Меню Рубрики

Анализ на никель в воде

Аналитический центр более 20 лет занимается химическим анализом и разработкой новых методов анализа и диагностики веществ и материалов

В нашем распряжении самый современный приборный парк благодаря научно-техническому взаимодействию с крупнейшими мировыми разработчиками аналитического оборудования

Наши сотудники — это лучшие специалисты страны в области химического анализа, кандидаты и доктора наук

Аккредитация позволяет исследовать питьевую, природную, морскую, технологическую, талую воду и воду бассейнов

Обратившись к нам, Вы получите не только точные данные о присутствующих в воде загрязнителях, но и подробные рекомендации о способах очистки воды.

* Бесплатный выезд для физических лиц в пределах МКАД при заказе на сумму более 5 000 ₽. Подробнее в разделе Доставка и оплата

На основании анализа воды БЕСПЛАТНО подберем несколько вариантов систем водоочистки!

В нашей лаборатории Вы можете проверить качество воды из любого источника: колодца, скважины, водопровода, бассейна, родника, водоема. Для каждого источника есть оптимальный набор показателей, характеризующий возможность использования воды для тех или иных нужд. Чтобы правильно подобрать набор показателей, свяжитесь с нами по номеру +7 (495)149-23-57 или напишите на почту info@ion-lab.ru

Да, Вы можете самостоятельно отобрать воду для анализа, следуя инструкции. Или же заказать выезд специалиста, который приедет в назначенное время со всей необходимой тарой, отберет воду и доставит ее в лабораторию.

Да, конечно! Пункт приема проб расположен по адресу: Москва, ул. Добролюбова, 21А, корпус А, пом. 14 (в пешей доступности от метро Фонвизинская, Бутырская, Тимирязевская)

Стоимость выезда специалиста зависит от выбранного Вами набора показателей и удаленности. Более точная информация размещена в разделе Доставка и оплата

Мы рекомендуем выбирать набор параметров в зависимости от того, какой у Вас источник водоснабжения, а также для каких целей планируете использовать воду. Для воды из городского водопровода, а также для воды, используемой в технических целях, подойдут наборы «Минимальный» или «Начальный». Для воды природных источников (скважины, колодцы, родники и т.д.) мы рекомендуем проверить воду на химический состав (наборы «Расширенный» или «Максимальный»), а также сделать анализ на микробиологию.

© 1997-2019 — Лаборатория ИОН. Все права защищены.

Для химического анализа необходимо заполнить водой чистую пластиковую тару (оптимально 1,5 л). Использовать бутылки из-под сладких, газированных или ароматизированных напитков, а также солёной или минеральной воды недопустимо.
Если выбранный Вами анализ включает определение содержания нефтепродуктов, необходимо заполнить дополнительную стеклянную тару объемом 0,2 л.
Если выбранный Вами анализ включает определение содержания сероводорода, необходимо заполнить дополнительную стеклянную тару объемом 0,5 л (необходимо использовать консервант).

При отборе воды из проточного источника, непосредственно перед отбором необходимо пролить воду сильной струёй в течение 3-5 минут. Перед отбором проб ёмкости и крышки необходимо 3 раза промыть изнутри водой, подлежащей анализу. Использование моющих средств недопустимо. Наполнять тару необходимо тонкой струёй по стенке сосуда «под горлышко». Это снижает насыщение воды кислородом и предотвращает протекание реакций.

Для микробиологического анализа необходимо использовать стерильный контейнер для биоматериалов объемом 150-200 мл.

Перед взятием пробы необходимо протереть водопроводный кран спиртовой салфеткой, уделив особое внимание месту выхода воды.
При отборе воды из водопровода, скважины или колонки необходимо пролить воду сильной струёй в течение 3–5 минут.
При отборе воды из колодца с помощью ведра необходимо обдать ведро кипятком для дезинфекции. Отбор пробы через поливочные шланги и предметы, контактирующие с почвой, не допускается.
Для отбора пробы необходимо надеть перчатки и вскрыть упаковку стерильного контейнера. Не касаясь внутренней поверхности ёмкости, отобрать образец воды (2/3 объема контейнера) и закрыть крышкой.

Рекомендуем доставлять пробу сразу после отбора.
Если сразу после отбора нет возможности доставить пробу в лабораторию, допускается хранение образцов при температуре 2–10 °C в течение 1 суток.

Съезд на ул. Руставели, на первом светофоре поворот налево на ул. Яблочкова.
Через 300 м поворот направо на ул. Гончарова, через 500 м поворот налево (напротив дома №6), через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Поворот на ул. Руставели, на светофоре поворот направо на ул. Добролюбова, через 300м на светофоре поворот налево на ул. Гончарова, напротив дома №6 поворот направо, через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Двигаясь по ул. Милошенкова, поворачиваем на ул. Добролюбова
Через 150 метров поворот направо, за домом 21АкБ поворот налево, через 100-120 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Ближайшее станция метро – Фонвизинская (600 м)
Последний вагон из центра. Выход в сторону улицы Фонвизина. Из стеклянный дверей направо. Перейти через пешеходный переход и идти через дворы в соответствии со схемой. Пункт назначения — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Анализ «Минимальный» содержит минимальный и обязательный перечень загрязнителей, часто встречающихся в питьевой воде, и включает 16 показателей:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний;
  • анионы: нитраты, карбонат, гидрокарбонат.

Данный набор рекомендуется для исследования воды хозяйственно-бытового назначения. Анализ «Минимальный» не обладает достаточной информативностью для подбора системы водоочистки, так как не позволяет получить полную картину о безопасности воды. Если Вы планируете использовать воду в питьевых целях, рекомендуем обратить внимание на наборы, содержащие большее число параметров.

  • Точность определения
  • Подходит для воды, применяемой в хоз-бытовом назначении
  • Срок выполнения — 3-4 рабочих дня
  • Не подходит для воды, применяемой в питьевых целях
  • Не подходит для корректного подбора/оценки работы фильтров
  • Не включает определение тяжелых металлов
  • Не включает определение органических загрязнителей

Анализ «Начальный» предназначен для выявления наиболее часто встречающихся вредных веществ в питьевой воде и включает 23 параметра:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний, марганец, калий, магний, кальций;
  • анионы: фториды, хлориды, нитраты, сульфаты, карбонаты, гидрокарбонаты.

Данный анализ рекомендуется для воды централизованных систем водоснабжения. По протоколу анализа «Начальный» также можно сделать вывод о корректности работы системы водоочистки. В перечень определяемых параметров входят органолептические показатели, общие химические показатели, а также содержание катионов и анионов.

