и уметь пользоваться средствами водоконтроля для определения всех вышеперечисленных показателей, характеризующих качество котловой и питательной воды.

Читайте также:  Закружилась листва золотая в розоватой воде анализ

Определение жесткости воды с помощью трилона Б. Этот метод основан на том, что трилон Б реагирует с солями кальция и магния, содержащимися в воде.

Момент окончания реакции определяют по изменению окраски индикатора.

В колбу наливают 100 мл испытуемой воды, вводят туда 5 мл аммиачного, буферного раствора, щепотку индикатора кислотного хромтемносинего и, интенсивно перемешивая, медленно титруют пробу трилоном Б до изменения розовой окраски раствора в синевато-сиреневую.

Пример: На титрование 100 мл пробы воды пошло 12 мл трилона Б

Определение щелочности воды (по фенолфталеину). Этот метод основан на нейтрализации кислотой котловой воды, которая содержит щелочи, окрашивающие фенолфталеин в малиново-красный цвет. Реакция кончается в момент добавки последней капли кислоты, когда малиновая окраска исчезает и вода принимает свою первоначальную окраску (до введения в нее фенолфталеина).

В колбу наливают 100 мл испытуемой воды, туда же вводят 2-3 капли фенолфталеина, вода окрашивается в малиново-красный цвет. Затем по каплям пробу воды титруют раствором серной кислоты до исчезновения окраски.

Пример: На титрование 100 мл котловой воды пошло 5 мл кислоты.

Щелочность воды равна = 5 мг экв/л.

Щелочное число котловой воды равняется количеству миллилитров кислоты, затраченному на титрование 100 мл котловой воды, умноженному на 40.

Пример: На титрование 100 мл котловой воды пошло 5 мл кислоты.

Щелочное число воды = 5×40 = 200 мг/л.

Определение содержания хлоридов в воде. Метод основан на способности солей ртути давать с хлор-ионом малодиссоциированное соединение (НСЦ) и связывании избытка ионов ртути (Hg2+) дифенилкарбазоном в комплексные соединения, окрашенные в розово-фиолетовый цвет.

Концентрацию хлор-иона от 0,1 до 10 мг/л определяют с помощью 0,0025Н раствора азотнокислой ртути, а концентрации хлор-иона от 10 мг и выше — с помощью ее децинормального раствора.

Конденсат — в колбу наливают 100 мл конденсата и добавляют щепотку индикатора — вода синеет. Потом по каплям наливают раствор азотной кислоты до перехода синей окраски в желтую и еще 10 капель этой кислоты.

Затем медленно, сильно взбалтывая, титруют 0,0025Н раствором азотнокислой ртути до перехода желтой окраски в розово-фиолетовый.

Содержание хлоридов численно равно количеству миллилитров раствора азотнокислой ртути, пошедшему на титрование 100 мл пробы, умноженному на 0,08875 и на 10.

Пример: на титрование 100 мл конденсата пошло 0,25 мл раствора азотнокислой ртути. Содержание хлоридов равно:

А = 0,25×0,8875 = 0,22 мг/л хлор-иона.

Котловая вода. В колбу наливают 10 мл котловой воды и добавляют 90 мл дистиллята, к пробе добавляют щепотку индикаторной смеси, вода окрашивается в синий цвет, затем по капле добавляют: раствор азотной кислоты до перехода синей окраски в желтую и еще 10 капель этой кислоты. Затем медленно титруют 0,1Н раствором азотнокислой ртути и сильно взбалтывают до перехода желтой окраски в розово-фиолетовую.

Содержание хлоридов численно равно количеству мл раствора азотнокислой ртути, пошедшему на титрование 10 мл котловой воды, умноженному на 3,55 и на 100. Если на титрование взято 100 мл испытуемой воды, то результат анализа умножают на 10.

Пример: на титрование 10 мл пробы котловой воды пошло 4,2 мл 0,1Н раствора азотнокислой ртути. Содержание хлоридов равно:

А = 4,2×355 = 1491 мг/л хлор-иона.

Пример: на титрование 100 мл испытуемой пробы пошло 3,8 0,1Н раствора азотнокислой ртути. Содержание хлоридов равно:

А = 3,8×35,5 = 134,9 мг/л хлор-иона.

Определение содержания фосфатов и нитратов в воде. Содержание фосфатов и содержание нитратов измеряют в компараторе путем сравнения окраски испытуемой пробы с окраской эталонных пленок.

Определение фосфатов основано на образовании растворимого соединения окрашенного в интенсивно-желтый цвет.

В пробирку отбирают 210 мл пробы котловой воды и добавляют 2 мл реактива на фосфаты. Раствор тщательно перемешивают и сравнивают окраску со стандартными пленками.

Пример: окраска пробы соответствует окраске пленки 50 мг/л Р04′ 3. Содержание фосфатов в пробе котловой воде равно 50 мг/л Р04 3.

Содержание нитратов измеряется в компараторе путем сравнения испытуемой пробы с окраской эталонных пленок.

В градуированную пробирку отбирают 146 мл пробы котловой воды до метки и перемешивают, затем добавляют 2 мл реактива на нитраты и еще раз перемешивают.

