Меню Рубрики

Генетический анализ при раке легких

Неотъемлемой частью традиционного лечения онкологии является воздействие на весь организм с помощью химиотерапевтических препаратов. Однако клинический эффект от этого лечения не всегда бывает достаточно высок. Это случается из-за сложного механизма возникновения рака и индивидуальных различий организмов пациентов, их ответа на лечение и количество осложнений. Чтобы повысить эффективность лечения в целом, в мире начали уделять все больше внимания индивидуализации лечения.

Индивидуальному подбору лечения в онкологии стали придавать большое значение вслед за развитием и внедрением в широкую клиническую практику таргетных препаратов, а генетический анализ помогает их правильно подобрать.

Индивидуальное лечение – это, прежде всего, точное лечение конкретной опухоли. Почему лечение должно проводиться точно, обьяснять нет необходимости. Поэтому получение большего количества полезных сведений об организме дает надежду на жизнь: 76% онкопациентов имеют те или иные варианты генных мутаций. Генетические анализы помогут найти эту мишень, исключить неэффективное лечение, чтобы не потерять самое продуктивное для лечения время. А также снизить физическое и психологическое бремя пациента и его родных.

Генетические анализы при онкологии — это анализы, определяющие мутации генов, устанавливающих последовательности ДНК и РНК. Каждая опухоль имеет свой индивидуальный генетический профиль. Генетический анализ помогает подобрать препараты таргетной терапии, именно те, которые подойдут конкретно для вашей формы опухоли. И помогут сделать выбор в пользу более эффективного лечения. Например, у пациентов с немелкоклеточным раком легких при наличии мутации EGFR эффективность лечения Гефитинибом составляет 71,2%, а химиотерапии Карбоплатин+Паклитаксел 47,3%. При отрицательном значении EGFR эффективность Гефитиниба 1,1%, то есть препарат не эффективен. Анализ этой мутации напрямую дает понять, какое лечение лучше предпочесть.

С помощью генетических анализов можно точно подобрать наиболее эффективный препарат, что позволит избежать потери времени и бесполезных нагрузок на организм.

  • Больным на поздних стадиях онкологии.

Подбор эффективной таргетной терапии может значительно продлить жизнь пациентов с поздними стадиями, лечение которых традиционными методами уже не представляется возможным.

  • Больным с редкими видами рака или же с онкологией неизвестного происхождения.

В таких случаях подбор стандартного лечения представляет большую сложность, а генетические анализы позволяют подобрать точное лечение даже без определения конкретного вида рака.

  • Больным, ситуация которых не поддается лечению традиционными методами.

Это хороший выбор для пациентов, которые уже исчерпали возможности традиционного лечения, потому что генетические анализы позволяют выявить целый ряд дополнительных препаратов, которые можно применять.

  • Больным с рецидивами. Генетические анализы при рецидивах рекомендуется проверять повторно, потому что генные мутации могут измениться. И тогда по новым генетическим анализам будут подбираться новые препараты таргетной терапии.

В Китае, стране с высокими показателями по заболеваемости онкологией, индивидуализация лечения получила широкое признание, а генетические анализы для подбора таргетной терапии прочно вошли в клиническую практику. В Харбине генетические анализы проводятся на базе отделения онкологии Хэйлунцзянской центральной больницы «Нункэн»

Наиболее информативно пройти полный комплекс генетических анализов – это секвентирование второго поколения, проводимое с помощью высокоплотного нейтронного потока. Технология генетических анализов второго поколения позволяет за один раз проверить 468 важных опухолевых генов, можно выявить все типы всех генетических участков, имеющих отношение к опухоли, обнаружить особые типы ее генных мутаций.

Определяются разрешенные FDA лекарственные мишени, мишени для экспериментальных лекарств.

  • Гены, определяющие пути лекарств к мишеням — более 200 генов
  • Гены, восстанавливающие ДНК — более 50 генов

Лучевая и химиотерапия, ингибиторы PARP, иммуная терапия

  • Показательные наследственные гены — около 25 генов

Имеющие отношение к некоторым мишеням и эффективности химиотерапии.

  • Другие высокочастотные мутирующие гены

Имеющие отношение к прогнозам, диагностике.

Из-за большого количества больных, китайские специалисты – онкологи традиционно пошли дальше своих коллег из других стран в развитии и применении таргетной терапии.

Исследования таргетной терапии в различных вариациях ее применения привели к интересным результатам. Разные таргетные препараты действуют на соответствующие мутации генов. Но сами генные мутации, как оказалось, далеко не так жестко привязаны к определеному виду рака.

Например, у пациента с раком печени после проведения полного комплекса генетических анализов была выявлена мутация, при которой высокий эффект показывает препарат Иресса, предназначенный для рака легкого. Лечение этого пациента препаратом для рака легкого привело к регрессу опухоли печени! Этот и другие подобные случаи придали совершенно новый смысл определению генетических мутаций.

В настоящее время проверка полного комплекса генетических анализов позволяет расширить список препаратов таргетной терапии теми лекарствами, которые изначально не предусматривались для использования, что существенно увеличивает клиническую эффективность лечения.

Генетические анализы определяются по тканям опухоли (это предпочтительнее! подойдет опухолевый материал после операции или после пункционной биопсии) или по крови (кровь из вены).

Для более точного определения генных мутаций, особенно при рецидивах, рекомендуется проводить повторную биопсию с забором нового опухолевого материала. Если биопсия практически невозможна или рискованна, тогда анализ проводят по венозной крови.

Результат готов через 7 дней. Заключение содержит не только результат, но и конкретные рекомендации с названиями подходящих препаратов.

источник

Симптомы рака легкого отличаются вследствие различного положения и размеров опухоли у различных пациентов. Более выражены симптомы при его «центральном» расположении, то есть в тех случаях, когда рак растет вблизи крупных бронхов. В этих случаях на первое место будут выходить симптомы, связанные с полным или частичным перекрытием просвета бронха опухолью. Может появляться кашель, кровохарканье (примесь крови в мокроте), одышка. Помимо этого, могут быть симптомы, связанные с воспалением и интоксикацией, в том числе – частые и рецидивирующие воспалительные заболевания легких (например, затяжная или рецидивирующая пневмония).

В противоположность этому «периферический» рак легкого (растущий на периферии легочной ткани из конечных отделов бронхов) в течение длительного времени остается бессимптомным, некоторых пациентов беспокоят боль в грудной клетке и одышка. Эти симптомы часто встречаются и при других болезнях, которые не связаны с процессами роста опухоли, что затрудняет диагностику.

У многих пациентов рак легкого выявляется случайно, например, в ходе диагностического обследования при прохождении профилактического осмотра или диспансеризации. Окончательно подтвердить или опровергнуть наличие рака легкого может биопсия выявленного очага. Биопсия – получение материала опухоли или здоровой ткани для последующего микроскопического или молекулярно-генетического изучения.

В зависимости от расположения и размеров опухоли для выполнения биопсии могут быть использованы различные техники:

  • чрескожная биопсия, при которой игла вводится в опухоль снаружи (через кожу);
  • трансбронхиальная биопсия, при которой забор опухолевой ткани производится в ходе проведения бронхоскопии (эндоскопическое исследование дыхательных путей);
  • различные торакоскопические и открытые хирургические операции.

