Меню Рубрики

Анализ нефтепродуктов в воде время

Нефтепродукты (НП) относятся к числу наиболее распространенных и опасных веществ, загрязняющих природные воды. Нефть и продукты ее переработки представляют собой сложную, непостоянную смесь предельных и непредельных углеводородов и их различных производных. Понятие «нефтепродукты» в гидрохимии условно ограничивается только углеводородной фракцией (алифатические, ароматические и ациклические), составляющей главную и наиболее характерную часть нефти и продуктов ее переработки. В международной практике содержание в воде нефтепродуктов определяется термином «углеводородный нефтяной индекс» (hydrocarbon oil index).

В связи с неблагоприятным воздействием нефтепродуктов на организм человека и животных, на биоценозы водоемов, контроль за содержанием нефтепродуктов в водах обязателен и регламентируется требованиями ГН 2.1.5.1315-03, ГН 2.1.5.2280-07, СанПиН 2.1.5.980-00, Приказом Росрыболовства от 18.01.2010 №20.

Предельно допустимые концентрации (ПДК) нефтепродуктов в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования 0,3 мг/дм3, в водах водных объектов рыбохозяйственного значения — 0,05 мг/дм3.

В настоящее время применяют методы определения содержания нефтепродуктов в воде, основанные на различных физических свойствах нефтепродуктов:

  1. Метод ИК-спектрофотометрии
  2. Гравиметрический метод
  3. Флуориметрический метод
  4. Метод газовой хроматографии.

Метод ИК-спектрофотометрии (ПНД Ф 14.1:2:4.168; МУК 4.1.1013-01, НДП 20.1:2:3.40-08) заключается в выделении эмульгированных и растворенных нефтяных компонентов из воды экстракцией четыреххлористым углеродом, хроматографическом отделении НП от сопутствующих органических соединений других классов на колонке, заполненной оксидом алюминия, и количественном их определении по интенсивности поглощения C-H связей в инфракрасной области спектра. Диапазон измеряемых концентраций: 0,02 – 2,00 мг/дм3. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 50%.

Гравиметрический метод ( ПНД Ф 14.1:2.116-97) основан на извлечении нефтепродуктов из анализируемых вод органическим растворителем, отделении от полярных соединений других классов колоночной хроматографией на оксиде алюминия и количественном определении гравиметрическим методом. Диапазон измеряемых концентраций: 0,30 – 50,0 мг/дм3. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 28% (для природных вод), 10 – 35% (для сточных вод).

Преимуществами этого метода определения НП являются высокая чувствительность и экспрессность анализа.

Методом газовой хроматографии (ГОСТ 31953-2012 ) определяют массовую концентрацию нефтепродуктов в питьевой воде, в том числе расфасованной в емкости, природной (поверхностной и подземной) воде, в том числе воде источников питьевого водоснабжения, а также в сточной воде с массовой концентрацией нефтепродуктов не менее 0,02 мг/дм3.

Метод основан на экстракционном извлечении нефтепродуктов из пробы воды экстрагентом, очистке экстракта от полярных соединений сорбентом, анализе полученного элюата на газовом хроматографе, суммировании площадей хроматографических пиков углеводородов в диапазоне времен удерживания равным и (или) более н-октана ( ) и расчете содержания нефтепродуктов в воде по установленной градуировочной зависимости. Этот метод позволяет определить не только общее содержание нефтепродуктов, но и проводить идентификацию состава нефтепродуктов. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 50%.

В лаборатории АНО «Испытательный Центр «Нортест» измерение массовой концентрации нефтепродуктов в пробах природных, питьевых, сточных вод выполняется флуориметрическим и гравиметрическим методами анализа.

источник

ГОСУДАРСТВЕННОЕ САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКОЕ НОРМИРОВАНИЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

ОПРЕДЕЛЕНИЕ МАССОВОЙ КОНЦЕНТРАЦИИ
НЕФТЕПРОДУКТОВ В ВОДЕ

1 Разработаны авторским коллективом в составе: Скачков В. Б., Брагина И. В., Ластенко Н. С. (Федеральный центр госсанэпиднадзора Минздрава России), к. х. н. Морозов С. В., Орнацкая Г. Н., Зуева О. А. (Испытательный аналитический центр Новосибирского института органической химии им. Н. Н. Ворожцова Сибирского отделения РАН), при участии к. г. н. Василенко Ю. Г., Петровской И Ф. (Производственно-экологическое предприятие «СИБЭКОПРИБОР», г. Новосибирск).

2. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации, Первым заместителем министра здравоохранения Российской Федерации 25 января 2001 года.

санитарный врач Российской

Федерации — Первый заместитель

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение массовой концентрации
нефтепродуктов в воде

Настоящие методические указания устанавливают ИК-фотометрическую методику количественного химического анализа проб питьевых, природных и очищенных сточных вод для определения в них массовой концентрации нефтепродуктов в диапазоне концентраций от 0,02 до 2,00 мг/дм 3 .

Нефтепродукты (НП) — неполярные и малополярные углеводороды (алифатические, ароматические и алициклические), составляющие главную и наиболее характерную часть нефти и продуктов ее переработки ( ГОСТ 17.1.4.01).

Высокие концентрации нефтепродуктов могут оказывать наркотическое действие и вызывать острые отравления. Нефтепродукты, содержащие мало ароматических углеводородов, вызывают наркоз и судороги. Высокое содержание ароматических углеводородов может угрожать хроническими отравлениями.

ПДК нефтепродуктов в воде — не более 0,1 мг/дм 3 .

Методика обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в табл. 1.

Диапазон измерений, значения характеристики относительной погрешности и ее случайной составляющей при доверительной вероятности Р = 0,95

Характеристика погрешности (границы интервала, в котором погрешность находится с заданной вероятностью), ± d , %

Характеристика случайной составляющей погрешности (среднее квадратическое отклонение случайной составляющей погрешности), s ( d ) ,%

Если массовая концентрация НП в анализируемой пробе воды превышает верхнюю границу диапазона, допускается разбавление элюата (но не более чем в 50 раз) таким образом, чтобы концентрация НП соответствовала регламентированному диапазону; при этом результату количественного химического анализа приписывается значение характеристики погрешности диапазона, в котором произведено измерение.

Измерение массового содержания НП выполняют методом ИК-фотометрии с использованием концентратомера КН-2.

Методика основана на выделении эмульгированных и растворенных нефтяных компонентов из воды экстракцией четыреххлористым углеродом, хроматографическом отделении НП от сопутствующих органических соединений других классов на колонке, заполненной оксидом алюминия, с последующим количественным определением их массовой концентрации по интенсивности поглощения С-Н связей в инфракрасной области спектра на концентратомере КН-2.

Диапазон определяемых концентраций нефтепродуктов (НП) от 0,02 до 2,00 мг/дм 3 .

Мешающее влияние других веществ, присутствующих в пробе воды, устраняется в процессе пробоподготовки.

При выполнении измерений массовой концентрации НП используют следующие средства измерений, вспомогательное оборудование, реактивы и материалы.