Прибавляют ложечку цинковой стружки или порошка, пробирку закрывают пробкой и содержимое тщательно перемешивают и оставляют на 5-10 мин.

Содержимое пробирки приобретает окраску красного цвета, которую сравнивают с эталонной окраской в компараторе — при подборе окраски с эталонной будет составлять содержание нитратов в котловой воде.

Результаты анализов котловой воды дают информацию о том, что происходит в котле, конденсатной и питательной системах и какие меры необходимо принять по корректировке водного режима.

Если результаты анализов показывают повышенное содержание хлоридов, больше чем обычно, следует увеличить частоту продувания котла до тех пор пока концентрация и содержание хлоридов не станет нормальной. В варианте высокого содержания хлоридов в котловой воде необходимо уменьшить пар производительность котла и допускается частичная смена воды в котле. Необходимо определить источник загрязнения котловой воды и устранить.

При повышенном щелочном числе в котловой воде следствием может быть:

  • — передозировки в котле химических реагентов;
  • — использование для анализов реактивов нестандартной концентрации;
  • — использование добавочной питательной воды из цементированного танка.

При определения пониженного щелочного числа причинами могут быть:

  • — поступление в котел примесей, срабатывающих часть щелочи для осаждения магния (при этом снижается содержание фосфатов);
  • — потеря воды из котла в результате продувки.

Соблюдение установленных норм водного режима паровых котлов на каждом судне должно регулярно контролироваться также при помощи специальных указывающих и регистрирующих приборов такие как соленомеры, кислородомеры и рН-метры.

источник

Нормы проектирования водоподготовки отопительных и промышленных котельных определяются СНиП II-35-76* «Котельные установки». Согласно этому документу «Водно-химический режим работы котельной должен обеспечивать работу котлов, пароводяного тракта, теплоиспользующего оборудования и тепловых сетей без коррозионных повреждений и отложений накипи и шлама на внутренних поверхностях, получение пара и воды требуемого качества». Состав системы водоподготовки в котельной (в теплоэнергетике принято сокращение ВПУ – водоподготовительная установка) определяется качеством исходной воды, требованиями к очищенной воде, производительностью установки. Требования к очищенной воде зависят от ее назначения и определяются нормативными документами.

Вода в теплоэнергетике. Термины и определения.

Вода, используемая для паровых и водогрейных котлов, в зависимости от технологического участка, имеет разные наименования, закрепленные в нормативных документах:

Сырая вода – вода из источника водоснабжения, не прошедшая очистку и химическую обработку.

Питательная вода – вода на входе в котел, которая должна соответствовать заданным проектом параметрам (химический состав, температура, давление).

Добавочная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды и пара в пароконденсатном тракте.

Подпиточная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды в теплопотребляющих установках и тепловых сетях.
Котловая вода — вода, циркулирующая внутри котла.

Прямая сетевая вода – вода в напорном трубопроводе тепловой сети от источника до потребителя тепла.

Обратная сетевая вода – вода в тепловой сети от потребителя до сетевого насоса.

Источниками сырой воды могут быть реки, озера, артезианские и грунтовые скважины, городской или поселковый водопровод. Для каждого источника характерны различные примеси и загрязнения, поэтому подбор ВПУ начинают с анализа образца сырой воды. Анализ воды должна проводить специализированная аккредитованная лаборатория. Для поверхностных источников необходимы несколько анализов в разные сезоны, так как состав воды нестабилен.
Обращаясь к нормативной документации для определения требований к подготавливаемой воде необходимо также знать тип используемого котла.

Классификация котлов. Термины и определения.

Все котлы можно разделить на:
— паровые котлы , предназначенные для получения пара;
— водогрейные котлы , предназначенные для нагрева воды под давлением;
— пароводогрейные , предназначенные для получения пара и нагрева воды под давлением.

По способу получения энергии для нагрева воды или получения пара котлы делятся на:
— Энерготехнологические – котлы, в топках которых осуществляется переработка технологических материалов (топлива);
— Котлы-утилизаторы – котлы, в которых используется теплота отходящих горячих газов технологического процесса или двигателей;
— Электрические – котлы, использующие электрическую энергию для нагрева воды или получения пара.

По типу циркуляции рабочей среды котлы делятся на котлы с естественной и принудительной циркуляцией . В зависимости от количества циркуляций, котлы могут быть прямоточные – с однократным движением рабочей среды, и комбинированные – с многократной циркуляцией.

Относительно движения рабочей среды к поверхности нагрева выделяют:
— Газотрубные котлы , в которых продукты сгорания топлива движутся внутри труб поверхностей нагрева, а вода и пароводяная смесь – снаружи труб.
— Водотрубные котлы , в которых вода или пароводяная смесь движется внутри труб, а продукты сгорания топлива – снаружи труб.

Пепейдя по ссылке можно найти нормативную документацию, в которой указаны требования к качеству воды.

Помимо нормативной документации необходимо учесть рекомендации производителя котла, указанные в инструкции по эксплуатации/ руководстве пользователя.