  • Точность определений
  • Подходит для водопроводной воды
  • Позволяет оценить эффективность работы системы водоочистки
  • Позволяет корректно настроить водоочистное оборудование
  • Срок выполнения — 5 рабочих дней
  • Не включает определение тяжелых металлов
  • Не включает определение органических загрязнителей
  • Не подходит для полной проверки воды из колодца или скважины

Анализ «Расширенный» содержит перечень наиболее часто встречающихся загрязнителей воды, вне зависимости от источника, и включает 31 показатель:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний, марганец, калий, магний, кальций, алюминий, натрий;
  • анионы: фториды, хлориды, нитраты, сульфаты, карбонаты, гидрокарбонаты;
  • тяжелые металлы и металлоиды: медь, мышьяк, свинец, кадмий, цинк, стронций.

Данный набор рекомендуется, в первую очередь, владельцам колодцев и скважин. Помимо катионов и анионов, органолептических и общих химических параметров содержит перечень основных тяжелых металлов и метталоидов. Перед покупкой системы водоподготовки рекомендуем провести исследование воды с данным перечнем загрязнителей. Ориентируясь на полученную информацию, Вы сможете подобрать оборудование водоочистки с эффективностью до 98%, а так же корректно его настроить. Если вода из Вашего источника имеет выраженный запах сероводорода (запах тухлых яиц), рекомендуем дополнительно проверить воду на содержание сероводорода.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Содержит перечень тяжелых металлов
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Срок выполнения — 5-6 рабочих дней

Анализ «СанПиН» предназначен для исследования воды по максимальному перечню загрязнителей, вне зависимости от источника, и включает 61 параметр:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная, сероводород, хлор общий, хлор остаточный свободный, нефтепродукты;
  • катионы: железо, аммоний, марганец, калий, магний, кальций, алюминий, натрий, литий;
  • анионы: фториды, хлориды, нитраты, нитриты, фосфаты, сульфаты, сульфиды, гидросульфиды, карбонаты, гидрокарбонаты;
  • тяжелые металлы и металлоиды: барий, бериллий, бор, ванадий, молибден, кобальт, цинк, никель, хром, стронций, кадмий, мышьяк, медь, свинец, кремний, серебро, титан, ртуть;
  • органические компаненты: АПАВ, фенол, формальдегид, бензол, толуол, о-ксилол, п-ксилол, м-ксилол, стирол.

Данное исследование рекомендуется тем, кто серьезно относится к выбору питьевой воды. Протокол анализа «Максимальный» позволяет со 100% уверенностью сделать вывод о пригодности воды для питья и приготовления пищи. Результаты исследования позволяют выбрать схему водоочиски, а также оценить эффективность уже установленного оборудования.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для любых источников воды
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Включает полный перечень тяжелых металлов
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Содержит полный перечень опасных органических веществ
  • Срок выполнения — 5-6 рабочих дней

Помимо хичиеского анализа мы настоятельно рекомендуем провести микробиологическое исследование Вашей воды. Микробиологический анализ включает определение общего микробного числа (ОМЧ), общих колиформных и колиформных термотолерантных бактерий.

Важен правильный отбор проб и оперативная доставка образцов в лабораторию или пункт приема проб. Подробная информация здесь

Если у Вас есть точный перечень параметров, Вы можете заказать анализ по Индивидуальному перечню показателей. Минимальный чек на индивидуальный анализ — 1 500 руб! Для расчета стоимости позвоните нам по номеру +7 (495) 149-23-57 или напишите на почту info@ion-lab.ru.

Анализ «Водоем / Аквариум» включает в себя перечень параметров, превышения по которым чаще всего встречаются в водоемах. Анализ включает определение основных химических параметров.

Химические параметры:

  • общехимические : рН, нефтепродукты, аммоний, ХПК, БПК5, АПАВ, фенол;
  • анионы : нитраты, сульфаты, хлориды, нитриты, фосфаты, фториды;
  • тяжелые металлы и металлоиды : марганец, железо общее, ртуть, цинк, никель, кадмий, мышьяк, медь, свинец, хром.

Нормирование осуществляется по №552 Минсельхоза РФ от 13.12.2016 г «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения.»

источник

Определение концентрации никеля в сыворотке крови, используемое для диагностики острого и хронического отравления никелем.

Атомно-адсорбционная спектрометрия (ААС).

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Не принимать пищу в течение 2-3 часов до анализа, можно пить чистую негазированную воду.
  • Не курить в течение 30 минут до анализа.

Общая информация об исследовании

Никель – это тяжелый металл, соединения которого токсичны при их накоплении в организме. В норме он присутствует у человека в очень низких концентрациях, однако его физиологическая роль не установлена.

Основные пути попадания никеля в организм: с водой и пищей, в которых повышена концентрация этого металла. Он содержится в таких продуктах, как чай, кофе, шоколад, бобы, лесные орехи, капуста, шпинат и картофель. Ежедневно человек потребляет около 175 мкг никеля с пищей, что, однако, недостаточно для развития каких-либо симптомов интоксикации. Другой источник никеля – загрязненный воздух. За сутки некурящий человек вдыхает 0,1-0,25 мкг никеля (для рабочих металлургических предприятий эта цифра может превышать 1 мкг). Ингаляция является основным путем интоксикации на производстве. Курение увеличивает поступление никеля на 0,0004 мкг в сутки. Также имеет значение попадание этого элемента через кожу и слизистые оболочки при длительном контакте с никельсодержащими украшениями, монетами, предметами из нержавеющей стали. Элементарный никель не проникает через неповрежденную кожу, а вот абсорбция хлорида и сульфата никеля составляет 77 %.

Чтобы диагностировать отравление никелем, измеряют его концентрацию в крови. Так как уровень никеля и других тяжелых металлов даже при превышении нормальных значений – это всего лишь нанограммы на миллилитр, для анализа используют сверхчувствительный метод атомно-адсорбционной спектрометрии. При этом точность исследования крови для диагностики отравления никелем уступает исследованию мочи. Кроме того, анализ не позволяет установить источник отравления (то есть не дифференцирует сульфиды, оксиды или элементарный никель).