Концентратомер КН-2 или другой прибор с аналогичными метрологическими характеристиками. ИШВЖ.004ТУ

Государственный стандартный образец состава раствора НП (углеводородов) в четыреххлористом углероде ГСО 7248

Весы лабораторные ВЛР-200 ГОСТ 24104

Пипетки 2-2-10, 2-2-5, 2-2-1 ГОСТ 29227

Колбы мерные 2-50-2, 2-25-2 ГОСТ 1770

Цилиндры мерные, вместимостью 10, 25, 1000 см 3 ГОСТ 1770

5.2. Вспомогательное оборудование

Шкаф сушильный общелабораторный ГОСТ 13474

Плитка электрическая с закрытой спиралью ГОСТ 14919

Печь муфельная ПМ-8 ТУ 79-337

Стаканы химические, вместимостью 50 см 3 ГОСТ 25336

Стаканчик для взвешивания (бюкс) высокий ГОСТ 25336

Экстрактор либо воронки делительные, вместимостью 0,5- 1,0 дм 3 ГОСТ 25336

Колонки хроматографические с внутренним диаметром 7 мм длиной 200 мм

Штатив для хроматографические колонок

Сито с диаметром отверстий 0,16 мм

Стеклянные палочки длиной 12-15 см

Бутыли из стекла, вместимостью 0,5-1,0 дм 3 , с притертыми пробками для отбора и хранения проб

Четыреххлористый углерод, ГОСТ 20288

Оксид алюминия, для хроматографии, ТУ 6-09-3916

Натрий сернокислый, безводный, ч. (натрия сульфат) ГОСТ 4166

Кислота серная, х. ч. ГОСТ 4204

Кислота азотная ГОСТ 4461

Вода дистиллированная ГОСТ 6709

Стеклоткань или стекловата ГОСТ 10146

6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТу 12.1.005.

6.2. При выполнении измерений на концентратомере КН-2 соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019 и руководством по эксплуатации прибора.

Выполнение измерений может проводить химик-аналитик, владеющий техникой проведения химических работ, изучивший руководство по эксплуатации КН-2.

8.1. Процессы приготовления и подготовки проб к анализу проводят в нормальных условиях согласно ГОСТу 15150 при температуре воздуха (20 ± 5) °С; атмосферном давлении 630-800 мм рт. ст. и влажности воздуха не более 80%.

8.2. Выполнение измерений на концентратомере КН-2 проводят в условиях, рекомендуемых технической документацией к прибору.

Перед выполнением измерений проводят следующие работы: подготовку посуды, четыреххлористого углерода, оксида алюминия, сульфата натрия, очищенной дистиллированной воды, стеклоткани/стекловаты, хроматографических колонок; приготовление градуировочных растворов; подготовку концентратомера КН-2, калибровку/контроль калибровки концентратомера КН-2; отбор проб.

При выполнении измерений массовой концентрации НП необходимо тщательно соблюдать чистоту химической посуды. Для мытья химической посуды разрешается использовать концентрированные серную и азотную кислоты. Запрещается использовать для мытья все виды синтетических моющих средств. Рекомендуется иметь отдельный набор посуды, который используется только для определения НП. Категорически запрещается смазывать шлифы и краны делительных воронок всеми видами смазок!

9.2. Подготовка четыреххлористого углерода

Проверяют чистоту каждой партии в соответствии с руководством по эксплуатации концентратомера КН-2. В кювету заливают чистый четыреххлористый углерод и помещают в прибор. После появления показания нажимают и удерживают в нажатом положении кнопку «О». На табло появится цифровое показание, характеризующее чистоту четыреххлористого углерода. Если это показание лежит в пределах от 10,0 до 20,0 мг/дм 3 , то четыреххлористый углерод пригоден для работы. В противном случае выполняют очистку растворителя путем перегонки в температурном интервале от 76 до 78 °С.

9.3. Подготовка оксида алюминия 2-ой степени активности

Сорбент просеивают через сито и используют мелкую фракцию. Перед употреблением прокаливают в муфельной печи при 600 °С в течение 4 ч, после чего добавляют к прокаленному оксиду алюминия дистиллированную воду (3% масс.) и выдерживают в течение суток при комнатной температуре. При хранении в эксикаторе либо в колбе с притертой пробкой прокаленный оксид алюминия пригоден к использованию в течение 1 месяца.

9.4. Подготовка безводного сульфата натрия

Перед употреблением прокаливают при 400 °С в течение 8 ч. Хранят в эксикаторе.

9.5. Подготовка стеклоткани или стекловаты

Стеклоткань или стекловату выдерживают в разбавленной (1:1) серной или азотной кислоте в течение 12 ч, промывают водопроводной, затем дистиллированной водой и сушат в сушильном шкафу.

Допускается использование ваты медицинской по ГОСТу 5556 (хлопковой, не синтетической!). Перед использованием вату тщательно промывают четыреххлористым углеродом и высушивают при комнатной температуре.

9.6. Подготовка хроматографических колонок

В нижнюю часть вымытой и высушенной колонки помещают комочек стеклоткани или стекловаты. Затем в колонку засыпают 3 г оксида алюминия и вновь помещают слой стеклоткани или стекловаты (0,5 см).

Оксид алюминия используют в колонке однократно.

9.7. Подготовка очищенной дистиллированной воды

Экстрагируют пробу воды из расчета 20 см 3 четыреххлористого углерода на 1 дм 3 воды.

9.8. Приготовление градуировочных растворов

Основной раствор готовят из ГСО 7248-96 состава раствора нефтепродуктов (углеводородов) в четыреххлористом углероде. Для этого в мерную колбу, вместимостью 50 см 3 , с помощью пипетки, вместимостью 1,0 см 3 , помещают 1,0 см 3 ГСО состава НП и доводят объем раствора в колбе до метки четыреххлористым углеродом. Раствор перемешивают и хранят в холодильнике при температуре О-5 °С не более 6 месяцев. Перед использованием раствор выдерживают при комнатной температуре не менее 30 мин. Массовая концентрация полученного раствора 1000 мг/дм 3 . Погрешность приготовления составляет 1,1 % отн.

Рабочий раствор готовят разбавлением основного раствора. Для этого в мерную колбу, вместимостью 50 см 3 , вносят пипеткой 5,0 см 3 основного раствора и доводят объем раствора в колбе до метки четыреххлористым углеродом. Раствор перемешивают и хранят в холодильнике при температуре 0-5 °С не более 3 месяцев. Перед использованием раствор выдерживают при комнатной температуре не менее 30 мин. Массовая концентрация полученного раствора 100 мг/дм 3 . Погрешность приготовления составляет 1,5% отн. Рабочий раствор концентрацией 100 мг/дм 3 используют для калибровки концентратомера КН-2.

Градуировочные растворы готовят для каждого поддиапазона и ближе к нижней границе определяемых содержаний. Градуировочные растворы готовят непосредственно перед использованием путем разбавления рабочего градуировочного раствора. Для этого в мерные колбы, вместимостью 50 см 3 , вносят пипеткой последовательно 10,0; 5,0; 2,5; 1,0 см 3 рабочего градуировочного раствора и доводят объемы растворов в колбах до метки четыреххлористым углеродом. Растворы тщательно перемешивают. Массовая концентрация полученных растворов составляет 20; 10; 5; 2 мг/дм 3 соответственно. Погрешность D (Р = 0,95) градуировочных растворов, обусловленная процедурой приготовления, не превышает 2,5%.

9.9. Подготовка концентратомера КН-2

Подготовку концентратомера КН-2 к работе осуществляют в соответствии с руководством по эксплуатации.

9.10. Калибровка концентратомера КН-2

В кювету заливают чистый четыреххлористый углерод, помещают ее в концентратомер КН-2 и в соответствии с руководством по эксплуатации КН-2 в режиме «калибровка» устанавливают значение «О» шкалы. Используя рабочий раствор массовой концентрации 100 мг/дм 3 , в режиме «калибровка» устанавливают значение «100» шкалы. При отсутствии кюветы в концентратомере в режиме «контроль» считывают цифровое показание «А», которое является контрольным для проверки калибровки.