В последнее время появился еще один диагностический метод, так называемая «жидкостная» биопсия, в ходе которой проводится анализ наличия раковых клеток в обычном образце крови, получаемой из вены пациента. Этот метод имеет множество преимуществ, однако в настоящее время, наиболее часто, используется для уточняющей диагностики заболевания и, зачастую, не отменяет необходимость выполнения традиционной биопсии.

Лечение рака легкого зависит от ряда факторов, включая стадию заболевания, особенности её гистологического строения и молекулярно-генетический «портрет». Также принимается во внимание возраст пациента, его состояние здоровья, наличие сопутствующих хронических заболеваний, а также ряд других факторов.

В зависимости от выраженности распространенности опухолевого процесса рак легкого делится по стадиям. Для стадирования рака легкого используется международная классификация TNM. Для определения стадии заболевания в системе TNM врач оценивает следующие параметры опухоли:

  • T (tumor, опухоль) – оценка распространенности первичной опухоли.
  • N (nodule, узел) – оценка вовлечения в опухолевый процесс расположенных близко к опухоли лимфатических узлов. N0 означает, что при обследовании не было выявлено вовлечения близлежащих лимфатических узлов, N1-3 – обнаружено вовлечение в опухолевый процесс лимфатических узлов. Большая цифра означает большую степень распространенности опухолевого процесса;
  • M (metastasis, метастазы) – оценка наличия отдаленных метастазов опухоли, например, метастатического поражения печени, костей, головного мозга или других органов. M0 означает, что при обследовании не было выявлено наличия отдаленных метастазов, M1 – выявлено вовлечение других органов.

На основании «комбинации» вышеуказанных параметров определяется «группировочная» клиническая стадия заболевания, которая обозначается римскими цифрами от I до IV, где I – самая ранняя, а IV – наиболее распространенная стадия. О IV стадии рака легкого говорят, когда появляются отдаленные метастазы.

Важно! Стадия заболевания устанавливается один раз – в момент первичной диагностики заболевания и не изменяется в последующем. Это означает, что если у пациента со стадией заболевания T1aN0M0 (IA) через несколько лет после лечения появились метастазы в печени, стадия не изменится на IV, а останется прежней.

Для уточнения стадии заболевания и распространенности опухолевого процесса при раке легкого могут быть использованы различные диагностические методы, включая КТ, ПЭТ-КТ, магнитно-резонансную томографию, сцинтиграфию и другие инструментальные обследования. Это необходимо для определения наилучшей тактики дальнейшего лечения.

Перед началом лечения в обязательном порядке должно проводиться гистологическое и молекулярно-генетическое исследование образца опухолевой ткани.

Гистологическое изучение образца ткани: врач-патологоанатом (патолог, патоморфолог) при помощи микроскопа изучает строение срезов опухолевой ткани, которая была получена в ходе биопсии или после проведения хирургического лечения, и определяет её микроскопическое (гистологическое) строение. На этом этапе происходит «разделение» рака легкого на различные варианты: патолог уточняет, имеет опухоль мелкоклеточное или немелкоклеточное строение? Последний вариант, в свою очередь, разделяется на плоскоклеточный подтип, аденокарциному и другие варианты.

При оценке послеоперационного материала патолог также изучает как сильно опухоль успела распространиться – имеется ли вовлечение таких анатомических структур, как кровеносные и лимфатические сосуды, поражены ли лимфатические узлы и т.д. В случае необходимости для более точного определения строения опухолевой ткани и происхождения опухоли может быть назначено иммуногистохимическое исследование.

Молекулярно-генетическое тестирование: за последнее время в лечении рака легкого были достигнуты значительные успехи, связанные с углубленным изучением процессов роста и выживания опухолевых клеток в организме. Был обнаружен ряд «мишеней» (биомаркеров), которые могут быть использованы для так называемой целенаправленной или «таргетной» терапии (подробно обсуждено ниже). При лечении больных раком легкого в настоящее время рекомендуется определять наличие следующих молекулярно-генетических особенностей опухоли:

  • Активирующие мутации в гене EGFR;
  • Структурные перестройки (реарранжировки) в генах ALK и ROS1;
  • Наличие и выраженность выработки (экспрессии) белка PD-L1.
  • Реже используется определение наличия мутаций в генах BRAF, MET, RET, а также HER2.

Проведение дополнительных исследований может потребовать дополнительное время, но неправильное назначение таргетных препаратов может привести к ухудшению результатов лечения и навредить здоровью пациента.

источник

Немелкоклеточный рак легкого (НМРЛ)

  • плоскоклеточный рак (40% больных)
  • аденокарцинома (40–50% больных)
  • крупноклеточный рак (5–10% больных)

Мелкоклеточный рак легкого (МРЛ)

Таргетная терапия является основой лечения пациентов с НМРЛ. Интенсивное исследование точных молекулярных механизмов рака легких выявило возможность не только избирательно влиять на патологический молекулярный каскад в опухолевой клетке при помощи таргетных препаратов, но также определять эффективность / побочные эффекты классической химиотерапии и давать прогноз развития заболевания и метастатического потенциала опухоли.

Возможность исследования свободноциркулирующей опухолевой ДНК ( технология жидкостной биопсии ) открывает новые горизонты в диагностике, мониторинге и лечении рака легкого.

В последнее время генетическое тестирование позволило выделить подтипы рака легкого с наличием активирующих мутаций в ряде онкогенов. Наибольшее значение имеют мутации в генах EGFR, BRAF, MET и транслокации с участием генов ALK и RET. Нарушения в этих генах являются мишенями для таргетной терапии.

В отличие от химиотерапии, которая убивает любые клетки, включая здоровые, таргетная терапия действует на раковые клетки специфическим образом, точечно на конкретную мишень. Таргетная терапия обладает гораздо меньшим спектром побочных эффектов в сравнении со стандартной химиотерапией.

Становится очевидной необходимость комплексного генетического тестирования, позволяющего одномоментно диагностировать все возможные «мишени» для таргетной терапии

Представляем тесты для анализа мутаций, связанных с эффективностю таргетных препаратов

ХАРАКТЕРИСТИКА NGS ПЦР СЕКВЕНИРОВАНИЕ ПО СЭНГЕРУ
Чувствительность (доля мутантного аллеля в образце) 0.1% 1% 15-20%
Возможность определения точных координат мутации + +
Возможность исследования ранее не описанных мутации + +
Возможность исследования соматических мутаций в плазме + +

Панели генов позволяют определить наличие мутаций сразу в нескольких генах, что дает возможность сразу подобрать оптимальное лечение и делают исследование экономически эффективным

Панель для рака легкого базовая

Базовая панель позволяет подобрать лечение таргетными препаратами за короткое время.

Гены входящий в панель: EGFR, BRAF, KRAS, NRAS

  • Частота мутаций в гене EGFR при аденокарциноме легкого составляет 25%.
  • Мутация L858R и делеции 19 экзона гена EGFR ассоциированы с наибольшим ответом на лечение ингибиторами тирозинкиназ: гефитинибом, эрлотинибом и афатинибом.
  • Мутации в гене BRAF встречаются в 4% случаев немелкоклеточного рака легкого.
  • Обнаружение мутации в гене позволяет назначить препараты ингибиторы BRAF: вемурафениб и траметиниб.