Сетевая вода ГВС должна соответствовать нормам «СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

Примеси, содержащиеся в воде, можно разделить на две группы: растворенные и нерастворенные (механические). Высокая мутность , наличие взвешенных и коллоидных частиц ведет к накоплению шлама и забиванию трубной системы котла и нарушению циркуляции. В зависимости от источника воды и количественных показателей нерастворенных загрязнений выбирается метод механической очистки, осветления. В самом простом случае это механический фильтр с рейтингом фильтрации 200-500 мкм, а при поверхностном водозаборе может потребоваться обработка коагулянтами, флокулянтами, с дальнейшим отстаиванием и осветлением.

К растворенным примесям, влияющим на работу котлового оборудования, в первую очередь относят соли жесткости . При использовании жесткой воды происходит образование накипи на поверхности, ухудшается теплоотдача, происходит перегрев труб со стороны нагрева, что может привести к их разрушению. В зависимости от типа котла предъявляются менее или более жесткие требования по содержанию солей кальция и магния в питательной и котловой воде. На основании требований к очистке, исходной жесткости воды и требуемой производительности выбирается способ умягчения. К основным способам можно отнести:
1.Умягчение на Na-катионитовой смоле;
2.Известкование;
3.Умягчение, снижение общего солесодержания на установках обратного осмоса;
4.Умягчение, снижение общего солесодержания последовательным пропусканием воды через Н-, ОН-ионообменные фильтры.

Наиболее распространённым методом умягчения для котельных небольшой мощности является метод ионного обмена на Na-катионитном фильтре. При протекании воды через слой загрузки ионы кальция и магния замещают ионы натрия в гранулах смолы. Таким образом, ионы жесткости извлекаются из воды, а для поддержания ионного баланса в эквивалентном соотношении выделяются ионы натрия, соли которого обладают высокой растворимостью. Подробнее об умягчении можно узнать в соответствующем разделе сайта. Для непрерывного умягчения используют установки типа Duplex (Дуплекс ) — два фильтра работают одновременно, но регенерируются поочерёдно; или типа Twin (Твин) – два фильтра работают по очереди, регенерация происходит в момент работы другого фильтра. Стоить отметить, что для регенерации Na-китионнообменных фильтров промышленного и коммерческого назначения экономически целесообразно использовать не таблетированную соль, а насыпью. Для возможности применения соли в насыпь необходимы солерастворяющие установки (солерастворители). Ознакомиться с ними можно также на нашем сайте, перейдя по ссылке.

Подготовка питательной воды методом обратного осмоса применяется, когда необходимо очень высокое качество воды и/или получаемого пара, а также когда необходимо решение нескольких задач, например, если помимо умягчения необходимо снизить щелочность воды, удалить хлориды или сульфаты . Установки обратного осмоса (УОО) всегда рассчитываются индивидуально для каждого случая, исходя из качества исходной воды. Очищенная на обратноосмотических мембранных элементах вода называется «пермеатом» и имеет пониженный водородный показатель рН. УОО работают на накопительные емкости, а до подачи исходной воды на установку обязательно необходима предподготовка. Подробнее об установках обратного осмоса можно узнать из соответствующего раздела сайта.

Для воды из скважины характерным является превышение содержания железа и марганца , которые также влияют на рабочий режим котлового оборудования. Выбор метода обезжелезивания определяется многими факторами – от производительности установки до сопутствующих примесей.

Для предотвращения кислородной коррозии необходимо удалить растворенный кислород из питательной воды. Различают несколько видов деаэрации, но наиболее часто применяется термический и химический способ. Химический (реагентный) – введение в воду вещества, связывающего растворенный кислород, чаще всего применяют сульфит, гидросульфит или тиосульфат натрия. При термической обработке питательная вода нагревается до температур, близких к температуре кипения, при этом растворимость газов в воде уменьшается и происходит их удаления. Аппараты, в которых производится термическая дегазация, называются «деаэраторы». Бывают деаэраторы атмосферного, повышенного давления и вакуумные. По способу нагрева деаэраторы делятся на струйные, барботажные и комбинированные. В деаэраторах, помимо кислорода, удаляется также растворенный в воде углекислый газ , который является причиной углекислотной коррозии. Для уменьшения содержания углекислого газа в подпиточной воде используют также подщелачивание.

Читайте также:  Задача анализ кислорода в воде

Существует большое количество реагентов, предназначенных для ингибирования процессов солеотложения и коррозии. Традиционно применяют автоматически дозирующие станции для ввода реагента в предварительно подготовленную воду. В некоторых случаях реагенты совместимы и могут дозироваться из одной ёмкости рабочих растворов, в других – требуется наличие нескольких дозирующих станций. При использовании реагентной коррекционной обработки необходимо следить за приготовлением дозируемых растворов и постоянно контролировать концентрации дозируемых веществ в котловой воде.

Компания «АкваГруп» гарантирует индивидуальный подход к подбору и расчету установки ВПУ для каждого объекта.