9.11. Контроль калибровки концентратомера КН-2

Контроль калибровки осуществляют ежедневно.

Контроль калибровки концентратомера КН-2 осуществляют следующим образом: при отсутствии кюветы в концентратомере в режиме «контроль» считывают цифровое показание «а1». Цифровое показание «а1» должно отличаться от цифрового показания «А», полученного по п. 7.10 не более чем на ± 0,5 мг/дм 3 . В противном случае операцию калибровки по п. 7.10 необходимо повторить.

Контроль калибровки в области измеряемых значений массовых концентраций НП проводят с использованием градуировочных растворов, приготовленных по п. 7.8.

Читайте также:  Анализ результатов проб питьевой воды

9.12.1. Отбор проб воды производится в соответствии с требованиями ГОСТ 17.1.4.01, ГОСТ Р 51592-2000, ГОСТ Р 51593-2000. При отборе должен быть исключен захват пленки НП с поверхности воды. Отобранные пробы помещают в стеклянные сосуды с притертыми пробками, используют полностью и не фильтруют.

Объем отобранной пробы в зависимости от содержания НП в воде должен соответствовать значениям, указанным в табл. 2. Одновременно следует отобрать не менее двух проб из одной точки.

9.12.2. Экстракцию НП из воды производят не позднее 3 часов после отбора пробы. При невозможности проведения экстракции в течение этого срока пробу консервируют добавлением смеси серной кислоты и четыреххлористого углерода из расчета 1 см 3 концентрированной кислоты и 2,0-3,0 см 3 четыреххлористого углерода на 1 дм 3 пробы. При экстракции эти объемы следует учитывать.

Срок хранения консервированных проб воды — 1 месяц с момента отбора.

Пробу анализируемой воды полностью переносят в делительную воронку соответствующей вместимости, приливают разбавленную (1:10) серную кислоту из расчета 1 см 3 на 100 см 3 пробы. Если проба воды была предварительно законсервирована, серную кислоту не добавляют. Сосуд, в котором находилась проба, тщательно ополаскивают 5 см 3 четыреххлористого углерода, затем выливают растворитель в делительную воронку. Прибавляют туда еще 5 см 3 четыреххлористого углерода (с учетом консервации общий объем четыреххлористого углерода в делительной воронке должен быть 10 см 3 ). Выполняют экстракцию, встряхивая делительную воронку не менее 10 мин, затем отстаивают в течение 10 мин. После расслоения фаз нижний слой (экстракт) сливают в стаканчик и подвергают очистке по п. 8.2 или оставляют на хранение. После отделения экстракта измеряют объем пробы в воронке мерным цилиндром.

Экстракт сушат безводным сульфатом натрия (не менее 2 г) в течение 10 мин, добавляя его в стаканчик небольшими порциями при перемешивании содержимого стеклянной палочкой.

В подготовленную по п. 7.6 хроматографическую колонку наливают 3 см 3 четыреххлористого углерода для смачивания. Как только четыреххлористый углерод впитается в оксид алюминия, выливают экстракт. Необходимо следить, чтобы уровень жидкости не опускался ниже слоя оксида алюминия. После прохождения экстракта в колонку вливают дополнительно 3 см 3 четыреххлористого углерода, которым предварительно ополаскивают стенки стаканчика, где проводилась осушка экстракта. Элюат собирают в мерный цилиндр вместимостью 10-25 см 3 . Первые 3 см 3 элюата отбрасывают. Суммарный объем элюата в цилиндре должен составить 10 см 3 (при необходимости доводят до 10 см 3 четыреххлористым углеродом).

Концентратомер КН-2 должен быть предварительно откалиброван. Перед измерением следует провести контроль калибровки прибора.

Элюат заливают в чистую кювету и устанавливают в концентратомер КН-2. Измеряют концентрацию НП в элюате, считывая показания прибора.

В случае, если концентрация НП превышает величину 100 мг/дм 3 , разбавляют элюат четыреххлористым углеродом, затем раствор заливают в кювету, устанавливают в прибор и производят измерение.

Определение массовой концентрации НП в холостой пробе выполняют одновременно с анализом серии проб. Для этого берут 0,5-1,0 дм 3 очищенной (по п. 7.7) дистиллированной воды и обрабатывают ее, как описано в п. 8.

Результаты анализа холостой пробы учитывают при расчете концентрации НП в пробе. Анализ холостой пробы проводят также при использовании новой партии реактивов.

Массовую концентрацию НП (X) в пробе анализируемой воды рассчитывают по формуле:

, где (1)

Xизм — содержание НП в элюате, измеренное на приборе, мг/дм 3 ;

V — объем пробы анализируемой воды, см 3 ;

К — коэффициент разбавления, т.е. соотношение объемов мерной колбы и аликвоты элюата (учитывается при его разбавлении по п. 8.3);

V ЭЛ — объем элюата (Уэл = 10 см 3 ).

Из результатов анализа вычитают данные, полученные при анализе холостой пробы по п. 9.

Результат измерения в документах, предусматривающих его использование, представляют в виде:

, где (2)

D — значение характеристики погрешности, рассчитанное по формуле:

(3)

( среднее арифметическое результатов 2-х параллельных определений Х1 и Х2; = (Х1 + Х2)/2). Значения d приведены в табл.1.

14.1. Алгоритм проведения оперативного контроля сходимости

Оперативный контроль сходимости проводят путем сравнения расхождения двух результатов параллельных определений (X1, Х2), полученных при анализе пробы, с нормативом оперативного контроля сходимости — d.

Сходимость результатов параллельных определений признают удовлетворительной, если:

, где (4)

d = 0,01 × dотн ×

( среднее арифметическое значение двух результатов параллельных определений). Значение dотн приведены в табл. 3.

При выполнении данного условия по результатам параллельных определений вычисляют результат измерения массовой концентрации НП в рабочей пробе.

При превышении норматива оперативного контроля сходимости эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

14.2. Алгоритм проведения оперативного контроля воспроизводимости

Образцами для контроля являются две представительные рабочие пробы, отобранные в традиционных точках контроля вод одновременно или непосредственно друг за другом. Пробы анализируют в точном соответствии с прописью методики, получая два результата анализа в разных лабораториях или в одной, причем в этом случае максимально варьируют условия проведения анализа, т.е. используют разные наборы мерной посуды, разные партии реактивов, в работе участвуют два аналитика.

Воспроизводимость результатов измерений рабочих проб признают удовлетворительной,если:

, где (5)

Х1 — средний результат анализа первой рабочей пробы;

Х2 — средний результат анализа второй рабочей пробы в других условиях;

D норматив оперативного контроля воспроизводимости, причем

; (6)

( — среднее арифметическое значение результатов анализа первой и второй рабочей пробы). Значения D отн приведены в табл. 3.

При превышении норматива оперативного контроля воспроизводимости эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

Значение нормативов оперативного контроля случайной составляющей относительной погрешности (воспроизводимости и сходимости) при доверительной вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Норматив оперативного контроля воспроизводимости, D отн , % (для двух результатов измерений, m = 2)

Норматив оперативного контроля

(для двух результатов параллельных определений, n = 2)

источник

Нефтепродукты в воде — это опасные вещества, которые негативно влияют на здоровье человека и экологию в целом. Данные примеси портят санитарные условия водоемов и наносят вред народному хозяйству. Большое содержание нефтепродуктов в воде приводит к тому, что водоем становится непригодным для использования.