Мутации в генах KRAS и NRAS обнаруживаются почти у 30% пациентов с немелкоклеточным раком легкого. Наибольшая частота драйверных мутаций обнаруживается в гене KRAS. Мутации в генах KRAS и NRAS чаще всего взаимоисключающие с мутациями в гене EGFR и транслокациями гена ALK.

Базовая панель для рака легкого предоставляет почти половине пациентов с немелкоклеточным раком легкого важную информацию, определяющую дальнейшую тактику диагностики и лечения.

Обнаружение мутаций в генах EGFR и BRAF позволяет назначить пациенту таргетную терапию. В то же время наличие мутации в генах KRAS и NRAS избавляет пациента от дальнейшего поиска транслокаций с участием гена ALK.

Базовая панель выполняется с помощью секвенирования нового поколения (NGS), что позволяет одномоментно диагностировать несколько сотен мутаций по низкой цене.

Стоимость исследования 4 генов методом NGS соответствует стоимости исследования одного гена методом ПЦР, а в ряде случаев даже дешевле.

Вместе с базовой панелью возможно выполнение
исследования на транслокации гена ALK

Исследование транслокаций с участием ген ALK выполняется методом
флуоресцентной гибридизации in situ или FISH методом

  • Транслокации с участием гена ALK встречается в 4% случаев НМРЛ. Обнаружение транслокации с участием гена ALK позволяет назначить таргетные препараты, ингибиторы тирозинкиназы ALK кризотиниб, церитиниб.

Панель для рака легкого базовая

Панель для рака легкого базовая
+ транслокации ALK

источник

Когда в 1962 году американский ученый обнаружил в экстракте слюнной железы мышей сложное вещество, эпидермальный фактор роста (EGF), состоящий из более чем пяти десятков аминокислот, он и не представлял, что сделал первый шаг к большому открытию, которому будет суждено изменить представление о раке легкого. Но лишь в начале XXI века станет достоверно известно, что мутации рецептора, с которым связывается EGF, могут становиться отправной точкой в развитии одной из самых агрессивных опухолей – рака легкого.

Что такое эпидермальный фактор роста?

Следует отметить, что EGF – белок, необходимый нашему организму. Так, находящийся в слюнных железах эпидермальный фактор роста обеспечивает нормальный рост эпителия пищевода и желудка. Кроме того, EGF содержится в плазме крови, моче, молоке.

Читайте также:  Симптомы и анализы рака яичников

Свою работу EGF выполняет, связываясь с рецептором эпидермального фактора роста, EGFR, расположенным на поверхности клеток. Это приводит к активации ферментов тирозинкиназ, которые и передают сигнал о необходимости активной деятельности. В результате происходят несколько последовательных процессов, в том числе увеличение скорости выработки белков и синтез молекулы, которая обеспечивает хранение и реализацию программы развития живых организмов, ДНК. Итогом этого и становится деление клеток.

В 90-х годах прошлого века стала очевидна роль рецептора эпидермального фактора роста как онкогена, играющего одну из ведущих ролей в развитии ряда злокачественных заболеваний.

Эпидермальный фактор роста и рак

В конце XX века было проведено несколько исследований, подтверждающих значение EGF в развитии злокачественных заболеваний. В 1990 году американские ученые доказали, что блокирование связывания эпидермального фактора роста с рецепторами и, как следствие, предотвращение активации фермента тирозинкиназы останавливает рост злокачественных клеток [1].

Конечно, далеко не у всех и не всегда эпидермальный фактор роста «запускает» процессы ненормируемого деления клеток. Чтобы нормальный белок, необходимый для жизнедеятельности нашего организма, вдруг стал его злейшим врагом, в молекуле рецептора эпидермального фактора роста должны произойти генетические изменения, или мутации, которые приводят к многократному увеличению числа рецепторов EGF – их гиперэкспрессии.

Причиной мутаций могут быть потенциально агрессивные факторы окружающей среды, например, токсины, а также курение, поступление канцерогенных веществ с пищей. В некоторых случаях «поломки» в рецепторе эпидермального фактора роста накапливаются на протяжении нескольких поколений, передаваясь от родителей детям. Тогда говорят о наследственных мутациях.

Следует отметить, что «поломки» в молекуле рецептора эпидермального фактора роста связаны с несколькими видами рака. Прежде всего, это немелкоклеточный рак легкого (НМРЛ). Гораздо реже мутации и, как следствие, гиперэкспрессия EGFR приводят к развитию опухолей шеи, головного мозга, толстой кишки, яичника, шейки матки, мочевого пузыря, почки, молочной железы, эндометрия.

Есть ли у вас мутация эпидермального фактора роста?

У некоторых категорий больных вероятность «поломки» значительно повышена. Так, известно, что мутация рецептора эпидермального фактора роста гораздо чаще происходит у людей, которые никогда не курили. Это вовсе не означает, что приверженцы табакокурения реже болеют раком легкого – напротив, известно, что вредная привычка становится причиной развития заболевания в 90% случаев. Просто у курильщиков рак легкого развивается по другому механизму.

Показательные результаты, отражающие распределение мутаций эпидермального фактора роста среди россиян, были получены в одном крупном отечественном исследовании, в котором были изучены данные более 10 тысяч больных раком легкого [2]. Они показали, что мутации EGFR обнаруживались:

  • У 20,2% больных аденокарциномой, 4,2% больных плоскоклеточным раком и 6,7% больных крупноклеточной карциномой легкого
  • У 38,2% некурящих женщин и только у 15,5% некурящих мужчин
  • У 22% курящих женщин и 6,2% курящих мужчин

Кроме того, в исследовании было выявлено, что вероятность появления «поломки» в рецепторе эпидермального фактора роста увеличивается у больных аденокарциномой с возрастом, вырастая от 3,7% в 18-30 лет до 18,5% в 81-100 лет.

Результаты зарубежного исследования, в котором участвовали более 2000 больных аденокарциномой легкого [3], показали, что мутация EGFR была выявлена:

  • У 15% больных, которые курили в прошлом
  • 6% больных, куривших в настоящем
  • 52% больных, которые никогда не курили

Эти данные подтверждают: мутации рецептора эпидермального фактора роста могут быть обнаружены и у тех, кто не представляет жизни без сигареты, просто гораздо реже, чем у приверженцев здорового образа жизни.

Несмотря на вполне однозначную тенденцию распространения «драйвер-мутации» EGFR, точный ответ на вопрос, есть ли эта «поломка» у вас, можно получить только по результатам молекулярно-генетического тестирования, которое проводят всем больным раком легкого.

Если у вас обнаружена мутация EGFR

Еще каких-то десять лет назад у половины больных раком легкого было гораздо меньше шансов успешно бороться с опухолью. Однако сегодня стали доступны препараты, которые позволили в корне изменить эту ситуацию. Речь идет о таргетной терапии, которая стала доступной в последнее десятилетие.

Наличие мутации эпидермального фактора роста, подтвержденное результатами молекулярно-генетического исследования, предоставляет онкологам возможность ввести в схему лечения таргетные препараты. Создание таргетных лекарственных средств для лечения рака легкого стало прорывом в современной онкологии.