источник

ГОСТ Р 55682.12-2013/ЕН 12952-12:2003

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОТЛЫ ВОДОТРУБНЫЕ И КОТЕЛЬНО-ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ

Требования к качеству питательной и котельной воды

Water-tube boilers and auxiliary installations. Part 12. Requirements for boiler feedwater and boiler water quality

ОКС 27.010
_______________
* В ИУС 10-2014 ГОСТ Р 55682.12-2013/ЕН 12952-12:2003 приводится с ОКС 13.060.25, 27.040. —
— Примечание изготовителя базы данных.

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Энергомашиностроительный Альянс» (ОАО «ЭМАльянс») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 244 «Оборудование энергетическое стационарное»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 1953-ст

4 Настоящий стандарт является модифицированным по отношению к региональному стандарту ЕН 12952-12:2003* «Котлы водотрубные и вспомогательные установки. Часть 12. Требования к питательной воде котла» (EN 12952-12:2003 «Water-tube boilers and auxiliary installations — Part 12: Requirements for boiler feedwater and boiler water quality»), путем включения в него дополнительных требований, информация о которых приведена во введении.
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет (gost.ru)

Настоящий стандарт распространяется на все водотрубные котлы согласно определению, приведенному в ГОСТ Р ЕН 12952-1, нагрев которых осуществляется за счет сжигания одного или нескольких видов топлива или горячими газами с целью генерирования пара и/или горячей воды.

Настоящий стандарт распространяется на область парогенератора между входом питательной воды и выходом пара. Качество генерируемого пара находится вне сферы действия этого стандарта.

Цель настоящего национального стандарта состоит в том, чтобы гарантировать эксплуатацию котла с низким риском для персонала, самого котла и связанных с ним компонентов котельной установки.

Примечание — Достижение оптимальной экономичной эксплуатации не является целью настоящего стандарта. По определенным причинам может быть более целесообразным оптимизировать химические свойства для того чтобы:

— улучшить термический КПД;

— повысить готовность и надежность установки;

— повысить чистоту пара;

— снизить затраты на техническое обслуживание — ремонт, химическую очистку и т.д.

В этой части устанавливаются минимальные требования к специфическим видам воды для снижения риска коррозии, оседания шлама или образования отложений, которые могут привести к повреждениям, разрыву или другим эксплуатационным проблемам.

Примечание — При составлении этой части предполагалось, что лицо, применяющее настоящий стандарт имеет достаточно знаний о строительстве и эксплуатации котлов, а также достаточное понимание химии воды и пара.

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р ЕН 12952-1-2012 Котлы водотрубные и котельно-вспомогательное оборудование. Часть 1. Общие положения (ЕН 12952-1:2001 «Котлы водотрубные и вспомогательные установки. Часть 1. Общие положения», IDT)

ГОСТ Р ЕН 12952-7-2013 Котлы водотрубные и котельно-вспомогательное оборудование. Часть 7. Требования к оборудованию для котлов (ЕН 12952-7:2002 «Котлы водотрубные и вспомогательные установки. Часть 7. Требования к оборудованию котла», IDT).

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

В настоящем стандарте применены термины по ГОСТ Р ЕН 12952-1, а также следующие термины с соответствующими определениями:

3.1 электропроводность прямая (direct conductivity): Электропроводность воды, измеренная прямым методом.

3.2 электропроводность Н-катионированной пробы (cation (acid) conductivity): Электропроводность воды, измеренная в форме концентрации ионов водорода при непрерывном протекании через сильнокислый катионообменник.

3.3 вода подпиточная (make-up water): Вода для компенсации потерь воды и пара в системе.

3.4 вода питательная (feed water): Смесь возвратного конденсата и/или подпиточной воды, подаваемой в котел.

3.6 вода котельная (boiler water): Вода внутри котла с естественной или принудительной циркуляцией.

3.7 вода, впрыскиваемая в пароохладитель (superheater spray water): Вода для впрыскивания с целью регулирования температуры пара.

5.1 Значения максимально допустимой концентрации целого ряда примесей, а также максимальная и минимальная концентрация химических средств, которые добавляют для предотвращения коррозии, образования шлама (сгущения) и отложений, должны соответствовать данным, приведенным в таблицах 1-3 и на рисунках 1-5.

Примечание — В определенных случаях при использовании обессоленной воды можно также применять в качестве средства водоподготовки для уменьшения коррозии кислород, главным образом в прямоточных котлах. Это ограничивает количество примесей в нормальных условиях эксплуатации и в условиях нагрузочного цикла.

Таблица 1 — Питательная вода паровых котлов и бойлеров с естественной или принудительной циркуляцией

Питательная вода с содержанием твердого вещества

Питательная вода и впрыскиваемая вода деминерализованная

источник

В последние годы все чаще на теплопроизводящих предприятиях используется новое, энергоэффективное и дорогостоящее оборудование, имеющее ряд неоспоримых преимуществ, однако требующее при этом внимательного и бережного отношения в ходе его эксплуатации. Речь идет, не только о крупных и давно работающих предприятиях, но и о небольших паровых и водогрейных котельных, владельцы которых не имеют возможности привлекать к их эксплуатации высококвалифицированных специалистов.

