Меню Рубрики

Анализ на хлориды в воде

Обзор характеристик воды с повышенным содержанием хлоридов (натрия, кальция), их норм примесей, а также раскрытие вопроса вредного воздействия на живые организмы, бытовую технику и коммуникации.

Хлориды – это соли соляной кислоты. Магматические породы с хлорсодержащими минералами (хлорапатит, содалит и др.), а также соленосные отложения (галит) являются первичными источниками данного элемента.

Все природные воды содержат в своем составе хлориды, чаще всего встречающиеся в виде натриевых, магниевых и кальциевых солей. Их естественное содержание в грунтовых и артезианских водах обусловлено вулканическими выбросами, а также результатами кругового взаимодействия атмосферных осадков с почвами и обмена через атмосферу с океаном.

Хлориды, содержащиеся в значительном количестве в воде, могут быть следствием вымывания хлористых соединений или поваренной соли из пластов, соприкасающихся с водой.

Воды подземных источников, некоторых озер и морей в большом количестве содержат хлорид натрия (NaCl), присутствующий в воде хлорид кальция (CaCb) придает ей некарбонатную жесткость.

При оценке санитарного состояния водоема учитывают показатель содержания хлоридов в воде. Так, к примеру, незначительное содержание отмечается в водах северной части России, обычно, не выше 10 мг/л, тогда как соответствующий показатель, характерный для южных регионов, доходит до 10-100 мг/л.

Прослеживается тенденция заметных сезонных колебаний концентрации хлорид-ионов в поверхностных водах, что связано с коррелирующим изменением общей минерализации. Это обусловлено критерием загрязнения водоема из-за попадания в него хозяйственно-бытовых стоков.

Высокое содержание хлоридов заметно ухудшает вкусовые качества воды, делает ее соленой на вкус, а также практически непригодной для хозяйственных и технических нужд, в том числе для оросительных работ на сельскохозяйственных угодьях.

ПДК (предельно допустимая концентрация) хлоридов в воде не должна превышать 350 мг/л, в противном случае вода будет неприятной по вкусу – чрезмерно соленой.

Соленые (хлоридные) воды содержат соли хлоридной группы. Чаще всего катионный состав таких вод представляет натрий, образующий в сочетании с хлором поваренную соль, чем и обеспечен их соленый вкус. Причем, хлористый натрий заметно доминирует относительно других солей практически во всех хлоридных водах.

Хлористый магний преобладает в горько-соленых водах, где его все равно намного меньше, чем поваренной соли. Превышает количество растворенной поваренной соли в некоторых случаях содержащийся хлористый кальций в водах хлоридно-кальциевого типа.

Отличием от карбонатных и сульфатных ионов является их не предрасположенность к созданию ионных ассоциированных пар. Слабо выраженная сорбция с взвешенными веществами, легкая растворимость и потребление водными организмами объясняется хорошей миграционной способностью хлоридных анионов.

При попадании в организм человека, а также домашних животных воды, содержащей избыточное количество хлоридов:

  • раздражаются слизистые оболочки, глаза, кожные покровы, дыхательные пути;
  • проявляется негативное воздействие на секреторную деятельность желудка;
  • ухудшается пищеварение;
  • нарушается водно-солевой баланс;
  • возникает вероятность развития заболеваний системы кровообращения;
  • появляется склонность к возникновению новообразований мочеполовых органов, органов пищеварения, желудка, пищевода;
  • избыточное поступление в организм хлористого натрия увеличивает частоту сердечно сосудистых заболеваний;
  • появляется склонность к гипертензивным состояниям, повышенной реактивности сосудов;
  • возникает вероятность желче- и мочекаменных заболеваний.

источник

Защите окружающей среды от возрастающей антропогенной нагрузки в настоящее время уделяется все большее внимание во всем мире. Развитие промышленности, в том числе и химической, увеличение добычи ископаемого сырья, расширение использования транспорта сопровождается поступлением в окружающую среду больших количеств различных загрязняющих веществ.

Сильное загрязнение окружающей среды (воды, воздуха, почвы) приводят к возникновению неблагоприятных последствий: нарушению нормальной жизнедеятельности биосферы, изменению климата, исчезновению многих видов растений и животных, ухудшению здоровья населения.

Для предотвращения или снижения загрязнения издаются природоохранительные законы и проводятся различные мероприятия – технологические, санитарно-технические, технические, правовые, медицинские и т.п. В основе всех мероприятий лежит контроль за содержанием вредных веществ, который регламентируется санитарно-гигиеническими нормативами – ПДК. Контроль необходим для получения информации об уровне загрязнения, а также об источниках выбросов, причинах и факторах, определяющих загрязнение. Полученные данные позволяют выбирать или проводить защитные, оздоровительные мероприятия и следить за их выполнением.

К качеству контроля предъявляются требования надежности и точности, применяемые методы должны быть достаточно чувствительны и избирательны. Независимо от техники выполнения надежность результатов анализа зависит от учета возможных химических, фотохимических и биохимических превращений загрязняющих веществ в разных средах, а также возможности миграции их из одной среды в другую. Данные о загрязнении одной среды должны увязываться с данными о загрязнении другой среды.

1 . Распространение хлорид-иона

Хлорид-ион образуется в результате растворения и сольватации ионных солей, содержащих анион хлора (хлориды). Следовательно, существование хлорид-иона возможно только в водных растворах. В почвах хлорид ион может также содержатся в составе кристаллических солей. В природе хлор представленный хлорид ионом имеет значительное распространение: 0,02% от массы земной коры. Для сравнения это столько же, сколько и углерода или в 10 раз больше чем свинца. Самые распространенные минералы, содержащие хлорид ион: галит NaCl, сильвинит NaCl*KCl, карналлит KCl*MgCl2 . Хлориды тяжелых металлов нерастворимы, хлориды щелочных и щёлочноземельных металлов растворимы все. Значительная растворимость хлоридов обусловила их распространение на планете. Основным местонахождением хлоридов является Мировой океан. По содержанию солей воды мирового океана являются хлоридно-натриевыми. Средняя концентрация хлорид-иона составляет 546 ммоль/л (19 г./л). Значительное содержание хлоридов во внутренних водоёмах явление редкое. Оно колеблется в пределах 5–80 мг/л. Повышенное содержание хлоридов объясняется загрязнением водоема сточными водами некоторых производств. Однако тому причиной может быть и выщелачивание материнской породы содержащей хлоридные соли.

Содержание хлорид иона в поверхностных слоях почвах, также не может достигать значительных величин вследствие интенсивного вымывания хлоридов под воздействием атмосферных осадков. Однако возможно присутствие значительных концентраций хлоридов в следующих случаях:

– вследствие засоления почв в результате подъёма высокоминерализованных подземных вод;

– в результате постоянного притока вод с последующим испарением жидкости.

Отсюда два различных местанахождения хлоридов. В первом случае это жидкость влажной почвы, а во втором растворённые хлориды образуют включения кристаллических солей в грунте.