Таргетные препараты действуют на первопричину злокачественного заболевания, влияя на сам механизм, запускающий неограниченный клеточный рост и деление. Они блокируют фермент тирозинкиназу, которая передает сигнал к «началу боевых действий» и, собственно, активирует процессы размножения и роста клеток.

Таргетная терапия рака позволяет значительно отдалить его прогрессирование, в том числе и по сравнению со стандартной химиотерапией. Это – значимое преимущество таргетных лекарств.

Способность таргетных препаратов (ингибиторов тирозинкиназы EGFR) продлевать время до прогрессирования опухоли была доказана в крупном анализе, изучающем результаты 23 исследований, в которых участвовало более 14 тысяч больных немелкоклеточным раком легкого с мутацией рецептора эпидермального фактора роста [6].

Важно отметить, что при наличии мутации EGFR лечение рака, как правило, не исчерпывается только таргетными препаратами. Вы должны быть готовым к сложной, длительной и комплексной терапии, в том числе оперативному вмешательству, лучевой терапии и др.

Если у вас не обнаружена мутация EGFR

Отрицательный результат молекулярно-генетического анализа на мутацию EGFR еще не говорит о том, что таргетная терапия вам не поможет. Прежде всего, важно выяснить, обнаружены ли в вашей опухоли какие-либо другие «поломки». Хотя мутация рецептора эпидермального фактора роста является самой распространенной среди больных раком легкого, не исключена вероятность и других, более редких «ошибок».

В современных протоколах, на которые опираются онкологи при подборе индивидуальной схемы лечения НМРЛ, настоятельно рекомендуют проводить развернутый молекулярно-генетический анализ для выявления не только самых распространенных «драйвер-мутаций», но и редких «поломок». Современный выбор таргетных препаратов позволяет подобрать «целевое» лекарство для большинства известных мутаций при раке легкого.

Если же в образце вашей опухоли не было обнаружено ни одной генетической «ошибки», таргетная терапия вам действительно не показана. Препараты, которые созданы для того, чтобы попадать «в яблочко», бесцельно не принимают, поскольку они просто не будут работать. Но у онкологов есть и другие терапевтические возможности, которые в вашем случае будут эффективны: это химиотерапия и, возможно, иммунотерапия. И все же вы должны помнить – индивидуальную схему лечения будет определять ваш лечащий врач, опираясь на данные о гистологическом типе вашей опухоли, стадии заболевания и др.

  1. Divgi C.R., et al. Phase I and Imaging Trial of Indium 111-Labeled Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 225 in Patients With Squamous Cell Lung Carcinoma. JNCI J. Natl. Cancer Inst. Oxford University Press, 1991. Vol.83, №2, P. 97-104.
  2. Imyanitov E.N., et al. Distribution of EGFR Mutations in 10,607 Russian Patients with Lung Cancer. Mol. Diagn. Ther. Springer International Publishing, 2016. Vol.20, №4, P. 40-406.
  3. D’Angelo S.P., et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J. Clin. Oncol. American Society of Clinical Oncology , 2011. Vol.29, №15, P. 2066-2070.
  4. Sharma S.V., et al. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer. 2007. Vol.7, №3, P. 169-181.
  5. Lynch T.J., et al. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib. N. Engl. J. Med. Massachusetts Medical Society, 2004. Vol.350, №21, P. 2129-2139.
  6. Lee C.K., et al. Impact of EGFR Inhibitor in Non-Small Cell Lung Cancer on Progression-Free and Overall Survival: A Meta-Analysis. JNCI J. Natl. Cancer Inst. Oxford University Press, 2013. Vol.105, №9, P. 595-605.

При копировании материалов
ссылка на сайт обязательна.

источник

Современная медицина сделала впечатляющий рывок вперед. Значительно повысилась продолжительность жизни у людей на поздних стадиях рака легких. Опыт специалистов клиники «ВитаМед» позволяет гарантировать внимательную и точную дифференциацию мутаций при раке легких, с подбором подходящего курса лечения для повышения качества жизни и высоких шансов на успешное лечение.

Мутация EGFR
Эта мутация встречается преимущественно у некурящих людей. Обнаружение такой мутации на поздних стадиях рака представляет собой обнадеживающий признак, поскольку предполагает восприимчивость к лечению ингибиторами тирозинкиназы (препараты эрлотиниб и гефитиниб).

Транслокации ALK
По данным исследований, эта мутация при раке легкого более характерна у молодых и некурящих пациентов. Её обнаружение говорит о чувствительности к кризотинибу.

Мутация KRAS
Обычно данная мутация при лаке легкого встречается у курильщиков. Особой роли для прогноза не играет. При анализе статистических данных указано – встречались и случаи ухудшения состояния, и улучшения, что не позволяет сделать однозначный вывод о её влиянии.

Транслокация ROS1
Эта мутация, подобно транслокации ALK, преимущественно встречается у молодых, некурящих пациентов. В ходе клинических испытаний установлена высокая чувствительность таких опухолей к лечению кризотинибом, сейчас ведутся исследования препаратов нового поколения.

Мутация HER2
Обычно изменения представлены точечными мутациями. Опухолевые клетки в своей жизнедеятельности не зависят критическим образом от этой мутации, однако по результатам новых испытаний выявлен частичный положительный эффект у пациентов с комбинированным лечением посредством трастузумаба и цитостатических средств.

Мутация BRAF
Некоторые больные с мутациями этого гена (вариант V600E) поддаются лечению дабрафенибом, ингибитора белка B-RAF, кодируемого геном BRAF.

Мутация МЕТ
Ген МЕТ кодирует тирозинкиназный рецептор фактора роста гепатоцитов. Встречается увеличение числа копий этого гена (амплификация), при этом сам ген редко подвергается мутациям, и их роль изучена недостаточно.

Амплификация FGFR1
С данной амплификацией сталкиваются 13-26% пациентов с плоскоклеточным раком легких. Обычно распространена среди курящих пациентов, на практике предполагает неблагоприятный прогноз. Однако ведется соответствующая работа по разработке препаратов, направленных на это нарушение.

Чтобы точно диагностировать рак легких, предусмотрена бронхоскопия с забором биоптата для проведения цитологического и гистологического исследований. После того как из лаборатории поступит заключение о наличии мутации и выявленном типе мутации, будет составляться подходящая тактика медикаментозного лечения, назначаются соответствующие биологические препараты.

Каждая программа терапии индивидуальна. Биологическая терапия предполагает работу с двумя типами лекарств, которые различаются по принципу воздействия на опухоль, но направлены на одинаковый окончательный эффект. Их цель – блокирование мутации клеток на молекулярном уровне, без вредного последствия для здоровых клеток.

За счет стабильного целевого действия исключительно на клетки опухоли удается приостановить рост злокачественных клеток уже спустя несколько недель. Чтобы поддержать достигнутый эффект, требуется продолжение курса приема препаратов. Лечение с помощью препаратов практически не сопровождается побочными эффектами. Но постепенно возникает невосприимчивость клеток к действующим компонентам лекарств, поэтому нужно корректировать лечение по мере необходимости.