Неправильное отношение к вышеуказанным проблемам приводит к быстрому выходу из строя и даже аварийным остановкам теплоэнергетического оборудования в течение первых же лет эксплуатации.

Одной из важнейших задач, которую требуется решать для обеспечения безаварийной и экономичной эксплуатации всех аппаратов и элементов тепловой схемы энергетических установок и в первую очередь самих паровых котлов является задача правильной организации водно-химического режима работы этого оборудования. В том числе оперативного эксплуатационного химического контроля за водой и паром в котельных всех видов.

При этом рекомендуется осуществлять отбор представительных среднесуточных проб питательной и технологической воды с производством в дневную смену их анализа.

Такой периодический контроль должен давать четкое количественное представление о составе исходной воды, динамику изменений этого состава в тракте котельной системы водоподготовки во времени, качества конденсата, возвращаемого из каждого теплообменного аппарата в питательную систему котлов и качества пара, выдаваемого котлами.

Данные анализов, в том числе и среднесуточных проб, должны давать возможность правильных расчетов, основных показателей питательной и технологической воды, и, соответственно, позволять своевременно вносить необходимые коррективы в водно-химический режим работы аппаратов и элементов тепловой схемы энергетических установок и самих паровых котлов.

Кроме того, результаты анализов периодического эксплуатационного контроля позволяют отслеживать основные показатели водоподготовительной установки, такие как: удельный расход реагентов, их дозу и качество, глубину освобождения воды от отдельных загрязнителей и т.д.

Рекомендуемая периодичность химико-аналитического контроля составляет:

  • для паровых котлов – не реже, чем 1 раз в 4 часа;
  • для водогрейных котлов и тепловых сетей – не реже, чем 1 раз в сутки.

Для котельных, в которых установлены котлы типа Е-2,5-0,9 ГМН, рекомендуется организация собственной водно-химической лаборатории. Для такой лаборатории специального помещения не предусматривается. В котельных лабораторный аналитический стол должен находиться в застекленном боксе-кабине размером 6-8 м 2 .

Состав оборудования котельной

Указания по организации водной лаборатории

Котельная только с водогрейными котлами теплопроизводительностью 35 МВт (30 Гкал/ч) и более

Организуется лаборатория в соответствии с указаниями РД 24.031.120-91

Котельная только с водогрейными котлами теплопроизводительностью менее 35 МВт (30 Гкал/ч)

Организуется лаборатория в соответствии с указаниями РД 24.031.120-91

Котельная с водогрейными котлами любой теплопроизводительности, в которой установлены также паровые котлы

Организуется лаборатория первой или второй категории – в зависимости от теплопроизводительности водогрейных котлов. При этом предусматривается дополнительное оборудование, соответствующее типу и производительности паровых котлов по РТМ 24.030.24-72

источник

Лабораторная работа №3

Взятие пробы воды для анализа

Для правильного суждения о качестве воды необходимо соблюдать следующие требования:

1. Брать пробы воды для анализа нужно из точно установленных мест, указанных в водном режиме котельной установи.

2. Если воду берут из трубопровода, то перед взятием пробы следует застоявшуюся воду слить в течение 2-3 минут.

3. Посуда, в которую берут пробу воды, должна быть чистой, ее следует 1-2 раза ополоснуть водой из-под крана, откуда берется проба.

4. Анализы качества котловой воды и теплого ящика проводятся ежесуточно, котельного танка (общая жесткость и содержание хлоридов) 1 раз в 5-7 суток. Полученные результаты фиксируются в журнале.

Проведение испытания

Водородный показатель (pH)

1.1 Метод определения и характеристики

Недородный показатель воды (pH, отрицательный десятичный логарифм концентрации водородных ионов) определяется двумя методами визуально-колориметрическим и потенциометрическим.

При визуально-колориметрическом определении, основанном на реакции ионов водорода с универсальным индикатором (ГД 24.031.120-91, РД 24.032.01-91), pH анализируемой воды определяют визуально сравнением окраски пробы с окраской об­разцов на контрольной шкале. Диапазон определяемых значений pH составляет 4,5-11,0 при точности анализа ±0,5 ед. pH.

Объём пробы для определения составляет 5 мл, продолжи­тельность выполнения определения — не более 1 мин.

Принадлежности, реактивы и материалы

Определение выполняется с использованием оборудования из состава навесного ящика №1 СЛКВ, секция №2 «pH» или pH-метра типа pH-410 .

Реактивы:раствор индикатора универсального.

Принадлежности, материалы:контрольная шкала образцов окраски растворов для определения pH (pH 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 10,0; 11,0); полимерная пипетка; пробирка колориметрическая с меткой «5 мл».

Отбор и хранение проб

Отбор проб воды и пара должен проводиться в соответствии с п. 9 настоящего руководства.

Для отбора проб используются бутыли из полимерного ма­териала или стекла. Выполнение определений следует проводить как можно скорее и предпочтительнее на месте отбора пробы. Максимальный рекомендуемый срок хранение проб — не более 6 часов.