2. Методы определения хлорид-иона

Необходимость определения хлорид-ионов возникает при анализе различных веществ, природных, питьевых и сточных вод. Контроль содержания хлорид-ионов требует различных уровней – от макроконцентраций до 10 -7 % в особо чистой воде. Существующие государственные стандарты (ГОСТы), регламентируют, какое веществом каким методом и с помощью какого оборудования нужно определять. Современные нормативные документы, регламентирующие процедуру контроля содержания загрязнителей в водах различного происхождения, разрешают использование химических, физико-химических и физических методов анализа. Основная масса лабораторий, проводящих мониторинг вод, не всегда располагает современным оборудованием для реализации физических методов анализа, позволяющих быстро, правильно и точно определять концентрацию загрязнителей. Наиболее массово по-прежнему представлены химические методы. Возможности разработанных на основе этих методов методик определения содержания в воде неорганических загрязнителей не всегда удовлетворяют требованиям ГОСТ, особенно при анализе вод природного происхождения. Многие загрязнители в воде можно обнаруживать разными способами, на разном оборудовании, но разные методы анализа дают различную погрешность, некоторые могут не учитывать какие-либо мешающие факторы. Определение хлоридов в этом отношении имеет ряд преимуществ. Их содержание редко пускается до микроконцентраций, и поэтому основные методики определения хлоридов всё ещё остаются методами «мокрой» химии. Однако в последнее время инструментальные методы применяются все чаще. Инструментальные методы позволяют автоматизировать анализ, сделать его экспрессным, значительно уменьшают расход вспомогательных реактивов. Определение хлоридов можно проводить такими методами:

Титриметрическое определение хлоридов может выполняться как химическими так и инструментальными методами анализа.

2.2 Химические методы определения хлорид иона

2.2.1 Требования к титриметрическим методам определения

Титриметрические определения хлоридов, основаны на реакциях образования осадков малорастворимых соединений. Не все реакции сопровождающиеся выпадением осадков применимы в объемном анализе. В этих реакциях пригодны только некоторые реакции, удовлетворяющие определенным условиям. Реакция должна протекать строго по уравнению и без побочных процессов. Образующийся осадок должен быть практически нерастворимым и выпадать достаточно быстро, без образования пересыщенных растворов. К тому же необходимо иметь возможность определять конечную точку титрования с помощью индикатора. Наконец, явления адсорбции (соосаждения) должны быть выражены при титровании настолько слабо, чтобы результат определения не искажался.Наименования отдельных методов осаждения происходят от названий применяемых растворов. Метод, использующий раствор нитрата серебра, называют аргентометрией. Тиоцианатометрия основана на применении раствора тиоцианата аммония NH4 SCN (или калия KSCN) и служит для определения следов С1 — в сильнощелочных и кислых растворах. Дорогостоящий аргентометрический метод определения галогенидов по возможности стараются заменять меркурометрическим. В последнем используют раствор нитрата ртути (I) Hg2 (NO3 )2 .2.2.2 Аргентометрия Объемный аналитический метод, основанный на реакциях осаждения ионов галогенов катионами серебра с образованием малорастворимых галогенидов: Cl — +Ag + = AgCl↓ При этом используют раствор нитрата серебра. Если же анализируют вещество на содержание серебра, то пользуются раствором хлорида натрия (или калия).Для понимания метода аргентометрии большое значение имеют кривые титрования. В качестве примера рассмотрим случай титрования 10,00 мл 0,1 н. раствора хлорида натрия 0,1 н. раствором нитрита серебра (без учета изменения объема раствора).

Прибавлено раствора AgNO3 , мл [С1 — ] [Ag + ] рСl pAg
10 -1 1
9.00 10 -2 10 -8 2 8
9.90 10 -3 10 -7 3 7
9.99 10 -4 10 -6 4 6
10.00 (точка эквивалентности) 10 -5 10 -5 5 5
10,01 10 -6 10 -4 6 4
10,10 10 -7 10 -3 7 3
11,00 10 -8 10 -2 8 2
20,00 10 -9 10 -1 9 1

В качестве стандартных растворов для определения галогенидов, цианидов и роданидов применяют нитрат или перхлорат ртути(II), а для определения ионов хорошо диссоциирующих солей ртути – роданид аммония.

источник

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации хлоридов в диапазоне от 10,0 до 250 мг/дм 3 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация хлоридов в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация хлоридов соответствовала регламентированному диапазону.

Определению мешают высокая цветность, мутность, сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (> 100 мг/дм 3 ), фосфаты (> 25 мг/дм 3 ), аммиак (> 5 мг/дм 3 ), а также высокие (> 10 мг/дм 3 ), концентрации металлов — свинца, железа и др.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

Бромиды и иодиды титруются совместно с хлоридами, однако в воде концентрации их, как правило, не превышают 0,5 мг/дм 3 и их влиянием обычно пренебрегают.

Титриметрический метод определения массовой концентрации хлоридов основан на образовании труднорастворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором — хроматом-калия — с образованием красновато-оранжевого осадка хромата серебра. Титрование проводят в нейтральной или слабощелочной среде (рН 7 — 10), поскольку в кислой среде не образуется хромат серебра, а в сильнощелочной возможно образование оксида серебра Ag 2 О.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

Показатель точности (границы относительной погрешности при вероятности
Р = 0,95), ±δ, %

Показатель повторяемости (относительн ое среднеквадратическое отклонение повторяемости),
s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
s R,%

Показатель правильности (границы относительной систематической погрешности при вероятности
Р = 0,95), ± δс, %

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием хлоридов с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Печь муфельная, обеспечивающая температуру нагрева до 900 °С

Стаканчики для взвешивания (бюксы)

Колбы конические или плоскодонные

Колонка хроматографическая диаметром 1,5 — 2,0 см и длиной 25 — 30 см

Стекло часовое диаметром 5 — 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Азотная кислота концентрированная

Аммиак водный, концентрированный

Хлорид кальция безводный (для эксикатора)

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерении в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха

не более 80 % при температуре 25 °С;

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором азотной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 для неокрашенных вод и 400 см 3 для окрашенных.

Читайте также:  Анализ исходной воды для котельной

8.4. Пробы не консервируют, хранят при комнатной температуре.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор хлорида натрия, 0,05 моль/дм 3 эквивалента.

Отвешивают 1,4610 г NaCl, предварительно прокаленного при 500 — 600 °С до полного удаления влаги, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке не более 3 мес.

9.1.2. Раствор нитрата серебра, 0,02 моль/дм 3 эквивалента.

3,40 г AgNO 3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем сливают с помощью сифона прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.3. Раствор нитрата серебра, 0,05 моль/дм 3 эквивалента.

8,49 г AgNО3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.4. Раствор нитрата серебра, 10 %.

10 г нитрата серебра AgNО3 растворяют в 90 см 3 дистиллированной воды и прибавляют 1 — 2 капли концентрированной азотной кислоты. При появлении мути раствор отстаивают не менее суток, затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 3 мес.