На долю мутации гена EFGR приходятся порядка 15% всех случаев. В таком случае для лечения может использоваться один из ингибиторов EGFR: эрлотиниб (Тарцева) или гефитиниб (Иресса); созданы и более активные препараты нового поколения. Данные лекарства обычно не вызывают тяжелых побочных эффектов, выпущены в форме капсул либо таблеток.

Транслокация генов ALK/EML4, на долю которой приходятся 4-7% всех случаев, предполагает назначение кризотиниба (Ксалкори); разрабатываются его более активные аналоги.

При опухолевом ангиогенезе для его подавления предполагается терапия с препаратом бевацизумаб (Авастин). Назначается препарат вместе с химиотерапией, значительно повышая эффективность данного лечения.

Онкологические заболевания требуют тщательной диагностики и индивидуального подхода для определения курса эффективного лечения – обязательные условия, которые готовы обеспечить специалисты клиники «ВитаМед».

источник

Раздел находится в стадии наполнения

Исследование клеток опухолевой ткани легких, взятой при помощи биопсии проводится наряду с гистологическими исследованиями для более точной диагностики заболевания и назначения правильного лечения. Наличие какой-либо мутации помогает определить резистентность опухоли к различным видам воздействия, а также проверить целесообразность использования того или иного вида терапии.

Для рака легких характерно разрастание определенных видоизмененных клеток, которые и образуют опухоль. Данное заболевание может протекать совершенно бессимптомно на ранних стадиях, поэтому любое подозрение на злокачественные новообразования в легких должно быть проверено лечащим врачом.

Генетический тест на рак легких (выявление соматических мутаций в опухолевой ткани, связанных с данной формой рака) проводится при уже подтвержденном диагнозе. Это исследование становится обязательным для всех пациентов, так как от его результатов зависит метод лечения.

Данный ген кодирует один из рецепторов, активирующихся при связывании с эпидермальным фактором роста. При нарушении хотя бы в одном из кодонов этого участка ДНК, EGFR запускает клеточный рост в различных тканях, что приводит к образованию опухоли.

Повышенная активность гена является неблагоприятным фактором для течения уже имеющейся болезни. EGFR мутации ведут к активной пролиферации клеток опухоли, и в большинстве случаев запускают механизм развития метастазов в раннем периоде болезни.

Существует два вида нарушений в генетическом материале – герминальные и соматические мутации. Первые являются врожденными и не зависят от образа жизни и влияния различных факторов на человека. Соматические мутации возникают у каждого конкретного пациента и не передаются по наследству.

Большинство соматических мутаций EGFR при раке легкого обнаруживаются в 18 и 21 экзонах. Наиболее распространены делеции в 19 экзоне.

Ген EGFR имеет ряд мутаций, непосредственно связанных с раком легких, практически все они являются соматическими. Наличие изменений в данном отрезке ДНК наиболее часто провоцирует аденокарциному при немелкоклеточном раке. Наиболее часто встречаются данные мутации у представителей азиатской расы.

Федеральные клинические рекомендации по диагностике и лечению больных раком легкого Общероссийского союза общественных объединений Ассоциации онкологов России от разработали тактики лечения новообразований в легких согласно статусу мутаций в генах EGFR и ALK.

Описанный ген является не единственным маркером рака легких. Структурные изменения в гене KRAS присутствуют практически в 50% опухолей немелкоклеточного рака легких. Клетки, несущие такие мутации, проявляют резистентность к тирозинкиназе, поэтому требуется применения других лекарственных препаратов.

Ген TP53 является супрессором, предотвращающим неконтролируемое деление клеток и отвечающим за восстановление ДНК. Мутация Arg72Pro в гене ТР53 провоцирует около 50-75% спорадических форм немелкоклеточного рака легких, а также является одной из причин синдрома Ли-Фраумени.

Мутации в гене PTEN характерны для синдрома Коудена. Он запускает возникновение новообразований, которые могут быть как доброкачественными, так и онкогенными.

Ген PIK3CA связан с канцерогенезом во многих видах рака (рак легких, груди, толстой кишки и др.). Этот белок запускает чрезмерное размножение злокачественных клеток в тканях организма. Мутации в этом отрезке ДНК сопутствуют многим разновидностям рака и ухудшают течение болезни. При выявлении данной мутации врач определяет индивидуальную терапевтическую стратегию, направленную на максимальное увеличение продолжительности и улучшение качества жизни пациента.

Современные научные исследования определили две тактики блокады EGFR – терапия с помощью моноклональных антител и ингибирование тирозинкиназы. Опухоли с различными мутациями в экзонах 18, 19, 21 с большой вероятностью откликаются на оба метода воздействия.

Читайте также:  Симптомы и анализы при онкологии

Для выбора тактики лечения, а также для контроля эффективности методов, предложенных врачом, проводится молекулярно-генетическое исследование. Для анализа используется опухолевая ткань, а также венозная кровь пациента. Обнаружение мутации в крови дает основание предполагать наличие схожих изменений ДНК у ближайших родственников.

Наиболее надежным и современным способом исследования является пиросеквенирование. Данный вид анализа позволяет выявить различные изменения в определенных участках хромосом, с высокой точностью определить мутацию и назначить таргетные препараты для лечения.

источник

Три эксперта в области онкологии о раке, наследственности и генетическом тестировании

Онкологические заболевания ежегодно уносят миллионы жизней. Среди причин смерти рак занимает второе место после сердечно-сосудистых заболеваний, а по сопровождающему его страху — определённо первое. Такая ситуация сложилась из-за представления, что рак сложно диагностировать и практически невозможно предотвратить.

Однако каждый десятый случай заболеваемости раком — это проявление мутаций, заложенных в наших генах с самого рождения. Современная наука позволяет их отловить и значительно уменьшить риск возникновения заболевания.

Эксперты в области онкологии рассказывают, что такое рак, как сильно на нас влияет наследственность, кому показано генетическое тестирование в качестве меры профилактики и как оно может помочь, если рак уже обнаружен.

Рак — это, по сути, генетическое заболевание. Мутации, вызывающие онкологические заболевания, либо наследуются, и тогда они есть во всех клетках организма, либо появляются в какой-то ткани или конкретной клетке. Человек может унаследовать от родителей определённую мутацию в гене, который защищает от рака, или мутацию которая сама по себе может привести к раку.

Ненаследственные мутации возникают в изначально здоровых клетках. Они возникают под воздействием внешних канцерогенных факторов, например, курения или ультрафиолетового излучения.

В основном рак развивается у людей в зрелом возрасте: процесс возникновения и накопления мутаций может занимать не один десяток лет. Этот путь люди проходят гораздо быстрее, если уже при рождении они унаследовали поломку. Поэтому при опухолевых синдромах рак возникает в гораздо более молодом возрасте.

Прошлой весной вышла замечательная статья в Science — о случайных ошибках, которые возникают в ходе удвоения молекул ДНК и являются основным источником появления онкогенных мутаций. При таких видах рака, как рак простаты, их вклад может достигать 95%.

Чаще всего причиной возникновения рака являются именно ненаследственные мутации: когда никаких генетических поломок человек не унаследовал, но в течение жизни в клетках накапливаются ошибки, которые рано или поздно приводят к возникновению опухоли. Дальнейшее накопление этих поломок уже внутри опухоли может сделать её более злокачественной или привести к возникновению новых свойств.