1.3 Выполнение определения

1) Ополосните колориметрическую пробирку не­сколько раз анализируемой водой. Налейте в пробирку анализируемую воду до метки «5 мл».

2) Добавьте полимерной пипеткой 3-4 капли раствора индикатора универсального и встряхните пробирку.

3) Проведите визуальное колориметрирование пробы. Для это­го пробирку с пробой поместите на белое поле контрольной шкалы и, освещая пробирку рассеянным белым светом достаточной интенсивности, наблюдайте окраску пробы сверху вниз.

4)Определите ближайшее по окраске поле кон­трольной шкалы и соответствующее ему значение pH. При необходимости повторите определение.

2.1 Метод определения и характеристики

Щелочность воды — показатель, характеризующий содержание в воде соединений, способных реагировать с водородными ионами. К таким соединениям относятся гидроокиси щелочных металлов, карбонаты, гидрокарбонаты и фосфаты щелочных и щелочноземельных металлов, а также соли других слабых кислот.

Метод определения щёлочности является титриметрическим (РД 24.031.120-91, РД 24.032.01-91, РД 34.37.523.7-88). Определение щёлочности воды основано на титровании растворённых в воде щелочных соединений кислотой в присутствии индикаторов, меняющих свою окраску в зависимости от реакции среды. Метод определения щёлочности зависит от вида анализируемой воды и предполагаемого значения щёлочности.

Читайте также:  Законодательство по анализу сточных вод

Методом А определяется щёлочность исходной, известкованной, катионированной и питательной вод. Титрование проводят с индикаторами метиловым оранжевым и фенолфталеином при использовании в качестве титранта раствора соляной кислоты 0,1 моль/л. При этом, при титровании с фенолфталеи­ном, определяется свободная щёлочность по фенолфталеину СВОБ), а при титровании с метиловым оранжевым — общая щелочность (ЩОБЩ). Величина ЩОБЩ условно характеризует суммарное содержание в воде бикарбонатов, карбонатов, гидратов, 2/3 ортофосфатов и гуматов, в то время как ЩСВОБ — гидра­тов, 1/2 карбонатов, 1/3 ортофосфатов и гуматов.

Методом Вопределяется общая щелочность котловой во­ды. Титрование проводят со смешанным индикатором для вод, имеющих значительную цветность, а также при титровании при электрическом освещении, при использовании в качестве титранта также раствора соляной кислоты 0,1 моль/л.

Методом С определяется щёлочность воды типа конден­сата, т.е. при значении щёлочности менее 0,2 ммоль/кг экв. Тит­рование проводят со смешанным индикатором или с индикато­ром метиловым оранжевым, при использовании в качестве титранта раствора соляной кислоты 0,01 моль/л.

Данные по изменению окраски индикаторов в зависимости от pH среды приведены в табл. 3.2.

Отбор и хранение проб

Отбор проб воды и пара проводится в соответствии с требованиями.

Для отбора проб используются бутыли из полимерного материалаили стекла. Выполнение определений рекомендуется пропилить сразу после отбора проб.

Максимальный рекомендуемый срок хранение проб при охлаждении до 2-5°С — не более 24 ч.

Подготовка к определению

Подготовка к определению общей щелочности состоит в приготовлении израсходованного раствора соляной кислоты (0,01 моль/л). Потребитель готовит его самостоятельно, используя раствор соляной кислоты (0,1 моль/л) из состава лаборатории.

Жёсткость общая

3.1 Методы определения и характеристики

Метод определения общей жёсткости как суммарной массовой концентрации эквивалентов катионов кальция и магния — комплексонометрической, основан на реакции образования в щелочной среде (pH = 9) в присутствии индикаторов окрашенных внутрикомплексонных соединений катионов кальция и магния с трилоном Б (двунатриевой солью этилендиаминтетрауксусной кислоты). (РД 24.031.120-91, РД 24.032.01-91, РД 34.37.523.8-88).

В зависимости от предполагаемого значения жёсткости, опредение выполняется тремя методами.

Метод Атитриметрический.Определяется жёсткость природной, известковой и коагулированной воды при величине более 0,1 °Ж. При титровании используется раствор индикатора хром темно-синего и в качестве титранта — раствор трилона Б 0,05 моль/л экв.

Метод Бтитриметрический.Определяется жёсткость любых вод при величине в диапазоне 0,02-0,1 °Ж. При титрова­нии используется раствор индикатора хром тёмно-синего и в качества титранта раствор трилона Б 0,005 моль/л экв.

МетодС — визуально-колориметрический.Определяется жёсткость вод при величине менее 0,02 °Ж. Особенностью дан­ного метода, на первом этапе, является необходимость выбора пары индикатор — буферный раствор, которая для данной ис­ходной (катионированной) воды обеспечивает оптимальный пе­реход окраски от розового к синему, что является индивидуаль­ной особенностью данной исходной воды.

Сравнение окраски анализируемой воды с окраской эталон­ных растворов позволяет определить фактическое значение жёст­кости с чувствительностью 0,001-0,002 °Ж.