9.1.5. Раствор хромата калия, 10 %.

50 г К2СrО4 растворяют в 150 см 3 дистиллированной воды, добавляют для удаления хлоридов 10 % раствор AgNО3 до появления слабого красновато-оранжевого осадка, дают отстояться в течение суток и затем фильтруют через фильтр «белая лента». К фильтрату добавляют 300 см 3 дистиллированной виды и перемешивают. Хранят в склянке из темного стекла не более 3 мес.

9.1.6. Раствор азотной кислоты, 0,1 моль/дм 3 .

3,5 см 3 концентрированной азотной кислоты HNO 3 растворяют в 500 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.7. Раствор азотной кислоты, 2 моль/дм 3 .

35 см 3 концентрированной азотной кислоты HNО3 растворяют в 215 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.8. Раствор соляной кислоты, 1:3.

100 см 3 концентрированной соляной кислоты НСl добавляют к 300 см 3 дистиллированной воды и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.9. Раствор гидроксида натрия, 0,4 %.

2 r NaOH растворяют в 500 см 3 дистиллированной воды.

9.1.10. Раствор гидроксида натрия, 8 %.

40 г гидроксида натрия растворяют в 460 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.1.11. Суспензия гидроксида алюминия.

Подготовку гидроксида алюминия осуществляют в соответствии с Приложением А .

9.1.12. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,05 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 10 см 3 стандартного раствора хлорида натрия, добавляют 90 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией 0,05 моль/дм 3 эквивалента до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,02 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 5 см 3 раствора хлорида натрия, добавляют 95 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,02 моль/дм 3 до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды. Точную концентрацию растворов AgNO 3 находят по формуле:

где С1 — концентрация раствора хлорида натрия, моль/дм 3 эквивалента;

С2 — концентрация раствора нитрата серебра, моль/дм 3 эквивалента;

V 1 — объем раствора хлорида натрия, см 3 ;

V 2 — объем раствора нитрата серебра, пошедший на титрование раствора хлорида натрия, см 3 ;

V хол — объем раствора нитрата серебра, пошедший на титрование холостой пробы, см 3 .

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы. Для удаления окрашенных веществ можно использовать два способа.

Способ 1. Анализируемую воду пропускают через колонку с активированным углем со скоростью 4 — 6 см 3 /мин, при этом первые 30 — 40 см 3 воды, прошедшие через колонку, следует отбросить.

Способ 2. 200 см 3 анализируемой воды помешают в коническую колбу вместимостью 500 см 3 , приливают 6 см 3 суспензии гидроксида алюминия и встряхивают до обесцвечивания жидкости. Дают пробе отстояться несколько минут и фильтруют через бумажный фильтр «белая лента». Первые порции фильтрата отбрасывают.

Для удаления карбонатов отмеренную для анализа пробу подкисляют раствором азотной кислоты 2 моль/дм 3 до рН 2 и нагревают несколько минут. После охлаждения доводят рН пробы до величины 7 — 8, добавляя 8 % раствор NaOH. При этом удаляются также сульфиды и сульфиты.

Аммиак удаляют нагреванием пробы, к которой добавлен 8 % раствор гидроксида натрия до рН > 12. После охлаждения пробу нейтрализуют раствором азотной кислоты 2 моль/дм 3 .

Сульфиды, сульфиты, тиосульфата, цианиды удаляют, прибавляя к отмеренной для анализа слабощелочной пробе 1 см 3 пероксида водорода и перемешивая 1 мин.

11.1. Предварительная оценка содержания хлоридов в воде

Перед выполнением определения хлоридов в пробе воды неизвестного состава проводят качественную оценку их содержания. Для этого к 5 см 3 анализируемой воды добавляют 3 капли 10 % раствора AgNO 3 и перемешивают. О содержании хлоридов судят по интенсивности помутнения пробы. В зависимости от предполагаемого содержания хлоридов выбирают объем пробы, отбираемый для титрования (таблица 2 ).

Качественная оценка содержания хлоридов в воде и рекомендуемый для титрования объем пробы воды

Ориентировочное содержание хлоридов, мг/дм 3

источник

Цель работы.Научиться определять содержание хлоридов в воде и осуществлять пер­вичную обработку результатов.

Реактивы и растворы.

1. Раствор нитрата серебра (АgNОз), 1 млкоторого осаждает 1 мгСl ¯ . Берут навеску 4,791 г кристаллического нитрата серебра и растворяют в мерной колбе на 1 л дистиллированной воды.

2.10%-ный раствор хромата калия, не содержащий хлоридов. Берут 100 г К2СrO4 и растворяют в небольшом количестве дистиллированной воды, затем добавляют несколько ка­пель АgNO3, до появления красновато-бурого осадка. Дают раствору отстояться, затем фильтруют и доводят объем его до 1000 мл дистиллированной водой.

3. Раствор хлорида натрия, 1 мл которого содержит точно 1 мг Сl — .Берут навеску 1,6486 г химически чистого NаСl и растворяют дистиллированной водой в мерной колбе на 1 л.

1. Конические колбы объемом 300 мл — по числу проб плюс одна.

2. Пипетки: на 10 мл для раствора NаСl; на 1 мл градуированная для раствора К2СгO4.

3. Мерный цилиндр на 100 мл.

Общие сведения.Хлориды являются главной составной частью солевого соста­ва морской воды. В водоемах суши их содержание незначительно, за исключением некоторых озер, расположенных на засолоненных почвах или преимущественно пи­тающихся высокоминерализованными грунтовыми водами. Такие водоемы встре­чаются в некоторых местах на южных территориях Украины и России и в Средней Азии. Содержание хлоридов в этих водоемах достигает сотен и даже тысяч милли­граммов в 1 л, хотя обычно их количество в водах суши не превышает 100 мг/л. Если гидрометеорологическими условиями повышенное содержание хлоридов объяснено быть не может, оно служит показателем постороннего загрязнения. В водоемах суши хлориды определяют для получения величины минерализации и загрязнения, в морях и океанах по количеству хлоридов рассчитывают соленость воды.

Принцип определения.Определение хлоридов в пресной воде аргентометрическим методом основано на осаждении анионов хлора раствором нитрата серебра при титровании. В качестве индикатора применяют раствор хромата калия. Химическую сущность происходящего можно представить уравнением реакции:

Как только все анионы хлора окажутся связанными, начнется реакция:

На образование соли Аg2СгO4 укажет переход цвета раствора от лимонно-желтого к красноватому, не исчезающему при взбалтывании.

Принцип определения хлорности и солености морской воды аналогичен прин­ципу определения хлоридов в пресной воде. Однако в технике определения хлорно­сти морской воды много существенных отличий от техники определения хлоридов в пресных водоемах.

Для определения хлорности готовят раствор нитрата серебра такой концентрации, что­бы отсчет по бюретке при титровании морской воды примерно соответствовал величине хлорности. Например, для воды с нормальной (35%) соленостью, хлорность которой равна 19,38% (уд.вес 1,02674), концентрация нитрата серебра составит:

где 4,791 — количество АgNО3, осаждающее 1 г хлора, при условии, что на титрование бе­рется 15 мл морской воды.