Время появления симптомов и степень тяжести отравления никелем зависит от физиологического состояния организма, пути и скорости поступления никеля, наличия сопутствующих заболеваний и некоторых других причин. Повреждающее действие никеля основано на его способности связывать молекулы кислорода, препятствуя таким образом процессу окислительного фосфорилирования, и сульфгидрильные группы, снижая активность некоторых ферментов. Возникающий при этом дефицит АТФ сопровождается нарушением функции многих органов (легких, почек, кроветворной ткани), однако в первую очередь страдают ткани с высокой степенью метаболизма – печень и головной мозг. Острое отравление возникает при ингаляции карбонила никеля, одного из самых ядовитых для человека веществ. Карбонил никеля широко используется для очистки нефти, гидрогенизации масел, производства металлических сплавов и пластмассы. Симптомы отравления этим веществом включают одышку, кашель, головную боль, тошноту и рвоту, боль в области живота, кровотечение, отек легких, пневмонию, отек головного мозга, делирий, судороги и угнетение сознания вплоть до комы. Заболевание развивается в течение 12-120 часов после ингаляции паров карбонила никеля. Исследование концентрации никеля в крови дополняют другими лабораторными исследованиями для оценки функции жизненно важных органов.

Читайте также:  Сухой остаток при анализе сточных вод

Большинство пациентов с хроническим отравлением никелем – это рабочие, контактирующие с сульфидами и оксидами никеля на производстве стекла, керамики и красок. Хроническая интоксикация никелем сопровождается симптомами раздражения верхних дыхательных путей (ощущение заложенности носа, кашель, ринорея) и может приводить к возникновению астмы. Кроме того, никель обладает канцерогенным эффектом и ассоциирован с развитием злокачественных опухолей носоглотки и легких. В этой группе пациентов также большое значение имеет перкутанный путь попадания никеля и развитие профессионального никелевого дерматита.

Следует отметить, что клиническая картина острого и хронического отравления никелем не является специфичной для данного тяжелого металла. Схожую симптоматику имеют интоксикации кадмием, хромом, кобальтом, медью, селеном и цинком. Поэтому диагностика отравления тяжелыми металлами у пациента с наличием профессиональных вредностей – это всегда комплексное обследование, включающее исследование концентрации всех необходимых элементов для установления конкретного источника отравления.

При интерпретации результата исследования следует обращать особое внимание на наличие в анамнезе контакта с соединениями никеля (в первую очередь, с карбонилом никеля). Так как клинически выраженное отравление никелем встречается очень редко в обычной популяции, повышение концентрации никеля у пациента без профессиональных вредностей скорее указывает на ложноположительный результат из-за загрязнения пробы. Повышение концентрации никеля в крови наблюдается у пациентов, находящихся на гемодиализе, что, однако, не сопровождается какими-либо признаками интоксикации и не имеет диагностического значения.

Для чего используется исследование?

Для диагностики острого и хронического отравления никелем у пациентов, работа которых предполагает определенный риск (очистка нефти, производство металлических сплавов, стекла, керамики).

Когда назначается исследование?

  • острого отравления никелем (карбонилом никеля): одышка, кашель, головная боль, тошнота и рвота, боли в области живота, кровотечения, отек легких, пневмония, отек головного мозга, делирий, судороги и угнетение сознания вплоть до комы;
  • хронического отравления никелем: ощущение заложенности носа, насморк, кашель, приступы одышки или удушья, злокачественные новообразования носоглотки и легких.

Референсные значения: 0,6 — 7,5 мкг/л.

Причины повышения уровня никеля в крови:

  • острая или хроническая интоксикация никелем;
  • гемодиализ.

Понижение уровня никеля в крови не имеет диагностического значения.

Что может влиять на результат?

  • Концентрация никеля может повышаться при гемодиализе.
  • После использования йод- или гадолинийсодержащих контрастных веществ исследование рекомендуется проводить не ранее чем через 4 суток.
  • При интерпретации результата следует обращать особое внимание на наличие в анамнезе контакта с соединениями никеля (карбонилом никеля).
  • Положительный результат анализа у пациента без профессиональных вредностей скорее получен из-за загрязнения пробы.

Кто назначает исследование?

Врач скорой помощи, анестезиолог-реаниматолог, профпатолог, токсиколог, врач общей практики.

  • Ford et al. Clinical Toxicology/ M. D. Ford, K. A. Delaney, L. J. Ling, T. Erickson; 1 st ed. — W.B. Saunders Company, 2001.
  • Klaassen et al. Casarett and Doull’s Essentials of Toxicology/ C. D. Klaassen, J.B. Watkins III. 1 st ed. – MCGraw-Hill, 2004.
  • Cameron KS, Buchner V, Tchounwou PB. Exploring the molecular mechanisms of nickel-induced genotoxicity andcarcinogenicity: a literature review. Rev Environ Health. 2011;26(2):81-92.
  • Tonelli M, Wiebe N, Hemmelgarn B, Klarenbach S, Field C, Manns B, Thadhani R, Gill J; Alberta Kidney Disease Network. Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Med. 2009 May 19;7:25.

Оставьте ваш E-mail и получайте новости, а также эксклюзивные предложения от лаборатории KDLmed

источник

Настоящий документ устанавливает методику измерений никеля в природных и сточных водах фотометрическим методом с диметилглиоксимом.

Диапазон измерений от 0,005 до 10 мг/дм 3 .

Если массовая концентрация никеля в анализируемой пробе ниже 0,08 мг/дм 3 , то пробу концентрируют путем упаривания.

Если массовая концентрация никеля в анализируемой пробе превышает 4 мг/дм 3 , пробу необходимо разбавлять.

Мешающие влияния, обусловленные присутствием в пробе цианидов, роданидов, тиосульфатов, большого количества органических веществ, а также меди, железа, кобальта, хрома, марганца, устраняются специальной подготовкой пробы к анализу (п. 9.1).

Значения показателя точности измерений 1 — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А.

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

Таблица 1 — Диапазон измерений, показатели неопределенности измерений

Суммарная стандартная относительная неопределенность, u, %

Расширенная относительная неопределенность 2 , U при коэффициенте охвата k = 2, %

2 Соответствует характеристике погрешности при доверительной вероятности Р = 0,95.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, реактивы и материалы.

3.1 Средства измерений и стандартные образцы

— Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны λ = 445 нм.

— Кюветы с толщиной поглощающего слоя 10 и 50 мм.

— Весы лабораторные специального или высокого класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008.

— Колбы мерные 2-25 (50, 100, 1000)-2 по ГОСТ 1770-74.

— Пипетки градуированные 6(7) — 1(2, 5, 10) по ГОСТ 29227-91.