На загрязнение водоемов нефтяными продуктами влияют два фактора: природный и антропогенный. Последний наносит гораздо больший урон.

  • Аварии и разлив нефти при ее добыче
  • Аварии при транспортировке и хранении
  • Пробоины в нефтепроводах и нефтехранилищах
  • Слабая очистка сточных вод на НПЗ
  • Заправка водного транспорта
  • Выбросы двигателей внутреннего сгорания

Даже малые концентрации нефтепродуктов в воде наносят значительный ущерб здоровью человека. При купании в водоемах с данной примесью есть риск возникновения кожных заболеваний. Употребление питьевой воды, в которой содержатся нефтепродукты, грозит развитием рака внутренних органов, болезней пищеварительной и эндокринной систем, заболеваний полости рта и гортани. Следует провести очистку воды от нефтепродуктов перед ее использованием.

Суммарное количество нефтепродуктов в питьевой воде не должно превышать 0,1 мг на литр; в рыбохозяйственных водоемах – не более 0,05 мг на литр.

Многие предприятия сбрасывают загрязненные сточные воды. Закон регламентирует их место нахождения и запрещает располагаться вблизи водоемов с рыбным хозяйством и питьевых скважинах.

Определить нефтепродукты в воде можно только в лабораторных условиях. Существует несколького способов:

  • Гравиметрический – извлечение нефтепродуктов из пробы для анализа при помощи органических растворителей
  • Ик-спектрофотометрия – с помощью четыреххлористого углерода путем экстракции выделяются растворенные нефтепродукты
  • Флуориметрический – обезвоживание нефтепродуктов и их извлечение с помощью гексана
  • Газовая хроматография – экстракционнное извлечение нефтепродуктов с помощью экстрагента

Отбор проб производят только в стеклянную тару. Чтобы провести анализ воды на нефтепродукты, необходимо правильно отобрать материал:

  • Слить воду сильным напором в течении 5-10 минут (при отборе пробы из крана)
  • Промыть стеклянную тару несколько раз исходной водой (без каких-либо моющих средств)
  • Уменьшить напор и отобрать 1,5-2 литра тонкой струей по стенке сосуда
  • Закрыть емкость крышкой и незамедлительно доставить в пункт приема проб

Удалить нефтепродукты из воды можно следующими способами:

  • Механическим – первичная очистка, которая удаляет 60-65% загрязнений при помощи отстаивания и фильтрации
  • Химическим – добавление в сточные воды реагентов, которые разрушают НП
  • Физико-химическим – очищение воды от НП посредством коагуляции, флотации и сорбции
  • Биологическим – разложение НП с помощью специальных микроорганизмов

В лаборатории «ИОН» вы сможете провести анализ питьевой, природной, талой, морской, технологической воды, а также воды из бассейна и мест общего пользования. Мы работаем более 20-ти лет и занимаемся разработкой новых методов диагностики веществ и материалов. Сотрудники нашей лаборатории – лучшие специалисты в стране, а приборный парк – самый современный, благодаря плодотворному сотрудничеству с крупнейшими разработчиками аналитического оборудования.

Тяжелые металлы – это токсичные и крайне опасные вещества, способные значительно ухудшить здоровье человека и даже привести к гибели. Биогенные элементы – это исключение среди тяжелых металлов, которые необходимы всем живым организмам. Атомный вес тяжелых металлов составляет более 40.

источник

Определение нефти и нефтепродуктов в воде можно осуществлять дифференциальными (газовая, газожидкостная и высокоэффективная жидкостная хроматография, хромато-массспектрометрия) или интегральными (гравиметрия,УФ- и ИК-спектрофотометрия, люминесценция)методами, причем интегральные методы проще и удобнее для проведения наблюдений за состоянием нефтяного загрязнения водоемов и в основном применяются в рутинном анализе.

Однако ни один из перечисленных методов не позволяет получить полную картину качественного состава НП, присутствующих в природных водах. Для исчерпывающей оценки нефтяного загрязнения необходимо применять группу методов. Вместе с тем для практических целей часто бывает вполне достаточно применение какого-либо одного интегрального метода, например ИК-спектрофотометрического или гравиметрического [11].

Гравиметрический метод

Основан на экстракции НП из пробы малополярными растворителями (хлороформ, гексан, четыреххлористый углерод, пентан, петролейный эфир, фреон (хладон) – (1,1,2-трихлор-1,2,2-трифторэтан); очистке экстракта от полярных веществ пропусканием его через колонку с сорбентом (оксид алюминия II степени активности (содержащий 3% H2O), силикагель, флоросил (основной силикат магния), удалении экстрагента путем его выпаривания и взвешивания остатка для определения суммы “нефтепродуктов”.

Обычно для анализа берут 0,1–3 литр воды, подкисляют HCl до рН

В процессе пробоподготовки и хода анализа возможны потери углеводородов, температуры кипения которых менее 100ºС. Непосредственное экстрагирование гексаном приводит к заниженным результатам. Погрешность может доходить до 30%, если исследуемая вода содержит взвешенные частицы [22].

Стандарт ISO 9377-2 не рекомендует применять для экстракции CCl4 из-за его токсичности. В России с конца 1999 г. прекращено производство тетрахлорида углерода как озоноразрушающего вещества.

Основное достоинство гравиметрического метода (одного из немногих “абсолютных” методов аналитической химии) заключается в том, что исключается необходимость использования стандартных образцов такого же качественного и количественного состава, как и исследуемая проба. Также не требуется предварительная градуировка средств измерений. В силу этого метод принят в качестве арбитражного [14].

Предел определения НП в водах при применении хладона составляет 2–4 мг/литр. Арбитражный гравиметрический метод для определения низких концентраций НП требует больших объемов анализируемой воды и растворителей. В связи с этим для повседневной работы по контролю за содержанием НП в питьевой воде и воде водоемов рекомендуется люминесцентно-хроматографический метод [6, 13]. Метод основан на хроматографическом отделении НП от полярных углеводородов и примесей воды не нефтяного происхождения в колонке с активным оксидом алюминия при использовании экстрагентов – хлороформа и гексана и дальнейшем определении выделенных нефтепродуктов люминесцентным методом. Способностью люминесцировать под действием УФ-света обладает лишь часть УВ (ароматические высокомолекулярные, особенно полициклические) и притом по-разному в зависимости от условий возбуждения.

Флуориметрический метод

Флуориметрический метод [14] (по сути мало чем отличающийся от люминесцентно-хроматографического) основан на экстракции нефтепродуктов гексаном, очистке при необходимости экстракта с последующим измерением интенсивности его флуоресценции, возникающей в результате оптического возбуждения. Метод отличается высокой чувствительностью (нижняя граница диапазона измерений 0,005 мг/литр), экспрессностью, малыми объемами анализируемой пробы (100 см3) и отсутствием значимых мешающих влияний липидов. С помощью флуориметрического метода определяются не только нефтепродукты как таковые, но и многие другие органические соединения иного происхождения.

УФ-спектрофотометрический метод

УФ-спектрофотометрический метод для определения НП в ООС применяется достаточно редко, что связано с бесструктурностью спектров поглощения НП. Разработан экспресс-метод определения суммарного содержания нефтепродуктов в воде. Методика определения тяжелых НП основана на их извлечении экстрагентом (гексан, CCl4, хлороформ, толуол) с последующим измерением оптической плотности на спектрофотометре при длинах волн 206; 265; 241 (247); 281(287) нм. Оптимальное время полного извлечения НП – 4 мин, соотношение объемов органической фазы к водной – 1:10, оптимальный интервал рН 4–7 независимо от природы растворителя.