Для приготовления 1 л раствора берут навеску АgNO3 в количестве 3,71 г, учитывая наличие примесей в соли АgNO3, которая выпускается промышленностью.

При определении хлорности морской воды применяют особые бюретки и пипетки. Эти бюретки отличаются от обычных наличием приспособлений для автоматического заполне­ния и установления раствора на нулевом делении. На каждое деление бюретки приходится объем 2 мл, целое деление в свою очередь подразделяется на 20 дробных делений. Это по­зволяет вести отсчет при титровании с точностью до 0,01 мл. Бюретки выпускают несколь­ких типов для определения различной хлорности.

Пипетки применяют автоматические, одинаковой вместимости ―15 мл. Пробу объе­мом 15 мл помещают в специальную титровальную с толстым овальным дном рюмку вме­стимостью около 300 мл. При титровании пробу тщательно перемешивают стеклянной па­лочкой.

Для проверки титра раствора нитрата серебра и определения хлорности в испытуемой воде необходимо в одинаковых с пробой условиях оттитровывать пробу морской воды с точно известной величиной хлорности (так называемой «нормальной» воды). Нормальная вода — это океаническая вода, хлорность которой точно определена и соответствует средней солености океана (35%). Нормальную морскую воду выпускают в стеклянных запаянных баллончиках вместимостью 250 мл, на этикетке которых указана точная величина хлорности.

Ход определения.В коническую колбу берут 100 мл испытуемой воды (если вода с большей мутностью, ее фильтруют), добавляют 1 мл 10%-ного раствора К2СгО4 и титруют раствором АgNОз при постоянном перемешивании до появления устойчивого красноватого оттенка. Желательно вести титрование с двумя «свидете­лями» (в одной колбе проба только с К2СгО4, в другой — немного перетитрованная проба).

Определение поправки к титру раствора АgNO3.Поправку к титру АgNОз определяют по точному раствору NаСl, 1 мл которого содержит 1 мг Сl¯.

В коническую колбу помещают 10 мл раствора МаСl, доводят объем до50 мл дистилли­рованной водой, прибавляют 0,5 мл 10%-ногораствора К2CrO4 и титруют раствором нитрата серебра до изменения окраски раствора. Поправку определяют по формуле (*), где n — ко­личество мл раствора АgNО3, пошедшее на титрование 10 мл раствора NаСl.

Вычисление результатов.Все записи при выполнении работы делаются в таб­лице по образцу табл.1 (прилож.).

Содержание анионов хлора в пресной воде определяют по формуле:

С(Сl¯) = (А×1×К×1000)/Vмг/л (31)

где А — количество раствора АgNО3, пошедшее на титрование пробы, мл;

1 — количество Сl¯, которое осаждает 1 мл раствора АgNО3 при титровании;

К— поправка к титру раствора АgNO3; V— объем пробы, взятый для анализа.

Содержание Сl¯, кроме того, выражают в ммоль(экв)/л, для чего результат, по­лученный в мг/л, делят на 35,445 мг. Результаты расчета следует округлить до 0,001 ммоль(экв)/л и 0,1 мг/л.

Результаты титрования при определении хлорности морской воды вычисляют по формуле:

Сl % = а + К (32)

где а — исправленный отсчет бюретки (отсчет с учетом поправки бюретки после титрования пробы), К- поправка титрования, которую находят по «Океанографическим таблицам» [8]. Зная хлорность, в «Океанографических таблицах» находят соленость воды; величину, кото­рой (г/кг) выражают в промилле (%).

Отчет.Отчет по данной лабораторной работе состоит в устном собеседовании с преподавателем. Результаты измерений представляются по установленной форме.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. От чего зависит содержание в воде хлоридов?

2. Каков принцип определения хлоридов в пресной воде?

3. Какая существует зависимость между количеством АgNO3, пошедшим на титрование пробы, и содержанием в воде Сl¯?

4. Что такое соленость морской воды и как ее определяют?

5. В каких единицах выражают количество хлоридов, содержащихся в воде, а также величину солености?

источник

С экранов и мониторов коммерческие и социальные рекламы твердят нам, что вода – это заряд энергии, бодрости, источник жизненных сил. Человеку, не имеющему естественно-научного образования, очень сложно принять тот факт, что вода может таить в себе опасность. Потому что единственное, что мы знаем о воде с химической точки зрения, это то, что формула воды состоит из двух молекул водорода и одной кислорода. Это на страницах учебника. В природе в состав воды также входят различные вещества. Для каждого из них есть свой допустимый уровень. Его превышение негативно сказывается на здоровье человека и домашних животных, а также на состояние коммуникаций.

Знакомьтесь с любимчиками природных вод – хлоридами. Это различные химические соединения, представляющие собой соли соляной кислоты. Самые популярные хлориды в воде – кальциевые, магниевые и натриевые. Благодаря своей растворяемости они присутствуют практически в каждом источнике. А вот в бассейнах хлориды могут образовываться в результате хлорирования, необходимого для дезинфекции воды.

Существует две основные причины нахождения хлоридов в природной воде. Первая отсылает нас к процессу вымывания грунтовыми и артезианскими водами различных солей из пластов земли, появившихся в результате вулканических выбросов. Вторая причина неразрывно связанна с деятельностью человека. Здесь можно долго перечислять все возможные каналы попадания хлоридов в воду. Например, каждую зиму мы видим, как дороги посыпают солью для борьбы со льдом. Куда потом уходят эти соли? Круговорот вод мирового океана приводит к тому, что они испаряются, попадают в атмосферу, затем выпадают в виде осадков, наполняя реки, моря, озера. А если добавить сюда выбросы предприятий от нефтяной до химической промышленности, сточные воды, свалки, другие отходы человеческой деятельности, то становится совсем не удивительно, почему допустимая концентрация содержания хлоридов в воде превышена.

Читайте также:  Анализ грунтовых вод на химический состав

350 мг/дм3. Запомните это цифру. Именно это допустимая норма суммарного содержания хлоридов в воде, существующая в нашей стране и зафиксированная в СанПиН 2.1.4.1074-01. Эта ПДК (предельно допустимая концентрация) относится ко всей группе данных солей: хлористый магний, хлористый кальций и хлорид натрия, известный в народе как поваренная соль. Именно хлористый натрий чаще всего превышает установленную норму.

При этом обратите внимание, что данная цифра относится только к питьевой воде. Для питьевой воды в емкостях и питьевой воды для производства различной пищевой продукции существует совсем другие допустимые нормы. Отдельное внимание на хлориды стоит обратить дачникам и садоводам, так как для полива каждой сельскохозяйственной культуры существуют свои допустимые уровни солей в воде. Для владельцев бассейнов ПДК хлоридов в воде составляет 700 мг/л.