— ГСО с аттестованным содержанием ионов никеля и погрешностью аттестованного значения не более 1 % при Р = 0,95.

3.2 Вспомогательные устройства и материалы

— Сушильный шкаф электрический СНОЛ.

— Воронки делительные ВД-1-250 ХС по ГОСТ 25336-82.

— Колбы конические К-2-100(200)-34 ТХС по ГОСТ 25336-82.

— Стаканы для взвешивания Н-1-50 ТХС по ГОСТ 25336-82.

— Чашки фарфоровые выпарительные 3(4) по ГОСТ 9147-80.

— Бумага индикаторная универсальная, ТУ 6-09 1181-89.

— Бутыли из полимерного материала с притертыми или винтовыми пробками вместимостью 250 — 500 см 3 для отбора и хранения проб.

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

— Перекись водорода по ГОСТ 10929-76 (30 %-ный водный раствор).

— Спирт этиловый ректификованный технический по ГОСТ 18300-87.

— Калий-натрий виннокислый, (сегнетова соль) по ГОСТ 5845-79.

— Аммоний надсернокислый (персульфат) по ГОСТ 20478-75.

— Хлороформ по ГОСТ 20015-88 (перегнанный).

— Гидроксиламина гидрохлорид по ГОСТ 5456-79.

— Метиловый оранжевый индикатор.

1 Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

Фотометрический метод определения массовой концентрации ионов никеля основан на взаимодействии ионов никеля в слабоаммиачной среде в присутствии сильного окислителя с диметилглиоксимом с образованием комплексного соединения красного цвета. Оптическая плотность окрашенного раствора измеряется при λ = 445 нм.

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009.

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

Выполнение измерений может производить химик-аналитик, владеющий техникой экстракционно-фотометрического анализа, изучивший инструкцию по эксплуатации спектрофотометра или фотоэлектроколориметра и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура окружающего воздуха (20 ± 5) °С;

— атмосферное давление (84,0 — 106,7) кПа;

— относительная влажность не более 80 % при температуре 25 °С;

— напряжение сети (220 ± 22) В.

При подготовке к выполнению измерений должны быть проведены следующие работы: подготовка прибора к работе, приготовление вспомогательных и градуировочных растворов, построение градуировочного графика, контроль стабильности градуировочной характеристики, отбор и хранение проб.

Подготовку спектрофотометра или фотоэлектроколориметра проводят в соответствии с руководством по его эксплуатации.

8.2 Приготовление вспомогательных растворов

Растворяют 2,5 см 3 брома в 100 см 3 дистиллированной воды. Под слоем воды всегда должен находиться жидкий бром. Раствор хранят в темной склянке.

Навеску 1 г диметилглиоксима помещают в коническую колбу и растворяют в 99 г этилового спирта.

5 см 3 30 % раствора перекиси водорода помещают в мерную колбу вместимостью 50 см 3 и доводят до метки дистиллированной водой.

Навеску 20 г калия-натрия виннокислого помещают в коническую колбу и растворяют в 80 см 3 дистиллированной воды.

Навеску 10 г гидрохлорида гидроксиламина помещают в коническую колбу и растворяют в 90 см 3 дистиллированной воды.

42,5 см 3 концентрированной соляной кислоты растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см 3 и доводят до метки дистиллированной водой.

8.3 Приготовление градуировочных растворов

Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией. В 1 см 3 раствора должно содержаться 0,01 мг ионов никеля. Раствор готовят в день проведения анализа.

10 см 3 основного градуировочного раствора помещают в мерную колбу вместимостью 50 см 3 и доводят до метки дистиллированной водой. 1 см 3 раствора должен содержать 0,002 мг никеля. Раствор готовят в день проведения анализа.

8.4. Построение градуировочных графиков

Для построения градуировочных графиков необходимо приготовить образцы для градуировки с массовой концентрацией ионов никеля от 0,08 до 4,0 мг/дм 3 . Условия анализа, его проведение должны соответствовать п.п. 7 и 9.

Состав и количество образцов для построения градуировочных графиков приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Таблица 2 — Состав и количество образцов для градуировки

Массовая концентрация ионов никеля в градуировочных растворах в мг/дм 3

Аликвотная часть раствора (см 3 ), помещаемая в мерную колбу на 25 см 3

Основной градуировочный раствор с концентрацией 0,01 мг/см 3

Рабочий градуировочный раствор с концентрацией 0,002 мг/см 3

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации вещества в мг/дм 3 .

8.5 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где X — результат контрольного измерения массовой концентрации ионов никеля в образце для градуировки, мг/дм 3 ;

С — аттестованное значение массовой концентрации ионов никеля, мг/дм 3 ;

u I ( TOE ) — стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

8 .6.1 Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

Пробы воды отбирают в бутыли из полимерного материала, предварительно ополоснутые отбираемой водой. Объём отобранной пробы должен быть не менее 150 см 3 .

8 .6.2 Если пробы нельзя проанализировать в день отбора, их консервируют, подкисляя до рН менее 2 концентрированной азотной кислотой. Законсервированные пробы хранят не более 1 месяца.

Читайте также:  Сухой остаток при химическом анализе воды

Если требуется отдельно определить никель в растворимой и нерастворимой формах, часть пробы фильтруют (до консервации), в ней определяют растворенную форму.

8 .6. 3 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указываются:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

9 .1.1 Хроматы и бихроматы восстанавливают несколькими каплями этилового спирта после подкисления пробы серной кислотой. Хром (III) затем отделяют, осаждая его разбавленным (1:4) раствором аммиака. Если присутствуют только ионы хрома (III), осаждают сразу раствором аммиака и отфильтровывают выпавший осадок.

9 .1.2 Медь, железо, кобальт, хром, марганец устраняют, проводя определение по п. 9.2.2, в котором никель сначала экстрагируют хлороформом в виде его диметилглиоксимата, а затем переводят в водный раствор.

9 .1.3 Для устранения мешающего влияния комплексных цианидов, роданидов и тиосульфатов отбирают такой объем пробы, чтобы в нем содержалось не более 10 мг цианид-, роданид- и тиосульфат-ионов (а также других окисляемых активным хлором веществ) и приливают 20 см 3 раствора гипохлорита, в 1 см 3 которого содержится 2,5 мг активного хлора.