Нижняя граница определяемых концентраций составляет 0,1 мг/литр, длительность анализа – 20мин.

Метод ИК-спектроскопии.

Для мониторинга нефтяных УВ наиболее распространен метод ИК-спектрометрии [7], который позволяет определять сумму алифатических УВ и ПАУ. При этом измеряют содержание как нефтяных УВ антропогенного происхождения, так и продуцируемых морскими организмами [2].

Читайте также:  Анализ рассказа возле стылой воды

Соответствующие методики анализа основаны на экстракции НП из пробы органическим растворителем (CCl4 или хладон 113), очистке экстракта от полярных соединений методом колоночной хроматографии на оксиде алюминия и последующей регистрации ИК-спектра в области 2700–3200 см-1, обусловленного валентными колебаниями CH3- и CH2-групп алифатических и алициклических соединений и боковых цепей ароматических углеводородов, а также связей CH ароматических соединений.

Метод может быть реализован как в варианте регистрации спектра поглощения в указанной области с помощью традиционного или Фурьеспектрометра, так и в более простом варианте, при котором используется анализатор, измеряющий интегральное поглощение в области 2900–3000 см-1, в которой наблюдаются наиболее интенсивные полосы, соответствующие асимметричным валентным колебаниям групп CH3 и CH2.

ИК-спектроскопия применима для анализа природных вод и промышленных стоков при концентрации нефтяных углеводородов от 0,1 до 50 мг/литр (при использовании кюветы с длиной оптического пути 10 мм), не требует отгонки растворителя и нагрева экстракта, что исключает потерю УВ с низкой температурой кипения.

Преимущество метода ИК-спектроскопии меньшие потери легких фракций, чем при определении НП другими способами [13]. Нижняя граница диапазона измерения – 0,05 мг/литр. Основное достоинство метода – слабая зависимость аналитического сигнала от типа нефтепродукта, составляющего основу загрязнения пробы.

Трудности, возникающие при использовании этого метода, связаны с мешающими влияниями липидов и других полярных соединений при их высоком содержании, при котором оказывается исчерпанной емкость хроматографической колонки, применяемой для очистки экстракта. Основной недостаток метода – его неэкологичность, обусловленная применяемыми высокотоксичными растворителями. В силу указанных причин можно прогнозировать, что уже в ближайшие годы неизбежна замена ИК-спектроскопии другими методами, в первую очередь методом газовой хроматографии.

Методики определения НП в воде, основанные на гравиметрии, УФ-спектрофотометрии, флуориметрии и ИК-спектрометрии, позволяют получить информацию о суммарном содержании неполярных и малополярных УВ нефтяного происхождения. Однако с помощью этих методов нельзя идентифицировать индивидуальные углеводороды НП [13]. Такую задачу решают с помощью газовой хроматографии (ГХ).

источник

К наиболее распространенным и токсически опасным веществам, которые служат источниками загрязнения природной водной среды, специалисты относят нефтепродукты (НП).

Нефть и её производные являются непостоянными смесями углеводородов предельной и непредельной группы, а также их производных разного вида. Гидрохимия условно трактует понятие «нефтепродукты», ограничиваясь только их углеводородными алифатическими, ароматическими и ациклическими фракциями, которые составляют основную и наиболее распространенную часть нефти и её компонентов, выделяемых в процессе нефтепереработки. Для обозначения содержания нефтепродуктов в воде, в международной практике существует термин Нydrocarbon Оil Index («углеводородный нефтяной индекс»).

Предельная допустимая концентрация (ПДК) в воде нефти и нефтепродуктов для культурно-бытовых и хозяйственно-питьевых объектов водопользования находится на отметке 0,3 миллиграмма на кубический дециметр, а для объектов рыбохозяйственного водопользования – 0,05 миллиграмма на кубический дециметр.

Определение нефтепродуктов, содержащихся в воде, возможно с помощью различных приборов и методов, о которых мы кратко расскажем в этой статье.

На сегодняшний момент существуют четыре основных методики определения концентрации нефти и её производных в воде, которые основаны на разных физических свойствах определяемых нефтепродуктов:

  • метод гравиметрии;
  • ИК-спектрофотометрия;
  • флуориметрический метод;
  • методика газовой хроматографии.

Методика применения того или иного способа измерения содержания нефтей и нефтепродуктов в воде, а также нормы ПДК для различных видов нефтепродуктов, регламентируется природоохранными нормативными документами федерального значения (сокращенно – ПНД Ф).

Его применение регулируется ПНД Ф за номером 14.1:2.116-97.

Суть его – извлечение (обезвоживание) нефтепродуктов из предоставленных для анализа проб с помощью органического растворителя, с последующим отделением от полярных соединений с помощью колоночной хроматографии на оксиде алюминия других классов соединений, после чего производится количественное определение содержания вещества в воде.

В исследованиях сточных вод этот способ применяется при концентрациях, диапазон которых составляет от 0,30 до 50,0 миллиграмм на кубический дециметр, что не позволяет определить соответствие воды нормам ПДК на объектах рыбохозяйственного водопользования.

Еще одним существенным недостатком этого способа является длительный период времени, который требуется для проведения измерений. Поэтому его не применяют при текущем технологическом контроле на производстве, а также в других случаях, когда скорость получения результатов имеет первостепенное значение.

К достоинствам этой методики специалисты относят отсутствие стандартных градуировок по образцам, которые характерны для прочих методов анализа.

Погрешность при использовании этого способа при показателе Р равном 0,95 (±δ, %) при анализе природных вод варьируется от 25-ти до 28-ми процентов, а при анализе сточных вод – от 10-ти до 35-ти.

Применение этой методики регламентируется ПНД Ф за номером 14.1:2:4.168, а также методическими указаниями МУК 4.1.1013-01.

Суть этой методики определения содержания нефтепродуктов в воде – выделение растворенных и эмульгированных нефтяных загрязнений путем экстракции их с помощью четыреххлористого углерода, с последующим хроматографическим отделением нефтепродукта от прочих соединений органической группы, на заполненной оксидом алюминия колонке. После этого определение количества НП в воде производится по показателям интенсивности поглощения в инфракрасной области спектра C-H связей.

Инфракрасная спектроскопия на сегодняшний момент является одной из наиболее мощных аналитических методик, и широко применяется в исследованиях как прикладного, так и фундаментального характера. Её применение также возможно для нужд текущего контроля производственного процесса.

Ароматическим углеводородам для возбуждения и последующей регистрации флуоресцентного излучения необходимы различные условия. Специалисты отмечают зависимость спектральных изменений флуоресценции от длины волны, которой обладает возбуждающий свет. Если возбуждение происходит ближней части ультрафиолетового спектра, и уж тем более – в его видимой области, то флуоресценция проявляется только у полиядерных углеводородов.

Так как их доля – достаточно мала, и напрямую зависит от природы исследуемого нефтепродукта, возникает высокая степень зависимости получаемого аналитического сигнала от конкретного вида НП. При воздействии ультрафиолетового излучения люминесцируют только некоторые углеводороды, в основном – высокомолекулярные ароматические из группы полициклических. Причем интенсивность их излучение сильно разнится.

В связи с этим, чтобы получить достоверные результаты, нужно обязательно иметь в наличие стандартный раствор, который содержит те же люминесцирующие компоненты (причем – в таких же относительных пропорциях), что наличествуют в анализируемой пробе. Это чаще всего труднодостижимо, поэтому флуориметрический способ определения содержания в воде нефтепродуктов, который основан на регистрации интенсивности флуоресцентного излучения в видимой части спектра, для массовых анализов является непригодным.