Если речь идет о питьевой воде, то самым первым признаком превышения является вкусовая характеристика воды. Вы осознали, что пьете соленую воду? Скорее отправляйте ее на химический анализ воды в лабораторию «ИОН». Ведь в вашей воде превышена концентрация хлористого натрия. Если вкус жидкости определяется вами как горько-соленый, то значит в ней слишком много хлористого кальция. Алгоритм действий тот же самый – необходим качественный и быстрый анализ. При этом обязательно помните, что соли соляной кислоты обладают прекрасной растворимостью, а это значит, визуально зафиксировать их в самой воде невозможно.

Точно определить хлориды в воде поможет только анализ воды, проведенный в химической лаборатории.

Лаборатория «ИОН» бесплатно отправит к вам курьера для отбора пробы на химический анализ. Эта акция действует для клиентов, заказавший анализ воды на сумму от 5000 руб и проживающих в пределах МКАДа. Для Московской области выезд специалиста рассчитывается в индивидуальном порядке.

Если вы решили самостоятельно доставить пробу для определения хлоридов в воде, вам нужно запомнить несколько важных моментов, от которых будет зависеть в последующем качество и достоверность результатов.

  • Возьмите пластиковую тару объемом 1,5-2 л;
  • Пролейте воду сильным напором в течение 5-10 мин (при отборе из крана);
  • Промойте тару и крышку несколько раз в исходной воде;
  • Убавьте напор и заполните бутылку тонкой струйкой по стенке сосуда;
  • Закройте тару крышкой и сразу доставьте ее в лабораторию.

При хранении и транспортировки пробы позаботьтесь о том, чтобы исключить воздействие прямых солнечных лучей и высокой температуры воздуха.

Подробнее с правилами отбора проб можно ознакомиться здесь.

А зачем мне это нужно? Подумает каждый из нас. Жили раньше люди и не переживали о том, какие химические соединения можно найти в воде.

Но, к сожалению, влияние повышенного содержания хлоридов на человеческий организм приводит к серьезным заболеваниям. Многие из них широко распространены в современном мире и каждый из нас должен заботиться о своем здоровье.

Итак, какие же болезни грозят человеку, злоупотребляющему водой с превышенным ПДК:

  • желче- и мочекаменные заболевания;
  • нарушение системы кровообращения;
  • заболевания сосудистой системы;
  • нарушение пищеварения;
  • новообразования органов мочеполовой и пищеварительной систем.

Помните, мы то – что мы пьем.

Повышенное содержание данной примеси чаще всего встречается в колодцах, неглубоких скважинах, реках и озерах. Перед использованием такой воды в хозяйственных нуждах убедитесь в том, что содержание нитратов не превышает норму.

источник

Во многих областях Украины водопроводная вода обрабатывается хлором. Хлорирование воды – распространённая практика в коммунальном хозяйстве, так как позволяет дезинфицировать воду и избежать размножения инфекций. Многие считают, что единственный недостаток хлорированной воды – неприятный запах. Но превышение хлоридов в воде может негативно отразиться на здоровье. Именно поэтому в спорных случаях необходим анализ воды на хлор. Почему норма хлоридов в питьевой воде может быть превышена и насколько это опасно – узнаете из нашей статьи.

Хлор – один из элементов необходимых для нормальной жизнедеятельности человеческого организма. Дефицит хлора может спровоцировать общую слабость, снижение давления, ухудшение аппетита и т.п. В основном суточная потребность в хлоридах восполняется организмом за счёт обыкновенной поваренной соли. Содержится хлор и в ряде продуктов нашего повседневного рациона (хлеб, масло, сыр, яйца и т.п.). Также хлор может попадать в организм и с питьевой водой. Предельно допустимая концентрация хлоридов в воде устанавливается по органолептическому показателю – вкусовым качествам. При концентрации хлорида натрия больше 250 мг/л вода уже имеет солоноватый вкус. А вот хлоридов кальция или магния для такого же эффекта нужно не менее 1000 мг/л. Усреднённая норма хлоридов в питьевой воде составляет не более 250 мг/л. (В отдельных случаях, связанных с природными условиями и технологией подготовки воды в Украине до 2020 года допускается концентрация до 350 мг/л).

Если же анализ воды на хлор показывает превышение нормы, употребление её может негативно отразиться на здоровье.

Вообще, хлориды в воде в природе содержатся как в поверхностных, так и в грунтовых водах. В коммунальном хозяйстве хлор широко применяется для дезинфекции воды и уничтожения бактерий, но вместе с тем это достаточно опасное токсичное вещество. Среди наиболее распространённых хлоридов: хлорид натрия (обычная поваренная соль), хлорид водорода, хлорид магния, диоксид хлора и т.д. Анализ воды на хлориды и хлор обязательно входит в перечень показателей химического анализа, помогающего определить качество воды. С одной стороны, хлор эффективно борется с бактериями и решает проблему чистоты воды. Но, в то же время, в воде после добавления хлора могут возникать так называемые тригалометаны. Это токсины, которые образуются при реакции хлора с природными элементами в воде. Вот эти-то вещества, попадая в наш организм с водопроводной водой, могут привести к серьёзным проблемам со здоровьем. Например, таким как:

  • астма
  • кожные заболевания
  • заболевания сердечнососудистой системы

Но самое опасное, что эти вещества являются канцерогенами и провоцируют развитие онкологических заболеваний. Украинские учёные пришли к выводу, что для оценки концентрации тригалометанов, которые образуются в процессе водоподготовки, можно использовать такой показатель как общий органический углерод. Он также, как и хлориды, определяется при химическом анализе воды.

Если анализ воды на хлориды и хлор показал превышение нормы, то опасно не только пить такую воду, но и купаться в ней. Поскольку хлор легко проникает в организм и через кожу.

Повышенное содержание хлора и хлоридов в воде не только делает её неприятной на вкус, при этом она становится практически непригодной для многих хозяйственных нужд (в частности, для полива).

Существенное превышение хлоридов в воде говорит о том, что, скорее всего, где-то была нарушена технология водоподготовки. Поскольку постоянное использование воды с превышенным уровнем хора может негативно отразиться на здоровье, не лишним будет перестраховаться и при малейшем подозрении сдать воду на анализ. Заподозрить неладное можно, например, если вы почувствовали, что характерный запах хлора усилился.

При заборе пробы для анализа воды на хлор обратите внимание, что для получения объективных результатов образец должен оказаться в лаборатории максимум через два часа.

Что же делать, если лабораторные исследования подтвердили превышение хлоридов в воде? Сразу отметим, что кипячение никоим образом не помогает снизить уровень хлора. Более того, при нагревании хлор реагирует с солями находящимися в воде и образует ещё более опасные вещества. Поэтому к способам, которые «реально работают» стоит отнести два:

  • отстаивание (хлор очень летучий и на воздухе его содержание в воде резко снижается)
  • фильтрация

Это может показаться парадоксальным, но даже установка недешёвого фильтра окупится достаточно быстро. Не говоря уже об удобстве. Ведь отстаивать воду для того, чтобы принять ванну – занятие хлопотное, а покупка бутилированной воды для питья и готовки влетит «в копеечку». При этом с проблемой избыточного хлора справляются даже недорогие угольные фильтры.