Раствор гипохлорита можно приготовить, растворяя в воде хлорную известь (8 г на 1 дм 3 H 2 O), гипохлорит кальция или натрия, или пропуская хлор в раствор едкого натра. Определив в нем содержание активного хлора йодометрическим методом, его разбавляют дистиллированной водой до указанной выше концентрации. Дают пробе постоять 5 мин, затем приливают 5 см 3 разбавленной (1:3) серной кислоты и кипятят 20 мин.

9 .1.4 Для устранения мешающего влияния органических веществ, которые могут образовывать с тяжелыми металлами комплексные соединения, отобранную пробу сразу или по частям переносят в чашку, выпаривают до объема 50 см 3 , подкисляют концентрированной серной кислотой по метиловому оранжевому, прибавляют 5 см 3 концентрированной азотной кислоты, 2 см 3 30 %-ного пероксида водорода (если проба содержала хроматы, они при этом восстановятся) и продолжают выпаривание до объема 15 — 20 см 3 , покрыв, если нужно, чашку часовым стеклом, чтобы избежать разбрызгивания жидкости.

Переносят содержимое чашки в коническую колбу вместимостью 100 см 3 , приливают еще 5 см 3 концентрированной азотной кислоты, предварительно обмывая ею стенки чашки, добавляют 10 см 3 концентрированной серной кислоты, вносят несколько стеклянных шариков или капилляров, чтобы воспрепятствовать выбрасыванию жидкости толчками во время выпаривания, переносят колбу под тягу и выпаривают на плитке до появления густых паров серной кислоты. Если жидкость не станет бесцветной, приливают еще 10 см 3 концентрированной азотной кислоты и повторяют выпаривание до появления паров серной кислоты. Охладив раствор до комнатной температуры, его очень осторожно разбавляют дистиллированной водой до 50 см 3 , приливая воду по стенкам небольшими порциями, перемешивая после добавления каждой порции. Нагревают почти до кипения, чтобы растворить все растворимые соли, и фильтруют через стеклянный фильтрующий тигель, собирая фильтрат в колбу. Первую колбу промывают двумя порциями по 5 см 3 дистиллированной воды, пропуская ее через тот же фильтрующий тигель, чтобы растворить и присоединить к фильтрату оставшиеся в фильтре растворимые частицы.

Фильтрат количественно переносят в мерную колбу вместимостью 100 см 3 , обмывая колбу, где он находился, двумя порциями по 5 см 3 дистиллированной воды, после чего доводят дистиллированной водой до метки и перемешивают. В полученном растворе определяют никель, отбирая аликвотную часть раствора.

Отбирают такой объем пробы (или раствора, полученного после разложения комплексных соединений выпариванием с азотной и серной кислотами), чтобы в нем содержалось от 0,002 до 0,10 мг никеля, упаривают или разбавляют до 10 см 3 , прибавляют 2 см 3 насыщенной бромной воды, перемешивают и количественно переносят в мерную колбу вместимостью 25 см 3 . Приливают 3 см 3 концентрированного раствора аммиака, 1 см 3 раствора диметилглиоксима, доводят дистиллированной водой до метки и перемешивают. Через 10 мин измеряют оптическую плотность полученного раствора при длине волны 445 нм в кювете с толщиной поглощающего слоя 10 или 50 мм.

Отбирают такой объем пробы (или раствора, полученного после разложения комплексных соединений выпариванием с азотной и серной кислотами), чтобы в нем содержалось от 0,002 до 0,10 мг никеля. Если обработки смесью азотной и серной кислот не было, а в пробе предполагается присутствие двухвалентного железа, проводят предварительное окисление последнего кипячением подкисленного раствора с 0,1 г персульфата аммония. Подкисляют, если надо, добавляя разбавленную соляную кислоту, вводят 1 — 5 см 3 20 %-ного раствора калия-натрия виннокислого (в зависимости от содержания катионов, образующих осадок гидроксидов при подщелачивании раствора), вводят, если предполагают присутствие шестивалентного хрома, 2 см 3 10 %-ного раствора гидрохлорида гидроксиламина и нейтрализуют разбавленным (1:1) раствором аммиака до рН = 7,5 — 9 по универсальной индикаторной бумаге.

Раствор переносят в делительную воронку вместимостью 250 см 3 , приливают 2 см 3 раствора диметилглиоксима, 3 см 3 хлороформа и смесь энергично встряхивают 30 с. После расслоения жидкости сливают хлороформный слой в другую делительную воронку и повторяют экстракцию еще двумя порциями хлороформа по 3 см 3 .

Соединенные порции хлороформного экстракта встряхивают во второй делительной воронке с 5 см 3 разбавленного (1:24) раствора аммиака в течение 1 мин и переносят в первую делительную воронку, которую перед этим ополаскивают дистиллированной водой. Затем проводят реэкстракцию никеля, для чего хлороформный раствор обрабатывают 5 см 3 раствора соляной кислоты, сливают хлороформный слой в другую воронку, снова обрабатывают его 5 см 3 раствора соляной кислоты, сливают хлороформ и соединяют водные солянокислые растворы.

В освобожденном таким образом от мешающих катионов растворе определяют никель по п. 10.1.

Содержание никеля в мг/дм 3 находят по градуировочным графикам.

10.1 Массовую концентрацию никеля X (мг/дм 3 ) рассчитывают по формуле:

(2)

где С — концентрация никеля, найденная по градуировочному графику, мг/дм 3 ;

25 — объем, до которого была разбавлена проба, в см 3 ;

V — объем, взятый для анализа, в см 3 .

10.2 За результат измерений принимают единичное значение или Х ср — среднее арифметическое значение двух параллельных определений Х 1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Таблица 3 — Значения пределов повторяемости и воспроизводимости при вероятности Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При невыполнении условия (3) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно разделу 5 ГОСТ Р ИСО 5725-6-2002.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 3.

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно разделу 5 ГОСТ Р ИСО 5725-6-2002.

Результат измерений в документах, предусматривающих его использование, может быть представлен в виде: X ± U , мг/дм 3 ,

где X — результат измерений массовой концентрации никеля, мг/дм 3 ;

U — значение показателя точности измерений (расширенная неопределенность измерений с коэффициентом охвата k = 2), мг/дм 3 .

Значение U отн . приведено в таблице 1.

Допускается результат измерений в документах, выдаваемых лабораторией, представлять в виде: X ± U л , мг/дм 3 , Р = 0,95, при условии U л U , где U л — значение показателя точности измерений (расширенной неопределенности с коэффициентом охвата k = 2), установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

12 .1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры измерений;

— контроль стабильности результатов измерений на основе контроля стабильности среднего квадратического отклонения (СКО) повторяемости, СКО промежуточной (внутрилабораторной) прецизионности и правильности.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур, а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Разрешение противоречий между результатами двух лабораторий проводят в соответствии с п. 5.3.3 ГОСТ Р ИСО 5725-6-2002.