Этот метод можно применять при концентрациях нефтепродуктов в пределах от 0,005 до 50,0 миллиграммов на кубический дециметр.

Погрешность получаемых результатов (при Р равном 0,95, ( ±δ, %)) составляет от 25-ти до 50-ти процентов.

Применение этой методики регулируется ГОСТ-ом за номером 31953-2012.

Эту методику применяют для определения массовой концентрации различных нефтепродуктов как в питьевой (включая расфасованную в емкости), так и в природной (как поверхностной, так и подземной) воде, а также в воде, содержащейся в источниках хозяйственно-питьевого назначения. Эффективен этот способ и при анализе сточной воды. Главное, чтобы массовая концентрация нефтепродуктов была не меньше, чем 0,02 миллиграмма на кубический дециметр.

Суть метода газовой хроматографии заключается в экстракционном извлечении НП из анализируемой пробы воды с помощью экстрагента, последующей его очистке от полярных соединений при помощи сорбента, и заключительном анализе полученного вещества на газовом хроматографе.

Результат получается после суммирования площадей хроматографических пиков выделяемых углеводородов и путем последующего расчета содержания НП в анализируемой пробе воды с помощью заранее установленной градуировочной зависимости.

С помощью газовой хроматографии не только определяют общую концентрацию нефтепродуктов в воде, но и проводят идентификацию их конкретного состава.

Газовая хроматография вообще представляет собой методику, основанную на разделении термостабильных летучих соединений. Таким требованиям соответствует примерно пять процентов от общего числа известных науке органических соединений. Однако именно они занимают 70-80 процентов от общего числа используемых человеком в производстве и быту соединений.

Роль подвижной фазы в этой методике исполняет газ-носитель (обычно инертной группы), который протекает через неподвижную фазу с гораздо большей площадью поверхности. В качестве газа-носителя подвижной фазы применяют:

Чаще всего используется наиболее доступный и недорогой азот.

источник

Флуориметрический метод контроля содержания нефтепродуктов в водах

Д.Б. Гладилович — главный метролог ООО «Люмэкс», канд. хим. наук, доцент

Флуориметрический метод определения нефтепродуктов в пробах вод характеризуется высокой чувствительностью, простотой аппаратурного оформления и экспрессностью.

В практике аналитического контроля качества вод под нефтепродуктами понимают неполярные и малополярные углеводороды (алифатические, ароматические, алициклические), составляющие основную и наиболее характерную часть нефти и продуктов ее переработки [1]. Содержание нефтепродуктов является одним из обобщенных показателей, характеризующих качество вод. Для питьевых вод предельно допустимая концентрация (ПДК) составляет 0,1 мг/дм 3 [2]. Загрязнение нефтепродуктами является наиболее типичным и весьма опасным фактором воздействия хозяйственной деятельности человека на окружающую среду.

Основными методами количественного химического анализа, применяемыми в настоящее время при определении нефтепродуктов в водах, являются гравиметрический, ИК-спектроскопический, газохроматографический и флуориметрический.

Гравиметрический метод основан на экстракции нефтепродуктов из пробы, очистке экстракта от полярных веществ, удалении экстрагента путем выпаривания и взвешивании остатка. Он используется, как правило, при анализе сильно загрязненных проб и не может использоваться при анализе проб, содержащих нефтепродукты на уровне ПДК, поскольку нижняя граница диапазона измерений составляет 0,3 мг/дм 3 при объеме анализируемой пробы 3-5 дм 3 . Несомненным достоинством метода является то, что не требуется предварительная градуировка средства измерений В силу этого метод принят в качестве арбитражного.

Метод ИК-спектроскопии основан на экстракции нефтепродуктов из пробы четыреххлористым углеродом или хладоном 113, очистке экстракта от полярных соединений методом колоночной хроматографии на оксиде алюминия и последующей регистрации поглощения излучения в области спектра 2700-3200 см -1 , обусловленного валентными колебаниями СН3 и СН2 групп алифатических и алициклических соединений и боковых цепей ароматических углеводородов, а также связей СН ароматических соединений.

Метод может быть реализован как в варианте регистрации спектра поглощения в указанной области с помощью традиционного или Фурье-спектрометра, так и более простом варианте, при котором используется анализатор, измеряющий интегральное поглощение излучения в области 2900-3000 см -1 , в которой наблюдаются наиболее интенсивные полосы поглощения, соответствующие асимметричным валентным колебаниям групп СН3 и СН2 .

Метод требует обязательной градуировки средства измерений с использованием стандартных образцов состава раствора нефтепродуктов в четыреххлористом углероде. В России используются стандартные образцы, приготовленные на основе так называемой трехкомпонентной смеси (37,5% гексадекана, 37,5% 2,2,4-триметилпентана и 25% бензола по массе). Нижняя граница диапазона измерения — 0,05 мг/дм 3 . Основное достоинство метода — слабая зависимость аналитического сигнала от типа нефтепродукта, составляющего основу загрязнения пробы.

Трудности, возникающие при использовании метода, связаны с мешающими влияниями липидов и других полярных соединений при их высоком содержании, при котором оказывается исчерпанной емкость хроматографической колонки, используемой для очистки экстракта. Основной недостаток метода — его неэкологичность, обусловленная применяемыми высокотоксичными растворителями. В силу указанных причин мы полагаем, что уже в ближайшие годы неизбежна замена метода ИК-спектроскопии другими методами и в первую очередь методом газовой хроматографии.

В России ИК-спектроскопический метод стандартизован для анализа питьевых вод [3], а также изложен в ряде нормативных документов на методики выполнения измерений [4-6] и рассматривается в качестве основного, а в ряде случаев и единственного метода определения нефтепродуктов (например, [7]). Международный стандарт несмотря на многолетние разработки, не утвержден и не введен в действие.

Метод газовой хроматографии основан на разделении углеводородов нефти на неполярной фазе в режиме программирования температуры. Нефтепродукты экстрагируют из пробы органическим растворителем (четыреххлористый углерод или гексан), полученный экстракт очищают методом колоночной хроматографии на оксиде алюминия и очищенный экстракт анализируют. Аналитическим сигналом является суммарная площадь пиков на хроматограмме, начиная с пика н-декана (С10 Н22 ) и кончая пиком н-тетраконтана (С40 Н82 ). Градуировка проводится с использованием смеси дизельного топлива и смазочного масла [8].

Нижняя граница диапазона измерений согласно стандарту ИСО 9377-2:2000 составляет 0,1 мг/дм 3 , хотя известны конкретные реализации методики (например, методика разработанная ГУП ЦИКВ, С.-Петербург), в которых эта граница составляет всего 0,02 мг/дм 3 . Таким образом, метод газовой хроматографии пригоден для анализа проб, содержащих нефтепродукты на уровне ПДК. Продолжительность регистрации хроматограммы составляет 20-30 мин.

Читайте также:  Анализ рассказа вешние воды тургенев

Флуориметрический метод основан на экстракции нефтепродуктов гексаном, очистке при необходимости экстракта с последующим измерением интенсивности флуоресценции экстракта, возникающей в результате оптического возбуждения. Метод отличается высокой чувствительностью (нижняя граница диапазона измерений 0,005 мг/дм 3 ), экспрессностью, малыми объемами анализируемой пробы (табл. 1) и отсутствием значимых мешающих влияний липидов. Методика определения нефтепродуктов флуориметрическим методом изложена в нормативных документах [9, 10].