Заботьтесь о здоровье и следите за качеством питьевой воды!

источник

Некачественная плохо очищенная от примесей вода может стать как причиной многих заболеваний, так и поводом для быстрого выхода из строя бытовых приборов. В воде всегда присутствует множество примесей. Большинство примесей опасны в случае, если их концентрация превышает предельно допустимые значения.

Исследование воды включает в себя отбор проб воды и проведение химического и бактериологического анализов воды по ряду показателей, регламентированных СанПиН. Комплексное исследование воды позволяет выяснить, соответствует ли вода установленным требованиям, безопасна ли вода, можно ли использовать ее по назначению или необходимо устанавливать систему дополнительной очистки от примесей. Кроме того, важно выяснить, какие именно вещества в воде превышают допустимые концентрации, чтобы правильно подобрать фильтр для воды. Если система дополнительной фильтрации воды уже есть, химический анализ покажет, насколько эффективны фильтры, как часто необходимо их менять.

Лабораторный анализ воды позволяет определить, какие примеси в воде присутствуют в значительных концентрациях, от каких из них следует избавиться. Самые типичные загрязнители воды — это тяжелые металлы; хлор; соли (органические и неорганические); аммиак и ионы аммония; сероводород; механические примеси; бактерии и другие примеси.

Химическое исследование воды позволяет количественно определить содержание самых распространенных примесей в воде, а так же оценить некоторые другие параметры, чтобы понять, насколько вода соответствует по своему химическому составу требованиям, установленным для ее безопасного использования.

Общая жесткость воды обусловлена главным образом присутствием различных солей кальция и магния. Гидрокарбонаты кальция разрушаются и выпадают в осадок (накипь) при длительном кипячении, другие же соли остаются в растворенном состоянии. Причины возникновения повышенной жесткости в воде — это растворение осадочных пород, сток с почвы, отходы промышленных предприятий. Жесткая вода плоха тем, что имеет неприятный вкус, отрицательно влияет на организм, имеет ряд недостатков с хозяйственно-бытовой точки зрения. Жесткая вода нарушает всасывание жиров в кишечнике; у людей с чувствительной кожей способствует появлению дерматитов; делает волосы жесткими при мытье. При использовании жесткой воды в быту увеличивается расход моющих средств, образуется накипь при кипячении, ткани при стирке теряют мягкость и гибкость; ухудшается разваривание мяса и овощей; витамины при варке связываются в нерастворимые комплексы и не усваиваются.

Хлориды в воде бывают минерального и органического происхождения. В природной воде, как наземного, так и подземного происхождения хлориды появляются в результате растворения солей; попадания в воды солей, используемых для ускорения таяния снега и льда на дорогах; загрязнением в результате вымывания твердых отбросов; вторжением морской воды в прибрежные районы; загрязнением стоками промышленных предприятий и др. Хлориды хорошо растворимы в воде, поэтому присутствуют повсеместно. Концентрация хлоридов в воде является индикатором антропоморфного загрязнения поверхностных и подземных источников воды, поскольку хлориды содержатся в сточных водах и физиологических выделениях человека. Вода с повышенным содержанием хлоридов нарушает водно-солевой обмен в организме человека, способствует ухудшению пищеварения.

Сульфаты являются показателем промышленного загрязнения поверхностных вод и загрязнения подземных источников водами вышележащих горизонтов. Сульфаты содержатся в большой концентрации в стоках промышленных предприятий; образуются в атмосфере в цепочке реакций, начинающихся со сжигания топлива; а так же могут попадать в воду в процессе водоочистки, когда в качестве флоккулянта применяется сульфат алюминия. Большинство сульфатов хорошо растворимы в воде и обычными методами очистки удалить их достаточно сложно. Сульфат магния действует как слабительное в концентрации выше 100 мг/л, поэтому у людей переехавших на новое место жительства, где используют воду с высоким содержанием сульфатов, первое время может происходить расстройство ЖКТ, затем организм адаптируется. Известно, что сульфаты отрицательно влияют на пищеварение, а в достаточно высокой концентрации (свыше 500 мг/л) придают воде горько-солоноватый привкус, снижая водопотребление.

Аммиак появляется воде при разложении органических веществ животного происхождения. После попадания в воду аммиак при наличии кислорода и окисляющих аммиак микроорганизмов, превращается в нитриты и затем нитраты. Чаще всего присутствие аммиака в воде говорит об опасном загрязнении воды веществами животного происхождения.Исключение могут составлять некоторые глубокие подземные источники, где происходит образование аммиака из нитратов в отсутствие кислорода, или болотистые и торфяные воды.

Нитриты образуются в результате окисления аммиака микроорганизмами. Присутствие в воде нитритов может быть обусловлено загрязнением продуктами разложения животной органики, однако то что из аммиака успели образоваться нитриты, говорит об определенной давности загрязнения.

Уровень рН определяет природные свойства воды и является показателем загрязнения природных вод открытых водоемов при сбросе в них стоков промышленных предприятий. Значение рН тесно связано с другими важными показателями, от рН зависит эффективность обеззараживания (в том числе и хлорирования).

В природной воде как поверхностных, так и подземных источников водоснабжения присутствует множество органических соединений. Это вещества природного (гуминовые кислоты, амины, другая органика), или промышленного (поверхностно-активные вещества) происхождения. Все эти вещества влияют на свойства воды, ее внешние и вкусовые качества. Многие из них находятся в непрерывной трансформации, поэтому определить каждое по отдельности практически невозможно. Вместо этого принято косвенным методом определять количество органических соединений. Обычно для этого измеряют перманганатную окисляемость. Превышенное значение перманганатной окисляемости (выше 20 мг О 2 /л) говорит о том, что в воде содержатся легкоокисляемые органические примеси. Некоторые из таких примесей приводят к заболеванию почек. печени, нарушают репродуктивную функцию организма. При хлорировании такой воды образуются хлоруглеводороды, которые еще более вредны для здоровья. Поэтому воду со значением перманганатной окисляемости выше 5 мг О 2 /л, желательно очищать от органических соединений, а если значение 20 мг О 2 /л, то вода требует обязательной очистки от органики.