12 .1.2 При проведении контроля стабильности градуировочной характеристики в лаборатории используют либо приведенные в бюджете неопределенности стандартные отклонения промежуточной прецизионности, либо установленные в лаборатории, при выполнении следующего условия: σR л ≤ σI ( TOE ) ≤ σ R , где σ R — стандартное отклонение (СКО) воспроизводимости, приведенное в бюджете неопределенности;

σI ( TOE ) — стандартное отклонение (СКО) промежуточной прецизионности, приведенное в бюджете неопределенности;

σR л — СКО внутрилабораторной прецизионности, установленное в лаборатории при внедрении методики измерений.

12.2 Оперативный контроль процедуры измерений с использованием метода добавок

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле

где Х’ cр — результат измерений массовой концентрации никеля в пробе с известной добавкой — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4), мг/дм 3 .

Х ср — результат измерений массовой концентрации никеля в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4), мг/дм 3 .

C д — величина добавки, мг/дм 3 .

Норматив контроля Кд рассчитывают по формуле:

(7)

где U л ,Х и U л ,Х’ — показатели точности результатов измерений (расширенная неопределенность с коэффициентом охвата 2), установленные в лаборатории при реализации методики, соответствующие массовой концентрации никеля в рабочей пробе и в пробе с добавкой соответственно, мг/дм 3 .

Процедуру измерений признают удовлетворительной при выполнении условия:

При невыполнении условия (8) контрольную процедуру повторяют. При повторном невыполнении условия (8) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.3 Оперативный контроль процедуры измерений с использованием образцов для контроля

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле

где С ср — результат измерений массовой концентрации никеля в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4), мг/дм 3 ;

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

где U л — значение показателя точности измерений (расширенной неопределенности с коэффициентом охвата k = 2), установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

Процедуру измерений признают удовлетворительной при выполнении условия:

При невыполнении условия (11) контрольную процедуру повторяют. При повторном невыполнении условия (11) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Примечание — Допустимо показатели точности измерений при внедрении методики в лаборатории устанавливать на основе выражения:

Uл = ,84U(X) с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Таблица А.1 — Бюджет неопределенности измерений

Стандартная относительная неопределенность 3 , %

Приготовление градуировочных растворов, u1, %

Степень чистоты реактивов и дистиллированной воды, и2, %

Подготовка проб к анализу, u3, %

Стандартное отклонение результатов измерений, полученных в условиях повторяемости 4 , иrr), %

Стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности 4 , uI(ТОЕ)I(ТОЕ)), %

Стандартное отклонение результатов измерений, полученных в условиях воспроизводимости, иRR), %

Суммарная стандартная относительная неопределенность, ис, %

Расширенная относительная неопределенность, ( U omн) при k = 2, %

1 Оценка (неопределенности) типа А получена путем статистического анализа ряда наблюдений.

2 Оценка (неопределенности) типа В получена способами, отличными от статистического анализа ряда наблюдений.

3 Соответствует характеристике относительной погрешности при доверительной вероятности Р = 0,95.

4 Согласно ГОСТ Р ИСО 5725-3-2002 учтено при расчете стандартного отклонения результатов измерений, получаемых в условиях воспроизводимости.

источник

Тест-система «Никель», разработанная и производимая ЗАО «Крисмас+», широко и успешно применяется при:

  • санитарно-химическом и экологическом экспресс-контроле воды, водных растворов, взвесей и суспензий на содержание катионов никеля;
  • технологическом экспресс-контроле сточных, технических и др. вод, водных растворов, взвесей и суспензий на содержание катионов никеля;
  • оперативном технологическом экспресс-контроле операций, связанных с использованием солей никеля на химических, металлообрабатывающих заводах, в гальванических цехах, при очистке сточных вод и др;
  • химическом экспресс-контроле воды и водных растворов в аварийных и чрезвычайных ситуациях, при залповых сбросах;
  • экспресс-анализе различных сыпучих материалов неизвестного происхождения по их водным вытяжкам. Особенно актуальна в аварийных и чрезвычайных обстоятельствах, поскольку дает возможность получать результаты в считанные минуты и прямо на месте анализа;
  • осуществлении общественного и персонального (личного) контроля;
  • организации и проведении экологически направленных проектных и учебно-исследовательских работ в образовательных организациях всех уровней.

В случаях применения тест-системы в образовательных организациях дополнительно прилагаются специально разработанные специалистами компании карты-инструкции (дидактический материал).

Индикаторный элемент тест-системы «Никель» надежно защищен полимерным покрытием .
При работе с тест-системой не требуется электроснабжение .
Тест-система «Никель» сертифицирована .

Читайте также:  Сухой остаток в анализе воды

В данном разделе мы представляем тест-систему «Никель» в части её использования для химического экспресс-контроля воды, водных растворов, взвесей и суспензий на содержание в них катионов никеля.
Для работы с тест-системой «Никель» не требуется специального химико-аналитического образования .

Порядок использования тест-системы «Никель» в соответствии с инструкцией:

  1. Извлечь индикаторный элемент (индикаторную полоску) из защитного пакета.
  2. Отрезать от индикаторной полоски рабочий участок размером около 5х5 мм (допускается заготавливать участки индикаторной полоски заранее, но не более чем за 1 час до анализа). Оставшуюся часть индикаторной полоски поместить обратно в защитный пакет.
  3. Не снимая полимерного покрытия, опустить его в анализируемую воду на 5-10 сек. и полностью смочить рабочую часть индикаторного элемента через его незащищенную полимерным покрытием боковую часть.
  4. Через 3 мин сравнить окраску смоченного анализируемым раствором рабочего участка с образцами цветной контрольной шкалы.
  5. Определить значение концентрации, соответствующее ближайшему по окраске образцу цветной контрольной шкалы – это и будет результат анализа (при промежуточной окраске – за результат следует принять соответствующий интервал концентраций). Результат анализа (концентрацию катионов никеля) получают в мг/л.