Несмотря на то, что в большинстве случаев онкологические заболевания возникают из-за случайных мутаций, надо очень серьёзно относиться к наследственному фактору. Если человек знает об имеющихся у него унаследованных мутациях, он сможет предотвратить развитие конкретного заболевания, риск возникновения которого у него очень велик.

Есть опухоли с ярко выраженным наследственным фактором. Это, например, рак молочной железы и рак яичников. До 10% случаев заболеваемости этими видами рака связаны с мутациями в генах BRCA1 и BRCA2. Самый распространенный среди нашего мужского населения вид рака — рак лёгкого — в основной массе вызывается внешними факторами, а конкретнее — курением.

Но если предположить, что внешние причины исчезли, то роль наследственности стала бы примерно такой же, как и у рака молочной железы. То есть, в относительном соотношении для рака лёгкого наследственные мутации видны довольно слабо, но в абсолютных числах это всё же вполне существенно.

Кроме того, наследственный компонент довольно значительно проявляет себя в раке желудка и поджелудочной железы, колоректальном раке, опухолях головного мозга.

Большая часть онкологических заболеваний возникает за счёт сочетания случайных событий на клеточном уровне и внешних факторов. Однако в 5-10% случаев предопределяющую роль в возникновении рака играет наследственность.

Представим себе, что одна из онкогенных мутаций появилась в половой клетке, которой повезло стать человеком. Каждая из примерно 40 триллионов клеток этого человека (а также его потомков) будет содержать мутацию. Следовательно, каждой клетке нужно будет накопить меньше мутаций, чтобы стать раковой, а риск заболеть определённым видом рака у носителя мутации будет существенно выше.

Повышенный риск развития рака передаётся из поколения в поколение вместе с мутацией и называется наследственным опухолевым синдромом. Опухолевые синдромы встречаются достаточно часто — у 2-4% людей, и вызывают 5-10% случаев рака.

Анджелина Джоли сделала профилактические операции, поскольку три её близких родственницы умерли от рака молочных желез и яичников (источник: fs.kinomania.ru)

Благодаря Анджелине Джоли самым известным опухолевым синдромом стал наследственный рак молочной железы и яичников, который вызывается мутациями в генах BRCA1 и BRCA2. У женщин с этим синдромом риск заболеть раком молочной железы составляет 45-87%, в то время как средняя вероятность этого заболевания гораздо ниже — 5,6%. Увеличивается вероятность развития рака и в других органах: яичниках (с 1 до 35%), поджелудочной, а у мужчин еще и предстательной железе.

Наследственные формы есть практически у любого онкологического заболевания. Известны опухолевые синдромы, которые вызывают рак желудка, кишечника, мозга, кожи, щитовидной железы, матки и другие, менее распространённые типы опухолей.

Знать о том, что у вас или и у ваших родственников есть наследственный опухолевый синдром, может быть очень полезно для того, чтобы снизить риск развития рака, диагностировать его на ранней стадии, и эффективнее лечить заболевание.

Носительство синдрома можно определить с помощью генетического теста, а на то, что вам стоит сдать тест, укажут следующие особенности семейной истории.

  • Несколько случаев одного вида рака в семье;
  • Заболевания в раннем для данного показания возрасте (для большинства показаний – раньше 50 лет);
  • Единичный случай определенного вида рака (например, рак яичников);
  • Рак в каждом из парных органов;
  • Больше одного типа рака у родственника.

Если для вашей семьи характерно что-либо из вышеперечисленного, вам следует проконсультироваться у врача-генетика, который определит, есть ли медицинские показания для того, чтобы сдавать генетический тест. Носителям наследственных опухолевых синдромов следует проходить тщательный скрининг на онкологические заболевания для того, чтобы обнаружить рак на ранней стадии. А в некоторых случаях риск развития рака можно существенно снизить с помощью превентивных операций и лекарственной профилактики.

Несмотря на то, что наследственные опухолевые синдромы встречаются очень часто, западные национальные системы здравоохранения пока не ввели генетическое тестирование на носительство мутаций в широкую практику. Тесты рекомендуется сдавать лишь при наличии определённой семейной истории, указывающей на определённый синдром, и только в том случае, если известно, что тестирование может принести человеку пользу.

К сожалению, такой консервативный подход пропускает множество носителей синдромов: слишком мало людей и врачей подозревает о существовании наследственных форм рака; высокий риск заболевания далеко не всегда проявляется в семейной истории; многие пациенты не знают о заболеваниях своих родственников, даже когда есть, кого спросить.

Всё это — проявление современной медицинской этики, которая гласит, что знать человеку стоит только то, что принесет ему больше пользы, чем вреда.

Причём право судить о том, что такое польза, что такое вред, и как они соотносятся друг с другом, врачи оставляют исключительно себе. Медицинское знание — такое же вмешательство в мирскую жизнь, как таблетки и операции, и поэтому меру знания должны определять профессионалы в светлых одеждах, а то как бы чего не вышло.

Я, как и мои коллеги, считаю, что право на знание о собственном здоровье принадлежит людям, а не врачебному сообществу. Мы делаем генетический тест на наследственные опухолевые синдромы, чтобы те, кто хочет узнать о своих рисках развития рака, могли реализовать это право, и взять на себя ответственность за собственную жизнь и здоровье.

В процессе развития рака клетки изменяются и теряют свой первоначальный генетический «вид», унаследованный от родителей. Поэтому, чтобы использовать молекулярные особенности рака для лечения, недостаточно исследовать только наследственные мутации. Чтобы узнать слабые места опухоли, нужно провести молекулярное тестирование образцов, полученных в результате биопсии или операции.

Нестабильность генома позволяет опухоли копить генетические нарушения, которые могут быть выгодными для самой опухоли. К ним относятся мутации в онкогенах — генах, которые регулируют деление клеток. Такие мутации могут многократно повышать активность белков, делать их нечувствительными к тормозящим сигналам или вызывать повышенную выработку ферментов. Это приводит к неконтролируемому делению клеток, а впоследствии и к метастазированию.

Некоторые мутации имеют известные эффекты: мы знаем, как именно они меняют структуру белков. Это даёт возможность разработать лекарственные молекулы, которые будут действовать только на опухолевые клетки, и при этом не будут уничтожать нормальные клетки организма. Такие препараты называют таргетными. Чтобы современная таргетная терапия работала, нужно до назначения лечения знать, какие мутации есть в опухоли.

Эти мутации могут различаться даже в пределах одного типа рака (нозологии) у разных пациентов, и даже в опухоли одного пациента. Поэтому для некоторых лекарств молекулярно-генетическое тестирование рекомендовано в инструкции к препарату.

Определение молекулярных изменений опухоли (молекулярное профилирование) — важное звено в цепочке принятия клинических решений, а его значимость будет только расти со временем.

На сегодняшний день в мире проводится более 30 000 исследований противоопухолевой терапии. По разным данным, до половины из них используют молекулярные биомаркеры для включения больных в исследование или для наблюдения в ходе лечения.

Но что даст пациенту молекулярное профилирование? Где его место в клинической практике сегодня? Хотя для ряда лекарств тестирование является обязательным, это всего лишь «надводная часть айсберга» современных возможностей молекулярного тестирования. Результаты исследований подтверждают влияние различных мутаций на эффективность лекарств, а некоторые из них можно встретить в рекомендациях международных клинических сообществ.