Некоторые характеристики методов определения нефтепродуктов в водах

Наименование характеристики Метод
Флуориметрический ИK-спектроскопический Газохроматографический
Источник информации [9] [3] [8]
Диапазон измерения, мг/дм 3 0,005-50 0,05-50 0,1-150
Объем пробы, см 3 100 до 2000 1000
Экстрагент Гексан Четыреххлористый углерод Гексан
Состав образца для градуировки Масло Т-22 Трехкомпонентная смесь 50% дизельного топлива + 50% смазочного масла

В формировании аналитического сигнала участвуют только ароматические углеводороды. Поскольку они обладают различными условиями возбуждения и регистрации флуоресценции, наблюдается изменение спектра флуоресценции экстракта в зависимости от длины волны возбуждающего света.

При возбуждении в ближней УФ, а тем более в видимой области спектра, флуоресцируют только полиядерные углеводороды. Поскольку их доля мала и зависит от природы нефтепродукта, наблюдается очень сильная зависимость аналитического сигнала от типа нефтепродукта (рис. 1). Приведем цитату из монографии Ю.Ю. Лурье [11] по этому поводу: «Способностью люминесцировать под действием УФ-излучения обладает лишь часть углеводородов (ароматические высокомолекулярные, особенно полициклические) и притом в разной мере. Для получения достоверных результатов необходимо иметь стандартный раствор, содержащий те же люминесцирующие вещества и в тех же относительных количествах, как и в исследуемой пробе. Это труднодостижимо. Проще устанавливать «цену деления» применяемого прибора сравнением с результатом, полученным одним из арбитражных методов». Аналогичные по существу выводы сделаны и в книге В. Лейте [12]. Таким образом, флуориметрический метод определения нефтепродуктов, основанный на регистрации флуоресценции в видимой области спектра, не пригоден для массовых аналитических измерений.

Рис. 1. Спектры флуоресценции нефтепродуктов (длина волны возбуждения 350 нм). Концентрация растворов 50 мг/дм 3 .

Сдвиг возбуждающего излучения в коротковолновую область (270-290 нм) и регистрация флуоресценции в области 300-330 нм позволяет уменьшить зависимость аналитического сигнала от типа нефтепродукта (рис. 2). В этой спектральной области аналитический сигнал формируют ароматические углеводороды других классов — моно-, би- и некоторые трициклические соединения.

Рис. 2. Спектры флуоресценции нефтепродуктов (длина волны возбуждения 270 нм). Концентрация растворов 50 мг/дм 3

В табл. 2 приведены значения относительной интенсивности флуоресценции растворов различных нефтепродуктов в гексане, полученные в указанных выше условиях возбуждения и регистрации. Из приведенных данных следует, что для нефтепродуктов, относящихся к средним фракциям (дизельное топливо, масла) наблюдаются небольшие различия в относительной величине аналитического сигнала. Более сильной флуоресценцией обладает мазут, однако, гексановые экстракты образцов, полученных внесением мазута в дистиллированную воду, флуоресцируют всего на 15-20% интенсивнее по сравнению с градуировочным раствором масла Т-22 в гексане той же концентрации. Существенного занижения результатов анализа следует ожидать при анализе проб, загрязненных легкими фракциями (керосин, бензин).

Относительная интенсивность флуоресценции различных нефтепродуктов (длина волны возбуждения 270 нм, регистрации — 310 нм)

Наименование нефтепродукта Относительная интенсивность флуоресценции
Мазут Ф-5 1,98
Масло турбинное ТП-22 1,00
Масло моторное ММ-8 0,96
Масло индустриальное И-20 0,93
Масло моторное МС-20 0,77
Дизельное топливо летнее 0,92
Дизельное топливо зимнее 0,68
Kеросин 0,24
Бензин АИ-92 0,09

Для градуировки анализатора нами рекомендован стандартный образец, представляющий собой раствор масла турбинного Т-22 в гексане, который в текущем году получил статус государственного (ГСО 7950-2001). Применение такого стандартного образца позволяет учесть корреляционную связь между содержанием фракции, отвечающей за формирование аналитического сигнала, и общим содержанием нефтепродуктов.

источник

Необходимость осуществления контроля оборота нефтепродуктов и предотвращения их попадания в почву и водоёмы обусловлена высокой токсичностью этих веществ. В связи с этим, большое значение имеют мероприятия, направленные на определение нефтепродуктов в сточных водах, сброс которых производят промышленные предприятия.

Нефть является многокомпонентным энергоносителем, в состав которого входят вещества как органического, так и минерального происхождения. Полициклические ароматические углеводороды (ПАВ), входящие в состав нефтепродуктов, относятся к высокотоксичным веществам. Отдельные их представители, в частности антрацен, овален и бензпирен (называемый также бензапиреном) обладают канцерогенными свойствами, а также способствуют мутации генов.

Неблагоприятное воздействие на окружающую среду оказывают и другие соединения, входящие в состав продуктов нефти. Этим объясняется необходимость контроля фактической концентрации нефтепродуктов в воде, а также нормирования этой величины, осуществляемых на государственном уровне. Законодательными актами Российской Федерации установлены нормативы предельно допустимых концентраций (ПДК) содержания нефти и её производных в воде различного назначения.

В соответствии с федеральным законом №7 — ФЗ от 10.01.2002 г. «Об охране окружающей среды», субъекты, допустившие превышение предельно разрешённой нормы воздействия на окружающую среду, несут ответственность в зависимости от причинённого природе ущерба, которая может иметь следующие формы:

  • начисление платы за негативное воздействие на окружающую среду;
  • привлечение к административной ответственности, влекущей за собой наложение штрафов на физических и юридических лиц;
  • ограничение, приостановка или полный запрет деятельности хозяйствующих субъектов, наносящих урон экологии.

Обозначенные выше обстоятельства вынуждают хозяйствующие субъекты, вне зависимости от формы собственности, самостоятельно осуществлять наблюдение за промышленными стоками, используя при этом имеющиеся научно – технические достижения в этой области. Наиболее перспективными представляются появившиеся на рынке информационно – измерительные системы, предназначенные для организации непрерывного контроля вредных выбросов (в том числе продуктов нефтепереработки), содержащихся в сточных водах.

Технология контроля наличия в воде нефти и продуктов её переработки в настоящее время преимущественно заключается в периодическом отборе проб воды для последующего проведения лабораторного анализа. Анализ проводится по одному из следующих методов:

  • метод инфракрасной спектрофотометрии;
  • гравиметрический метод;
  • газовая хроматография;
  • флуориметрический метод.

При использовании любого из этих методов в лабораторных условиях, вначале производится извлечение (экстракция) нефтепродукта из пробы. Для этого используются специальные химические вещества – экстрагенты. Так, при анализе фотометрическим методом применяют четырёххлористый углерод, а также физико — химический способ с применением колонки, заполненной оксидом алюминия. Применяя гравиметрический метод, используют органический растворитель и колонку на оксиде алюминия. При проведении анализа флуориметрическим методом, экстрагентом служит гексан.

После выделения нефтепродуктов, исследование в рамках фотометрического способа, проба подвергается спектральному (спектрофотометрическому) анализу, основанному на поглощении нефтяными углеводородами отдельных частей инфракрасного спектра, которым облучается проба. Гравиметрический метод сводится к простому взвешиванию выделенного из пробы нефтепродукта. Газовая хроматография сопровождается использованием вспомогательного газа – носителя, с помощью которого исследуемая проба поступает в специальную газовую хроматографическую колонку.