Израсходованные рабочие участки не содержат ядовитых и опасных веществ, и утилизируются в общем порядке как хозяйственный бытовой мусор.
При необходимости контроля более низких концентраций катионов никеля допускается упаривание растворов с последующим перерасчетом значений концентраций обратно пропорционально степени упаривания.
При экспресс-контроле взвесей и суспензий выполнить те же операции. Мешающее влияние частиц, составляющих взвеси и суспензии, предотвращается наличием защитного полимерного покрытия рабочего участка индикаторной полоски, которое просто отсекает эти частицы.
Допускается незначительное изменение цвета краев индикаторной полоски в процессе хранения тест-системы. Перед проведением анализа эти края необходимо обрезать.
Тест-систему «Никель» рекомендуется хранить в сухом, прохладном месте.

Для комфортной работы с данной тест-системой, для её более эффективного использования и получения максимально верных результатов исследований, ЗАО «Крисмас+» производит и поставляет специальныйкомплект принадлежностей к тест-системам для химического контроля воды.

источник

Ключевые слова: никель отравление тяжелыми металлами кровь

Никель относится к числу микроэлементов, необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. Никель обнаружен в организме наземных и морских животных, а также в организме насекомых. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Никель содержится в высших и низших растениях. Первые указания на нахождение никеля в растениях были сделаны В.И. Вернадским.

Основные пищевые источники никеля: шоколад, орехи, высушенные бобы, горох и зерно. Обычные рационы обеспечивают менее 150 мкг ежедневно. Много никеля содержится в чае, какао, гречихе, моркови и салате.

Соединения никеля используются для изготовления монет, в металлических покрытиях и катализаторах, различных сплавах, ювелирных изделиях, батарейках.

В медицине никель применяется при изготовлении имплантантов.

Относительно биологической роли никеля сведений очень мало. Предполагается, что биологическая роль никеля заключается в участии в структурной организации и функционировании ДНК, РНК, белка.

По своему влиянию на кроветворение никель близок к кобальту (кобальт является стимулятором эритропоэза, стимулирует синтез гемоглобина, повышает усвоение доступного железа). Никель в сочетании с кобальтом, железом , медью также участвует в процессах кроветворения, а самостоятельно — в обмене жиров.

Никель оказывает влияние на ферментативные процессы, окисление аскорбиновой кислоты , ускоряет переход сульфгидрильных групп в дисульфидные. Никель может угнетать действие адреналина и снижать артериальное давление. Под влиянием никеля в организме вдвое возрастает выведение кортикостероидов с мочой, усиливается антидиуретическое действие экстракта гипофиза.

В организм соединения никеля поступают с пищей и водой. Избыточное поступление в организм никеля может вызывать депигментацию кожи (витилиго).

В желудочно-кишечном тракте человека всасывается от 1 до 10% поступившего с пищей никеля. Поступающий внутрь с водой никель абсорбируется на 20–25%. Молоко, кофе, чай, апельсиновый сок, аскорбиновая кислота снижают его абсорбцию. Таким образом, никель плохо абсорбируются (менее чем 10%), если потребляется с типичными рационами. Всасывание никеля увеличивается при железодефиците, беременности и кормлении грудью.

Никель транспортируется преимущественно с альбумином сыворотки. В плазме крови никель находится в основном в связанном состоянии с белками никелоплазмином (альфа-2-макроглобулин) и альфа-1-гликопротеином. Из органов человека наиболее богаты никелем печень, поджелудочная железа и гипофиз. Никель избирательно концентрируется в substancia nigra головного мозга. Депонируется никель в поджелудочной и околощитовидных железах. Было установлено, что поджелудочная железа богата никелем. При введении вслед за инсулином никеля, продлевается действие инсулина, и тем самым повышается гипогликемическая активность. Щитовидная железа и надпочечники имеют относительно высокие концентрации никеля. В легких содержание никеля с возрастом увеличивается.

Из организма никель выводится в основном с фекалиями (до 95%) и в незначительных количествах с мочой, потом и желчью.

Никель относится к высокотоксичным элементам. Избыточное поступление металла в организм животных и человека может быть связано с интенсивным техногенным загрязнением почв и растений этим элементом. Соли никеля проявляют свое ядовитое действие главным образом в виде раздражения желудочно-кишечного тракта. Порог токсичности никеля для организма человека составляет 20 мг/день. Летальная доза для человека не определена.

Токсичность никеля для растений проявляется в подавлении процессов фотосинтеза и транспирации, появлении признаков хлороза листьев. Для животных организмов токсический эффект элемента сопровождается снижением активности ряда металлоферментов, нарушением синтеза белка, РНК и ДНК, развитием выраженных повреждений во многих органах и тканях. Экспериментально установлен эмбриотоксический эффект никеля. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице.

Никель и его соединения, поступающие в организм с пищей, как правило, относительно нетоксичны. Однако при избыточном поступлении никеля может развиться не только контактный дерматит, но и системная гиперчувствительность к никелю. В полости рта он вступает в соединение с кислородом и образует токсичное соединение – оксид никеля, который является мощным аллергеном.

Токсическое действие никеля проявляется при вдыхание никелевой пыли. Отмечаются носовые кровотечения, полнокровие зева и бронхов. Развивается «никелевая экзема» и «никелевая чесотка». Особенно токсичен карбонил никеля Ni(CO)4. При невысоких концентрациях наблюдаются головные боли, при высоких — тошнота, рвота, одышка, повышение температуры по типу «литейной лихорадки», через 12-18 часов болезненность в правом подреберье, появление уробилина в моче, нарастание сердечной слабости, синюшность кожных покровов. Смерть наступает на 10-14 день при явлениях, вызываемых удушающими газами.

Карбонил никеля является канцерогеном. При длительном, в течение 10-40 лет, профессиональном контакте с сульфидом или оксидом никеля могут образоваться карциномы легких и носоглотки.

На производствах с использованием никеля у 10-13% рабочих отмечаются аллергические реакции (папулезные, папуло-везикулезные сыпи). У женщин аллергические реакции на никель наблюдаются в 3-5 раз чаще, чем у мужчин. Описана даже так называемая «аллергия кухарок», которая развивается у поваров и домохозяек, контактирующих с никелированной посудой.

Основные проявления избытка никеля:

  • Повышение возбудимости центральной и вегетативной нервной системы.
  • Отеки легких и мозга.
  • Аллергические реакции кожи и слизистых оболочек верхних дыхательных путей (дерматит, ринит).
  • Тахикардия .
  • Анемии .
  • Снижение иммунной защиты.
  • Повышение риска развития новообразований в легких, почках, на коже.