Однако известно ещё не менее 50 дополнительных генов и биомаркеров, анализ которых может быть полезным в выборе лекарственной терапии (Chakravarty et al., JCO PO 2017). Их определение требует использования современных методов генетического анализа, таких как высокопроизводительное секвенирование (NGS). Секвенирование позволяет обнаружить не только распространенные мутации, но «прочитать» полную последовательность клинически значимых генов. Это позволяет выявить все возможные генетические изменения.

На этапе анализа результатов используются специальные биоинформатические методы, которые помогают выявить отклонения от нормального генома даже если важное изменение встречается в небольшом проценте клеток. Интерпретация полученного результата должна опираться на принципы доказательной медицины, так как не всегда ожидаемый биологический эффект подтверждается в клинических исследованиях.

Из-за сложности процесса проведения исследований и интерпретации результатов молекулярное профилирование пока не стало «золотым стандартом» в клинической онкологии.

Однако есть ситуации, в которых этот анализ может существенно повлиять на выбор лечения:

К сожалению, даже на фоне правильно подобранного лечения заболевание может прогрессировать, и не всегда есть выбор альтернативной терапии в рамках стандартов для данного онкологического заболевания. В этом случае молекулярное профилирование может выявить «мишени» для экспериментальной терапии, в том числе в рамках клинических исследований (например TAPUR).

Некоторые виды рака, например, немелкоклеточный рак лёгкого или меланома, известны множеством генетических изменений, многие из которых могут быть мишенями для таргетной терапии. В таком случае молекулярное профилирование может не только расширить выбор возможных вариантов лечения, но и помочь расставить приоритеты при выборе препаратов.

Молекулярное исследование в таких случаях помогает на начальном этапе определить более полный спектр возможных вариантов лечения.

Молекулярное профилирование и персонализация лечения требуют сотрудничества специалистов из нескольких областей: молекулярной биологии, биоинформатики и клинической онкологии.

Поэтому такое исследование, как правило, стоит дороже обычных лабораторных тестов, а его ценность в каждом конкретном случае может определить только специалист.

источник

Высокая заболеваемость раком заставляет онкологов ежедневно трудиться над вопросами ранней диагностики и эффективного лечения. Генетический анализ на рак – это один из современных способов профилактики онкозаболеваний. Однако, так ли достоверно это исследование и всем ли оно должно назначаться? – вопрос, который беспокоит и ученых, и врачей, и пациентов.

Сегодня генетический анализ на рак позволяет выявить риск развития онкопатологий:

  • молочной железы;
  • яичников;
  • шейки матки;
  • простаты;
  • легких;
  • кишечника и толстой кишки в частности.

Также, существует генетическая диагностика на некоторые врожденные синдромы, существование которых повышает вероятность развития рака нескольких органов. Например, синдром Ли-Фраумени говорит о риске рака мозга, надпочечников, поджелудочной железы и крови, а синдром Пейтца-Егерса говорит о вероятности онкопатологий пищеварительной системы (пищевод, желудок, кишечник, печень, поджелудочная железа).

На сегодня ученые обнаружили ряд генов, изменения в которых в большинстве случаев приводят к развитию онкологии. Ежедневно в нашем организме развиваются десятки злокачественных клеток, но иммунная система, благодаря особым генам, способна с ними справиться. А при поломках в тех или иных структурах ДНК, эти гены работают неправильно, что дает шанс развитию онкологии.

Так, гены BRCA1 и BRCA2 защищают женщин от развития рака яичников и молочных желез, а мужчин – от рака предстательной железы. Поломки в этих генах напротив показывают, что имеется риск развития карциномы данной локализации. Анализ на генетическую предрасположенность к раку как раз дает информацию об изменениях в этих и других генах.

Поломки в этих генах передаются по наследству. Всем известен случай Анджелины Джоли. В ее семье был случай рака молочной железы, поэтому актриса решила пройти генетическую диагностику, которая и выявила мутации в генах BRCA1 и BRCA2. Правда, единственное, чем смогли помочь врачи в этом случае – провести операцию по удалению груди и яичников, чтобы не было точки приложения для мутировавших генов.

Противопоказаний к сдаче данного анализа не существует. Однако, не стоит его делать в качестве рутинного обследования и приравнивать к анализу крови. Ведь не известно, как результат диагностики повлияет на психологическое состояние пациента. Поэтому назначаться анализ должен только при наличии строгих к тому показаний, а именно зарегистрированных случаев рака у кровных родственников или при имеющемся у пациента предраковом состоянии (например, доброкачественное образование молочной железы).

Генетический анализ достаточно прост для пациента, так как проводится путем одного забора крови. После кровь подвергается молекулярно-генетическому исследованию, что позволяет определить мутации в генах.

В лаборатории имеется несколько реактивов, специфичных для той или иной структуры. За один забор крови может проводиться обследование на поломки в нескольких генах.

Специальной подготовки исследование не требует, однако следовать общепринятым правилам при сдаче крови не помешает. К таким требованиям относится:

  1. Исключение алкоголя за неделю до диагностики.
  2. Не курить в течение 3-5 дней перед сдачей крови.
  3. За 10 часов до обследования не есть.
  4. В течение 3-5 дней до сдачи крови придерживаться диеты с исключением жирных, острых и копченых продуктов.
Читайте также:  Симптомы рака шейки матки анализы

Наиболее изученным является обнаружение поломок в генах BRCA1 и BRCA2. Однако, с течением времени врачи стали замечать, что годы генетического исследования значительно не повлияли на смертность женщин от рака молочной железы и яичников. Поэтому в качестве скринингового метода диагностики (проводимого каждому человеку) метод не годиться. А как обследование групп риска генетическая диагностика имеет место.

Основной акцент анализа на генетическую предрасположенность к раку состоит в том, что при поломке в определенном гене человек имеет риск развития рака или же риск передачи этого гена своим детям.

Доверять или нет полученным результатам – личное дело каждого пациента. Возможно, не следует при отрицательном результате проводить превентивное лечение (удаление органа). Однако, если поломки в генах обнаружены, то пристально следить за своим здоровьем и регулярно проводить профилактическую диагностику определенно стоит.

Чувствительность и специфичность – это понятия, которые показывают достоверность теста. Чувствительность говорит о том, сколько процентов пациентов с дефектным геном будет выявлено данным тестом. А показатель специфичности говорит о том, что с помощью данного теста будет обнаружена именно та поломка гена, которая кодирует предрасположенность к онкологии, а не к другим заболеваниям.

Определить процентные показатели для генетической диагностики рака достаточно сложно, так как исследовать нужно много случаев положительных и отрицательных результатов. Возможно, позже ученые смогут дать ответ на данный вопрос, но уже сегодня можно с точностью утверждать, что обследование имеет высокую чувствительность и специфичность, и на его результаты можно полагаться.

Полученный ответ не может на 100% уверить пациента в том, что он заболеет или не заболеет раком. Отрицательный результат генетического тестирования говорит о том, что риск развития рака не превышает средних цифр в популяции. Положительный ответ дает более точную информацию. Так, у женщин с мутациями в генах BRCA1 и BRCA2 риск карциномы груди составляет 60-90%, а карциномой яичников – 40-60%.