Индикаторы кислотный хром тёмно-синий и эриохром чёр­ный Т образуют с катионами солей жёсткости непрочные окра­шенные соединения красного цвета. При добавлении в воду с по­добными окрашенными соединениями раствора трилона Б в точ­ке эквивалентности происходит их полное разрушение, при этом раствор становится синим.

В присутствии ионов цинка или меди (неотчётливый пере­ход окраски) определение жёсткости проводят с добавлением раствора сульфида натрия, связывающего эти катионы в нерас­творимые сульфидные соединения.

Влияние ионов марганца, приводящее к быстрому обесцве­чиванию окраски, устраняют добавлением к пробе раствора со­лянокислого гидроксиламина.

Объём пробы для анализа составляет, в зависимости от ме­тода, от 10 до 100 мл, продолжительность выполнения анализа — не более 15 мин.

Подготовка к определению

Подготовка к проведению анализа заключается в приготовлении расходных растворов из реактивов, входящих в состав ла­боратории.

Буферные растворы следует приготавливать с использованием очищенной катионированной воды либо воды, применение которой не приводит к холостому окрашиванию пробы.

Очищенную воду, необходимую для проведения анализа, приготавливают по ОСТ 34.70.953.2-88, либо используют набор для приготовления очищенной воды.

Отбор и хранение проб

Отбор проб воды и пара должен проводиться в соответствии требованиями.

Пробы анализируемой воды следует отбирать в стеклянные бутыли или полимерные бутыли с пробками. Допускается хране­ние пробы до 24 ч без консервации.

3.4 Выполнение определения

Метод А. Определение общей жёсткости воды более 0,1 °Ж

1. Налейте анализируемую воду в коническую колбу вместимостью 250 мл до метки «100 мл».

2. Добавьте полимерными пипетками 1 мл аммиачно­го буферного раствора, 7 капель раствора индика­тора кислотного хрома тёмно-синего.

3.Медленно титруйте пробу раствором трилона Б (0,05 моль/л экв.), используя бюретку или стойку-штатив с мерной пипеткой вместимостью 10 мл со шприцем-дозатором, до отчётливого изменения цвета с розового на синий.

Примечание.При нечётком переходе окраски или обесцвечивании пробы определение повторите с добавлением к пробе 0,5 мл раствора сернистого натрия для устранения мешающего действия ионов меди и цинка либо трёх капель раствора солянокислого гидроксиламина для устранения мешающего действия соединений марганца.

4Рассчитайте общую жёсткость (Жобщ) в °Ж по формуле:

ЖОБЩ =V × 0,5

На титрование 100 мл пробы воды израсходовано 3,5 мл раствора трилона Б (0,05 моль/л экв.). Общая жёсткость будет составлять:

ЖОБЩ = V × 0,5 = 3,5× 0,5 = 1,75°Ж

4.1 Метод определения и характеристики

Содержание хлоридов (массовая концентрация хлорид- иона) определяется методом аргентометрического титрования (РД 24.031.120-91, РД 24.032.01-91). Определение основано на титровании хлорид-ионов раствором нитрата серебра при pH 5,0- 8,0, в результате чего образуется суспензия практически нерастворимого хлорида серебра. В качестве индикатора используется хромат калия, который реагирует с избытком нитрата серебра с образованием хорошо заметного оранжево-бурого осадка хромата серебра.

Объём пробы для анализа — см. табл. 12, продолжительность выполнения анализа — не более 5 мин.

Отбор и хранение проб

Отбор проб воды и проводится в соответствии с требованиями.

Для отбора проб используются бутыли из полимерного ма­териала или из стекла. Допускается хранение пробы I мес. без консервации.

В зависимости от предполагаемого содержания хлоридов отбираются пробы для анализа в количествах согласно табл. 12.

На титрование 10 мл пробы котловой воды израсходовано 1,1 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов составит:

мг/л.

На титрование 10 мл пробы воды израсходовано 0,02 мл раствора нитрата серебра (0,05 моль/л экв.). Величина израсходованного на титрование объёма раствора нитрата серебра свидетельствует о том, что концентрация хлорид-ионов меньше предполагаемой.

мг/л.

Так как предполагаемая концентрация хлорид-иона оказалась меньше 4,0 мг/л (см. табл. 3.3), на анализ повторно отбирается проба объёмом 6000 мл, которая упаривается до 150 мл (в 40 раз). На титрование упаренной пробы объёмом 150 мл израсходовано 9,5 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов в этом случае составляет:

мг/л.

На титрование 10 мл пробы воды израсходовано 4,82 мл раствора нитрата серебра (0,05 моль/л экв.). Величина израсходованного на титрование объёма раствора нитрата серебра свидетельствует о том, что концентрация хлорид-ионов больше предполагаемой.

мг/л.

Так как предполагаемая концентрация хлорид-иона оказалась Тоньше 700 мг/л (см. табл. 3.3), отобранная проба разбавляется дистиллятом в 10 раз, на анализ берётся объем 10 мл разбавленной пробы. На титрование отобранной пробы израсходовано 0,48 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов в этом случае составляет:

мг/л.