При интоксикации никелем ограничивают его поступление в организм и проводят симптоматическое лечение, хелатирующую терапию (триэтилентетрамин дигидрохлорид или Trien). Цикламат кальция усиливает выведение никеля с мочой.

источник

Главная | О компании | Каталог | Новости | Сервисы & Поддержка | Контакты
Никель — Ni
Анализаторы никеля / спектрометры
Оптико эмиссионный спектрометр для анализа никеля и сплавов
Рентгенофлуоресцентный спектрометр EDX3600B для анализа никеля
Рентгенофлуоресцентный анализатор EDX2800 для анализа никеля

Никель — элемент побочной подгруппы восьмой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28. Обозначается символом Ni (лат. Niccolum). Простое вещество никель (CAS-номер: 7440-02-0) — это пластичный ковкий переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой плёнкой оксида. Химически малоактивен. Название своё этот элемент получил от имени злого духа гор немецкой мифологии, который подбрасывал искателям меди минерал мышьяково-никелевый блеск, похожий на медную руду (ср. нем. Nickel — озорник); при выплавлении руд никеля выделялись мышьяковые газы, из-за чего ему и приписали дурную славу.

Физические свойства никеля

Металлический никель имеет серебристый цвет с желтоватым оттенком, очень твёрд, вязкий и ковкий, хорошо полируется, притягивается магнитом, проявляя магнитные свойства при температурах ниже 340 C

Химические свойства никеля

Атомы никеля имеют внешнюю электронную конфигурацию 3d84s2. Наиболее устойчивым для никеля является состояние окисления Ni(II). Никель образует соединения со степенью окисления +2 и +3. При этом никель со степенью окисления +3 только в виде комплексных солей. Для соединений никеля +2 известно большое количество обычных и комплексных соединений. Оксид никеля Ni2O3 является сильным окислителем. Никель характеризуется высокой коррозионной стойкостью — устойчив на воздухе, в воде, в щелочах, в ряде кислот. Химическая стойкость обусловлена его склонностью к пассивированию — образованию на его поверхности плотной оксидной плёнки, обладающей защитным действием. Никель активно растворяется в азотной кислоте. С оксидом углерода CO никель легко образует летучий и весьма ядовитый карбонил Ni(CO)4. Тонкодисперсный порошок никеля пирофорный (самовоспламеняется на воздухе). Никель горит только в виде порошка. Образует два оксида NiO и Ni2O3 и соответственно два гидроксида Ni(OH)2 и Ni(OH)3. Важнейшие растворимые соли никеля — ацетат, хлорид, нитрат и сульфат. Растворы окрашены обычно в зелёный цвет, а безводные соли — жёлтые или коричнево-жёлтые. К нерастворимым солям относятся оксалат и фосфат (зелёные), три сульфида NiS (черный), Ni2S3 (желтовато-бронзовый) и Ni3S4 (черный). Никель также образует многочисленные координационные и комплексные соединения. Например, диметилглиоксимат никеля Ni(C4H6N2O2)2, дающий чёткую красную окраску в кислой среде, широко используется в качественном анализе для обнаружения никеля Водный раствор сульфата никеля в банке имеет зелёный цвет. Водные растворы солей никеля(II) содержат ион гексаакваникеля(II) [Ni(H2O)6]2+. При добавлении к раствору, содержащему эти ионы, аммиачного раствора происходит осаждение гидроксида никеля (II), зелёного желатинообразного вещества. Этот осадок растворяется при добавлении избыточного количества аммиака вследствие образования ионов гексамминникеля(II) [Ni(NH3)6]2+ Никель образует комплексы с тетраэдрической и с плоской квадратной структурой. Например, комплекс тетрахлороникелат (II) [NiCl4]2- имеет тетраэдрическую структуру, а комплекс тетрацианоникелат(II) [Ni(CN)4]2- имеет плоскую квадратную структуру. В качественном и количественном анализе для обнаружения ионов никеля (II) используется щелочной раствор бутандиондиоксима, известного также под названием диметилглиоксима. При его взаимодействии с ионами никеля (II) образуется красное координационное соединение бис(бутандиондиоксимато)никель(II). Это — хелатное соединение и бутандиондиоксимато-лиганд является бидентатным.

Сплавы
Никель является основой большинства суперсплавов — жаропрочных материалов, применяемых в аэрокосмической промышленности для деталей силовых установок.
монель-металл (65 — 67 % Ni + 30 — 32 % Cu + 1 % Mn), жаростойкий до 500 C, очень коррозионно-устойчив;
белое золото (например 585 пробы содержит 58,5 % золота и сплав (лигатуру) из серебра и никеля (или палладия));
нихром, сплав сопротивления (60 % Ni + 40 % Cr);
пермаллой (76 % Ni + 17 %Fe + 5 % Cu + 2 % Cr), обладает высокой магнитной восприимчивостью при очень малых потерях на гистерезис;
инвар (65 % Fe + 35 % Ni), почти не удлиняется при нагревании;
Кроме того, к сплавам никеля относятся никелевые и хромоникелевые стали, нейзильбер и различные сплавы сопротивления типа константана, никелина и манганина.[5]

Никелирование
Никелирование — создание никелевого покрытия на поверхности другого металла с целью предохранения его от коррозии. Проводится гальваническим способом с использованием электролитов, содержащих сульфат никеля(II), хлорид натрия, гидроксид бора, поверхностно-активные и глянцующие вещества, и растворимых никелевых анодов. Толщина получаемого никелевого слоя составляет 12 — 36 мкм. Устойчивость блеска поверхности может быть обеспечена последующим хромированием (толщина слоя хрома 0,3 мкм).
Бестоковое никелирование проводится в растворе смеси хлорида никеля(II) и гипофосфита натрия в присутствии цитрата натрия:
NiCl2 + NaH2PO2 + H2O = Ni + NaH2PO3 + 2HCl
Процесс проводят при рН 4 — 6 и 95 C

Производство аккумуляторов
Производство железо-никелевых, никель-кадмиевых, никель-цинковых, никель-водородных аккумуляторов.

Радиационные технологии
Нуклид 63Ni, излучающий beta частицы, имеет период полураспада 100,1 года и применяется в крайтронах.

Медицина
Применяется при изготовлении брекет-систем (никелид титана).
Протезирование

Монетное дело
Никель широко применяется при производстве монет во многих странах. В США монета достоинством в 5 центов носит разговорное название «никель».

Музыкальная промышленность
Также никель используется для производства обмотки струн музыкальных инструментов.

источник