Читайте также:  Анализ городских и сточных вод

Железо попадает в природные воды при растворении горных пород. В воде железо присутствует в формах Fe 2 + и Fe 3 +. Двухвалентное железо Fe 2 + присутствует в воде в растворенной форме в виде катионов различных органических и неорганических солей. Трехвалентное железо выпадает в осадок в виде гидроксида. Поверхностные воды достаточно богаты кислородом, поэтому растворенного железа в них не много, в водах подземных источников концентрация железа в форме Fe 2 + может быть значительно выше. Водоснабжение центральной части Новосибирска происходит путем забора воды из реки Обь, а водоснабжение Советского района — водой из скважин, и скважинная вода всегда проходит очистку от избыточных количеств железа и марганца. Однако об очистке воды из частных скважин и колодцев в Новосибирском районе следует заботиться самостоятельно, проведя анализ воды из скважины и подобрав соответствующий фильтр для воды. Но проблема повышенного содержания железа не обходит стороной и жителей центральной части города, поскольку системы водоснабжения в большинстве городов России стальные, а стальные трубы быстро ржавеют, и вода так же насыщается избытком железа. Повышенная концентрация железа придает воде неприятную красно-коричневую окраску и вяжущий вкус, ухудшает показатели цветности и мутности. Такая вода портит сантехнику «ржавыми» потеками, отрицательно влияет на кожу и слизистые оболочки организма, может привести к нарушению состава крови, и способствовать возникновению аллергических реакций.

Марганец редко содержится в воде сам по себе, обычно он присутствует в сочетании с растворенным железом. Это жизненно важный элемент, однако избыток марганца отрицательно сказывается на организме. Избыток марганца накапливается в печени и почках, отрицательно влияет на нервную систему и головной мозг, приводит к заболеваниям костей. Вода, содержащая избыток марганца, имеет неприятный вяжущий привкус, портящий вкус напитков и иногда даже еды; оставляет желто-коричневые пятна на сантехнике и осадок в трубах.

Анализ на мутность и цветность воды проводится для определения общего загрязнения воды. Мутность и цветность обусловлены присутствием в воде различных коллоидных частиц, взвесей и окрашенных соединений. Все эти примеси могут быть как природного, так и техногенного происхождения. Показатели мутности и цветности нормированы для каждого типа вод.

Определение сухого остатка осуществляется выпариванием определенного объема пробы в регламентированном диапазоне температур. При этом испаряется вода, и растворенные в ней летучие органические вещества. Оставшаяся часть — сухой остаток — это общее содержание растворенных в воде твердых (нелетучих) веществ. Он дает представление об общей минерализации воды (при общей минерализации учитываются и растворенные летучие вещества, поэтому она отличается от сухого остатка, как правило, в пределах 10%). Сухой остаток главным образом определяется суммой анионов и катионов солей, основные из них это карбонаты, сульфаты, бикарбонаты, хлориды, нитраты, кальций, магний, калий и натрий. Степень минерализации определяет так же и вкус воды. Слишком высокоминерализованная вода имеет солоноватый или горьковато-соленый вкус. Употребление такой воды приводит к дисбалансу в организме, плохо влияет на органы пищеварения. Слишком слабо минерализованная вода (дистиллированная) так же не рекомендуется для питья, поскольку приводит к вымыванию микроэлементов из организма. По величине сухого остатка можно судить и о других свойствах воды: жесткость, корродирующие свойства, способность образовывать накипь. Другими словами, чаще всего именно высокая минерализация (превышение величины сухого остатка) является причиной быстрого выходя из строя бытовых приборов (чайников, элетроводонагревателей и др.), солевых отложений на сантехнике, коррозии труб.

Наилучшей для питья считают минерализацию воды в пределах 300-500 мг/л. Сухой остаток 100-300 мг/л считается удовлетворительным, 500-1000 мг/л — свидетельствует о повышенной минерализации, но допустимой.

источник

Определение хлорид-ионов в питьевой воде

Важнейшей среди водоохранных проблем является разработка эффективных с эколого-гигиенических позиций методов подготовки поверхностных вод для питьевых целей.

Загрязнение природных источников питьевого водоснабжения при недостаточной эффективности работы водоочистных сооружений влечёт за собой ухудшение качества подаваемой потребителям питьевой воды и создаёт опасность для здоровья населения во многих регионах России, обусловливает высокий уровень заболеваемости кишечными инфекциями, гепатитом, увеличивает степень риска воздействия на организм человека канцерогенных и мутагенных факторов.

Каждый второй житель нашей страны вынужден использовать для питьевых целей воду, не соответствующую по ряду показателей гигиеническим требованиям; почти треть населения страны пользуется децентрализованными источниками водоснабжения; население ряда регионов страдает от недостатка питьевой воды и отсутствия связанных с этим санитарно-бытовых условий. Отставание России от развитых стран по средней продолжительности жизни и повышенная смертность в значительной мере связаны с потреблением недоброкачественной воды.

Более 100 лет наиболее распространенным способом борьбы с загрязнением в России является метод обеззараживания воды хлором. Хлор, используемый для дезинфекции, больше всего нам портит жизнь. В последние годы было установлено, что хлорирование воды представляет серьёзную угрозу для здоровья людей, поскольку попутно образуются крайне вредные хлорорганические соединения и диоксины. Хотя вначале хлор спасает от инфекций, однако потом его производные начинают медленно отравлять организм, т. к. обладают канцерогенным, мутагенным эффектом, влияют на наследственность. По данным американских исследователей, у людей, постоянно употребляющих хлорированную воду, вероятность рака мочевого пузыря на 21% и рака прямой кишки на 38% выше, чем у тех, кто пьёт очищенную, но не хлорированную воду.

Перед употреблением водопроводную воду надо очищать. Для освобождения от хлора воду целесообразно отстаивать (от нескольких часов до нескольких суток). Для освобождения от микробов и хлора воду необходимо кипятить не более 1-3 минут. Сырую воду можно пить только в крайних случаях. Нежелательно использовать для приготовления пищи горячую водопроводную воду, т. к. горячая вода химически более агрессивная, и это может приводить к выщелачиванию из водопроводных труб тяжёлых металлов, которые накапливаются в жизненно важных органах человека, вызывая со временем их заболевания.

В последнее время для доочистки воды стали использовать различные бытовые фильтры. Фильтр должен удалять микробы, хлор и его производные, тяжёлые металлы, нефтепродукты, нитраты и нитриты, пестициды. Однако опасно и вторичное загрязнение воды микроорганизмами, осевшими на самом фильтре. Японцы и американцы переходят сейчас на электрохимические фильтры. Принцип их действия основан на химической реакции, проходящей под воздействием сильного электрического поля в присутствии катализатора. В результате вода полностью очищается от микроорганизмов, органических соединений и ионов тяжёлых металлов. Эти фильтры – вечные, в них нет расходуемых материалов, однако нужна электроэнергия.

Добиться снижения концентрации вредных веществ в питьевой воде можно путём замены хлорирования на озонирование или обработку УФ-лучами. Эти прогрессивные методы широко внедряются на станциях водоподготовки многих стран Западной Европы и США. В нашей стране, к сожалению, из-за экономических трудностей применение экологически эффективных технологий осуществляется крайне медленно.

На ряде отечественных станций водоподготовки на заключительной стадии используют сорбционные процессы с применением активированных углей (адсорбентов), которые эффективно извлекают из воды нефтепродукты, СПАВ, пестициды, хлорорганические и другие соединения, в том числе и обладающих канцерогенными свойствами.