Вопросы для самоконтроля:

1. Дать определения понятиям: главный конденсат, вспомогательный конденсат, дистиллят испарительной установки, дренажи, добавочная вода, питательная вода, котельная вода, котловая вода, продувочная вода, охлаждающая вода.

2. Охарактеризовать основные показатели: Общее содержание примесей, Растворённые вещества, Взвешенные вещества, Остаток после прокаливания, Потеря при прокаливании, Концентрация водородных ионов, Кислотность, Щёлочность, Щелочное число, Общая жёсткость воды, Карбонатная жёсткость, Некарбонатная жёсткость, Cодержание хлоридов, Фосфатное число, Нитратное число, Содержание окислов меди и железа, Содержание кислорода, Содержание нефтепродуктов.

Лабораторная работа №3

Тема: ОПРЕДЕЛЕНИЕ КАЧЕСТВА КОТЛОВОЙ ВОДЫ

Цель:Определение качества котловой воды, изучение норм качества котловой воды, рекомендации по водному режиму.

В пароконденсатном цикле СЭУ с паротурбинной установкой (ПТУ) вода и пар циркулируют по замкнутому контуру, в котором могут быть различные утечки воды или пара, вызывающие периодическое или непрерывное восполнение контура циркуляции технической водой. Поэтому в СЭУ с ПТУ существуют специальные определения воды в различных точках циркуляционного контура:

главный конденсат – вода после конденсации отработавшего пара на выходе из главного конденсатора;

вспомогательный конденсат – вода после конденсации отработавшего пара из вспомогательных конденсаторов (после вспомогательных механизмов и теплообменных аппаратов);

дистиллят испарительной установки – вода, полученная из морской путем её термической дистилляции;

дренажи – конденсаты после паровых подогревателей топлива и общесудовых потребителей пара;

добавочная вода – вода, подаваемая в циркуляционный контур для восполнения его в результате утечек (воды и пара);

питательная вода – вода, подаваемая в паровой котёл для поддержания его паропроизводительности (так же, как и забортная вода, поступающая в камеру испарения водоопреснительной установки);

котельная вода – питательная вода определённого химического состава, предназначенная исключительно для парового котла, находящаяся в танке котельной воды;

котловая вода – вода, находящаяся в циркуляционном контуре котла;

продувочная вода – котловая вода, удаляемая периодически или непрерывно из котла для уменьшения солесодержания в ней взвешенных частиц шлама;

охлаждающая вода – вода, с помощью которой отводят теплоту через поверхность теплообмена системы охлаждения теплотехнического объекта.

Питательная вода судовых паровых котлов обычно состоит из конденсата отработавшего пара и добавочной воды. Добавочная вода может быть природной, полученной с берега и прошедшей соответствующую водообработку, или дистиллятом от испарительной установки забортной воды. В целом, добавочная вода составляет 2–5 % от общего количества питательной воды.

Вода является одним из лучших природных растворителей органических и минеральных веществ, а также газов. Поэтому она в результате круговорота в природе приобретает множество примесей в виде газов, взвешенных мелкодисперсных частиц и растворенных минералов различного происхождения. Конденсат отработавшего пара на морских судах чаще всего содержит примеси в виде продуктов коррозии трубопроводов или забортной воды при подсосах в трубных решётках конденсаторов, а также – нефтеостатков СЭУ (частицы жидкого топлива и смазочного масла). Поэтому питательной водой, например, для судовых вспомогательных паровых котлов может быть конденсат отработавшего пара или природная вода, содержащая в себе частицы песка и глины, а также растворенные накипеобразователи щелочно-земельных металлов (Ca2+ и Mg2+), такие как бикарбонаты, сульфаты, хлориды и силикаты, а также коррозионно-активные газы – кислород, хлор и углекислый газ.

Поступление в котловую воду любых вышеперечисленных примесей является нежелательным, т. к. это приводит к появлению накипных отложений и коррозии на поверхности нагрева, что увеличивает расход топлива и снижает надежность котельных установок и эффективность их эксплуатации.

В СДВС с высокотемпературной системой охлаждения вышеуказанное также имеет место. Поэтому на морских транспортных судах системы охлаждения ДВС обычно низкотемпературные и двухконтурные. В первом контуре циркуляции для охлаждения СДВС обычно применяют водные растворы ингибиторов коррозии, а во втором – проточную морскую забортную воду.

Техническая эксплуатация СЭУ невозможна без проведения соответствующего водного режима, предусматривающего контроль основных показателей качества воды (водоконтроля) и определенной технологии водообработки. Качество используемой в СЭУ воды в значительной мере определяет надёжность элементов СЭУ и объём трудозатрат на восстановление работоспособности оборудования. Выбор технологии водоподготовки определяется её эффективностью и экономической целесообразностью.

Основными задачами водоподготовки в СЭУ являются: создание условий для предотвращения процессов накипеобразования и коррозии на поверхности нагрева, а также исключение уноса солей с влажным паром из зоны кипения воды. Поэтому каждый инженер-судомеханик должен уметь определять основные показатели качества питьевой и технической воды, а также корректировать водные режимы и технологии водообработки в соответствии с инструкциями по технической эксплуатации судового оборудования.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

источник