Технология контроля, сводящаяся к периодическому, пусть даже достаточно частому отбору проб для анализа, страдает явным несовершенством. По сути, это всего лишь точечный контроль, не обеспечивающий объективной картины. Внедрение системы, обеспечивающей постоянный мониторинг сброса нефтепродуктов, позволяет предприятию следить за содержанием сбросов, а также осуществлять планирование и проведение различных мероприятий, направленных на выполнение требований законодательства Российской Федерации в области экологии.

Из всех методов, применяющихся ныне для определения массовой концентрации нефтепродуктов в воде, флуориметрический анализ более всего пригоден для осуществления постоянного контроля этой величины в режиме online. Используемая в нём методика заслуживает более широкого освещения ввиду появления приборов, функционирующих на её основе и поднимающих решение проблемы контроля на качественно новый уровень. Особенностью этой методики является использование излучения ультрафиолетового спектра, в отличие от фотометрического анализа, при котором применяется инфракрасное излучение.

Метод флуоресценции или флуориметрический метод определения массовой концентрации нефтепродуктов в воде основан на особых свойствах полициклических ароматических углеводородов (ПАУ). В природе данные соединения образуются в результате пиролиза целлюлозы, поэтому содержатся в месторождениях углеводородных ископаемых – угольных, газовых и нефтяных, что делает очень удобным использовать их в качестве маркера присутствия нефтепродуктов в воде. ПАУ относятся к классу органических соединений, молекулярное строение которых характеризуется наличием конденсированных бензольных колец.

Флуоресцентные свойства ПАУ заключаются в следующем. При воздействии на эти вещества излучения определённых длин волн ультрафиолетового спектра, атомы ПАУ, подвергшиеся фотонной бомбардировке УФ – излучения и получившие при этом избыточную энергию, начинают генерировать световое излучение более низкой частоты, то есть, обладающее большей длиной волны по сравнению с исходным излучением. Свечение облучаемого таким методом вещества называется флуоресценцией. Данный процесс обусловлен тем, что электроны облучаемого вещества, получая избыточную энергию, совершают переход на более высокий энергетический уровень с последующим возвратом на старую орбиту. Переход из одного состояния в другое сопровождается выбросом высвобождаемой энергии, выделяемой в форме светового излучения. Этот процесс не прекращается, пока вещество продолжает подвергаться облучению. Интенсивность флуоресцентного свечения пропорциональна массе облучаемого ультрафиолетом вещества, что и позволяет использовать этот метод для количественного анализа флуоресцирующих соединений.

Практическая реализация флуориметрической технологии анализа воды воплотилась в создании специального погружного флуоресцентного датчика концентрации нефтепродуктов в воде. Это устройство предназначено для стационарного размещения в контролируемом потоке. Датчик предназначен для работы в составе информационно – измерительной системы, контролирующей состояние объекта по различным параметрам, для чего используются датчики, измеряющие различные величины. Такие системы могут иметь самое широкое применение в различных областях.

В качестве примера рассмотрим сенсор для определения массовой доли нефтепродуктов в воде Art. no. 461 6750 по каталогу GO Systemelektronik. Датчик представляет собой тонкий цилиндр, корпус которого изготовлен из нержавеющей стали марки AISI 316. Добавки молибдена, присутствующие в этом материале повышают его коррозионную стойкость, позволяя изделию работать в особо агрессивных средах. Рабочей стороной датчика, предназначенного для измерения массовой концентрации нефтепродуктов сточных вод, является его торцевая поверхность, на которой расположено прозрачное измерительное окно.

Источником ультрафиолетового излучения с длиной волны 285 нанометров служит установленная внутри датчика специальная ксеноновая лампа. Приёмный фотодиод фиксирует люминесцентное излучение, которое генерируют атомы ПАУ, имеющее длину волны 325 – 375 нанометров. Прибор обладает высокой чувствительностью, нижняя граница определения массовой доли нефтепродукта данным методом равна 3 ppm, что составляет 3 миллионные доли (!) искомого вещества в общей массе. При этом, прибор является очень точным, погрешность измерения в процессе анализа составляет 2%. Длина датчика равна 109 мм, диаметр – 22,2 мм, его вес – 160 г. Опционально датчик комплектуется системой очистки измерительного окна сжатым воздухом.

Монтаж датчика в напорном трубопроводе

Оборудование немецкой компании GO Systemelektronik позволяет создавать системы измерения и контроля различной архитектуры и функционального назначения. Кроме сенсора массовой доли нефти в воде, компанией производится линейка датчиков, служащих для измерения pH контролируемой среды, её температуры, электрической проводимости, содержания кислорода, различных органических компонентов и других параметров.

Отдельные датчики, осуществляющие функции определения содержания нефтепродуктов в воде, а также сенсоры другого назначения, либо их группы, могут иметь следующие варианты подключения:

  • к блоку BlueSense Module;
  • к блоку BlueSense Transducer;
  • к автономному радиомодулю.

Модуль BlueSense Module выполняет следующие функции:

  • осуществляет приём сигналов присоединённых к нему датчиков;
  • преобразует значение измеренной сенсором величины в аналоговый токовый сигнал в диапазоне от 4 до 20 мА;
  • передаёт данные измерений по мультиплексной высокоскоростной линии связи CAN-bus в блок BlueBox;
  • производит включение сигнальных реле при снижении неких контролируемых величин ниже установленного предела, либо достижении ими значений более величины верхнего предела (в зависимости от настройки).

BlueSense BlueBox

Схожими функциями обладает BlueSense Transducer (преобразователь):

  • получает данные от подключенных измерительных датчиков;
  • отображает значения измеренных в процессе анализа величин;
  • осуществляет преобразование данных в аналоговую величину;
  • передачу информации блоку BlueBox.

Кроме этого, BlueSense Transducer имеет ряд функций, недоступных BlueSense Module:

  • возможность передачи данных в удалённую сеть посредством имеющихся интерфейсов RS-232, RS-485 или Profibus ® ;
  • запись и сохранение результатов измерений на карте памяти формата SD;
  • конвертация данных датчика проводимости, определяющего содержание соли в воде;
  • управление двумя встроенными реле контроля уровня;
  • также имеется возможность выполнения специфических задач, задаваемых пользователем системы.

BlueSense Transducer

Для подключения датчиков определения нефтепродуктов, либо других, расположенных в местах, куда трудно или нецелесообразно проводить кабельные линии, предусмотрено наличие специального радиомодуля, представляющего собой передатчик, работающий с использованием стандарта связи IEEE 802.15.4 на частоте 2,4 гигагерц. Радиомодуль обеспечивает передачу измеренных датчиками величин базовой радиостанции на расстояние до 4 километров, в зависимости от характера местности.

Радиомодуль

Передатчик размещён в корпусе из термостойкого пластика размерами (ДxШxВ): 160 мм x 60 мм x 90 мм, оснащён наружной антенной. Степень защиты корпуса — IP66. Срок службы аккумуляторных батарей, обеспечивающих автономное питание устройства, зависит от выбранного режима работы передатчика. При установке интервала связи 2 минуты (то есть, пересылка данных осуществляется каждые 2 минуты), ёмкости батареи хватает на 3 месяца работы. При выборе максимального интервала, равного 60 минут, работоспособность батареи сохраняется более 1 года. Установка режима связи осуществляется методом конфигурирования программного обеспечения, установленного в блоке BlueBox, куда и передаются данные измерений. Базовая радиостанция способна поддерживать связь с 16 сенсорными радиомодулями.

источник