При неуклонном возрастании техногенного загрязнения поверхностных вод в мировой практике питьевого водоснабжения наметилась тенденция к переходу на использование артезианских (подземных) вод. Уровень их минерализации, органического, бактериального и биологического загрязнения намного ниже. В ряде случаев такие воды вполне отвечают гигиеническим требованиям и могут подаваться потребителям, минуя традиционную подготовку.

Предельно допустимая концентрация (ПДК) хлорид-ионов в питьевых водах 250 – 350 мг/л.

Хлориды определяются путём титрования анализируемой воды азотнокислым серебром в присутствии хромовокислого калия как индикатора, показывающего окончание реакции. Азотнокислое серебро с ионом хлора дает белый осадок хлорида серебра, а с хромовокислым калием красный осадок хромата серебра. Из образовавшихся осадков меньшей растворимостью обладает хлорид серебра. Поэтому, после того как весь хлор будет связан, образуется хромовокислое серебро. Появление красной окраски свидетельствует о конце реакций. Ход реакций выразится следующими уравнениями:

Титрование может проводиться в нейтральной или слабощелочной среде. Кислую анализируемую воду нейтрализуют бикарбонатом.

При концентрации хлоридов меньше 7 мг/лопределение не дает точного результата. В этом случае исследуемую воду упаривают в три раза и снова титрованием определяют в ней количество хлора, учитывая при дальнейшем расчете количество выпаренной воды.

Целью лабораторной работы является овладение знаниями, умениями и навыками, связанными с определением содержания хлоридов в питьевой воде.

Дата добавления: 2014-12-08 ; Просмотров: 1069 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Если вы обустроили скважину и хотите получать чистую воду для питьевых и бытовых нужд, не скупитесь на ее анализ – нередко такая вода совсем не соответствует санитарным нормам, и употреблять ее (особенно в пищу) опасно для здоровья.

Причины такого несоответствия могут быть разными – например, повышенное содержание минеральных солей. Чаще всего такое свойство имеют воды, добываемые с большой глубины: чем дальше от поверхности залегает водный горизонт, тем интенсивнее происходит обмен веществами между водой и окружающими ее горными породами. Уровень солености такой воды может значительно превосходить нормативы, так что для использования воды не обойтись без качественной водоподготовки.

Один из показателей, что вам точно потребуется очистка воды – это наличие в ней солей соляной кислоты, т.е. хлоридов. Источниками их появления в вашей воде из скважины могут быть магматические породы с хлорсодержащими минералами (хлорапатит, содалит и др.), а также соленосные отложения (галит). Важно понимать, что наличие натриевых, магниевых и кальциевых солей в грунтовых и артезианских водах является естественным в результате вулканических выбросов или круговорота атмосферных осадков с почвами. Конечно, хлориды могут появляться в воде и по техногенным причинам – например, при сбросе хозяйственно-бытовых стоков в местах водозабора или рядом с ними.

Допустимое содержание хлоридов в воде регламентировано документом «СанПиН 2.1.4.1175-02. Вода питьевая», и этот норматив – не более 350 мг/л. Если этот показатель превышен, то вода не может считаться пригодной ни для технических, ни для бытовых, ни тем более для питьевых нужд.

Давайте разберем на примерах, какое пагубное влияние может оказать вода с повышенным содержанием хлоридов при использовании для разного назначения.

Назначение: Приготовление пищи или употребление для питья
Последствия: ущерб здоровью

  • ухудшение секреторной деятельности желудка и работы пищеварительной системы
  • риск развития болезней, связанных с системой кровообращения
  • возможность появления новообразований на внутренних органах
  • увеличивается частота сердечно-сосудистых заболеваний
  • появляется риск заболеваний желчного пузыря и мочекаменных болезней

Назначение: Использование для мытья, приема душа и ванны
Последствия:
1) ущерб здоровью

  • увеличивается риск проявлений аллергических реакций
  • ухудшение состояния волос, кожи
  • раздражение слизистых оболочек, в т.ч. глаз

2) ущерб для сантехнических изделий и бытовой техники

  • солевой осадок провоцирует поломки и преждевременный выход техники из строя
  • эстетический вид ванны, душевой кабины, фурнитуры будет испорчен белесыми разводами
  • хлориды в воде приводя к коррозии металлов, с которыми взаимодействует эта вода (трубопровод, полотенцесушители), что может привести к протечкам

Очевидно, что система водоочистки, удаляющая хлориды из воды, не только сэкономит материальные средства, но и способствует сохранению вашего здоровья. Лучше предупредить проблемы, чем потом бороться с их последствиями.

Наша многолетняя практика показывает, что наиболее эффективная очистка воды от хлоридов осуществляется посредством системы обратного осмоса.

Рассмотрим принцип работы этой системы, основанной на перетекании веществ через специальную полупроницаемую мембрану.
Сначала неочищенная вода поступает в мембранный блок установки, где и находится вышеуказанная мембрана – она разделяет растворы разной концентрации. Затем со стороны потока повысительным насосом создается давление, большее, чем осмотическое. Хлориды и другие сконцентрированные примеси задерживаются мембраной и сливаются в дренаж, а фильтрат (обессоленная вода) поступает к потребителю. Удаление хлоридов может достигать 99,5%, а степень извлечения примесей определяется селективностью используемой обратноосмотической мембраны.

Метод обратного осмоса способен уменьшить концентрацию хлоридов от 5 г/л до нормативов питьевой воды. Такой метод эффективен не только для удаления из воды именно хлоридов, но и других солей, т.е. для обессоливания воды в общем. Чаще всего его применяют для водоочистки в коттеджах и на предприятиях.

Для оснащения вашего дома действительно качественной системой водоочистки, важно грамотно подобрать фильтр. Это поможет сделать точное знание предполагаемого расхода воды, т.к. нужно, чтобы он соответствовал пропускной способности фильтра. Если пропускная способность фильтра меньше или сильно больше расхода воды, то фильтр не будет справляться с очисткой или же будет работать вхолостую при более высокой стоимости оборудования.

В первую очередь специалисты отмечают наиболее высокое качество очистки воды при использовании систем обратного осмоса по сравнению с другими способами.
Еще один плюс – соответствие продуктивности и габаритов установки: несмотря на компактные размеры, система демонстрирует результат очистки от хлоридов сравнительный с ионным обменом, электродиализом, дистилляций или другими методами обессоливания.
К достоинствам можно отнести и низкое энергопотребление установки.

В галерее выполненных работ вы можете ознакомиться с проектами (п. Аро и Лахта), в которых при повышенном содержании хлоридов, удалось обойтись без предварительной дорогостоящей водоподготовки перед системой обратного осмоса, что позволило значительно снизить затраты на установку системы очистки воды. Данные системы по сей день эффективно, стабильно и бесперебойно снабжают питьевой водой своих владельцев.

Компания «Фор-Ватер» специализируется на водоочистке, обладает большим опытом для надежного и качественного решения вопросов, в том числе в сфере очистки воды от хлоридов. Мы подберем необходимое оборудование по оптимальной цене, звоните: (812) 424-34-00, присылайте заявки на бесплатный расчет.

источник