Данный анализ не имеет четких показаний к сдаче, будь то определенный возраст или состояние здоровья больного. Если у матери 20-ти летней девушки был обнаружен рак молочной железы, то ей не стоит ждать 10 или 20 лет чтобы обследоваться. Рекомендовано тут же пройти генетическое исследование на рак, чтобы подтвердить или исключить мутацию генов, кодирующих развитие онкопатологий.

Касательно опухолей предстательной железы, каждому мужчине после 50 лет с аденомой простаты или хроническим простатитом полезно будет провести генетическую диагностику, чтобы так же оценить риск. А вот выполнять диагностику лицам, в семье которых не было случаев злокачественной болезни, скорее всего неуместно.

Вы не уверены в правильности поставленного диагноза и назначенного Вам лечения? Ваши сомнения поможет развеять видеоконсультация специалиста мирового уровня. Это реальная возможность воспользоваться квалифицированной помощью лучших из лучших и при этом ни за что не переплачивать.

Показанием к проведению генетического анализа на рак являются случаи выявления злокачественных новообразований у кровных родственников. А назначаться обследование должно врачом-генетиком, который после и оценит результат. Возраст пациента для сдачи теста не имеет никакого значения, так как поломка в генах заложена с рождения, поэтому если в 20 лет гены BRCA1 и BRCA2 в норме, то выполнять то же исследование через 10 и более лет смысла нет.

При правильном проведении диагностики каких-либо экзогенных факторов, которые могут повлиять на результат нет. Однако, у небольшого количества пациентов в ходе обследования могут обнаруживаться генетические поломки, интерпретация которых невозможна по причине недостаточной изученности. И в сочетании неизвестных изменений с мутациями в раковых генах, могут повлиять на результат тестирования (т.е. снижается специфичность метода).

Генетический анализ на рак – это не исследование с четкими нормами, не стоит надеяться, что пациент получит на руки результат, где будет четко написано “низкий”, “средний” или “высокий” риск развития рака. Результаты обследования могут оцениваться только врачом-генетиком. На окончательный вывод влияет история семьи пациента:

  1. Развитие злокачественных патологий у родственников до 50 лет.
  2. Возникновение опухолей одной и той же локализации в нескольких поколениях.
  3. Повторные случаи рака у одного и того же человека.

Сегодня подобная диагностика не оплачивается страховыми компаниями и фондами, поэтому все расходы пациент вынужден брать на себя.

В Украине исследование одной мутации стоит около 250 грн. Однако, для достоверности данных должно быть исследовано несколько мутаций. Например, для рака молочной железы и яичников исследуется 7 мутаций (1750 грн.), для рака легких – 4 мутации (1000 грн.).

В России генетический анализ на рак молочной железы и яичников стоит порядка 4500 руб.

источник

Значительные успехи в понимании патогенеза и лечения немелкоклеточного рака легкого (НМРЛ), открытие биологической и терапевтической важности приобретенных генетических изменений в двух генах, кодирующих фармакологически целевые тирозинкиназы рецептора эпидермального фактора роста (EGFR) и киназы анапластической лимфомы (ALK), внесли существенные коррективы в алгоритмы диагностики и, прежде всего, обусловили необходимость обязательного молекулярно-генетического тестирования пациентов.

Целесообразность молекулярно-генетического тестирования опухолей легкого стала очевидной после публикации результатов IPASS – первого рандомизированного исследования, продемонстрировавшего преимущества терапии ингибитором тирозинкиназы (ИТК) EGFR гефитинибом у пациентов с прогрессирующим НМРЛ при наличии мутации EGFR по сравнению со стандартной химиотерапией на основе препаратов платины [1].

Двумя годами ранее, в 2007 году, в исследовании Soda с соавт. [2] было выявлено, что инверсия плеча хромосомы 2p ассоциирована с образованием гена слияния EML4-ALK у больных раком легкого. Он выявляется в 7% случаев НМРЛ. При этом скорость ответа на ингибитор ALK кризотиниб при лечении на протяжении 6,4 мес. составляла 57%, выживаемость без прогрессии, по данным исследования [2], была достигнута у 77% ALK-позитивных пациентов.

Учитывая опубликованные данные о возможностях терапии НМРЛ с мутацией EGFR и быстрый темп работ, открывающих новые горизонты в лечении НМРЛ с транслокацией ALK, три профессиональные организации – Колледж американских патологов CAP, Международная ассоциация по изучению рака легкого IASLC и Ассоциация молекулярной патологии AMP – разработали и опубликовали в 2013 году рекомендации по молекулярному тестированию рака легкого на предмет наличия двух критических предиктивных биомаркеров в клинической практике [3]. В них рассматриваются 5 принципиальных вопросов в отношении молекулярного тестирования НМРЛ:

  • Когда должно проводиться молекулярное тестирование?
  • Как должно осуществляться молекулярное тестирование на мутацию EGFR?
  • Как должно проводиться тестирование транслокации ALK?
  • Необходимо ли проводить исследование других генов при аденокарциноме легкого?
  • Как необходимо внедрять молекулярное тестирование аденокарциномы на практике?

Согласно рекомендациям [3], молекулярному тестированию на мутацию EGFR и транслокацию ALK подлежит либо первичная опухоль, либо ее метастазы. Исследование показано всем пациентам, у которых опухоль содержит элемент аденокарциномы, независимо от клинических характеристик. Цель молекулярно-генетического тестирования заключается в выделении пациентов для таргетной терапии ингибиторами тирозинкиназы EGFR и ALK.

Исследование мутаций EGFR и транслокации ALK должно проводиться во время диагностики для пациентов с поздней стадией заболевания (IV стадия) или во время рецидива или прогрессии у пациентов с более ранними стадиями, которые не прошли тестирование ранее. Для пациентов I, II и III стадии молекулярно-генетическое тестирование также целесообразно, но решение о его проведении должно приниматься индивидуально [3].

Методики скрининга пациентов с НМРЛ на наличие «драйвер-мутаций» постоянно совершенствуются, поэтому единых стандартов не существует. Требования, которым должны отвечать современные способы диагностики, включают быстроту проведения тестирования (в идеале – две недели и меньше), доступную стоимость, возможность проведения на клинически доступных образцах материала, а также желательно устранение человеческого фактора с целью исключения вероятности получения ошибочных результатов.

В современной клинической практике для скрининга различных «драйвер-мутаций» используются:

  • Метод полимеразной цепной реакции (ПЦР), который отличается высокой скоростью проведения (менее 2 недель, анализу подлежат образцы ткани или крови), применяется для обнаружения мутаций EGFR
  • Секвенирование ДНК, в ходе которого исследуется вся длина одного гена на наличие мутации. Имеет более низкую чувствительность по сравнению с другими методами, поскольку для получения корректного результата в образце ткани должно содержаться более 10% клеток опухоли с мутацией. В противном случае тест может быть ложноотрицательным
  • Аллель-специфическое ПЦР секвенирование, анализирующее ДНК на наличие аномалий. Позволяет обнаруживать редкие сигналы с большей чувствительностью, чем при прямом секвенировании, к тому же проводится в еще более краткие сроки и имеет более низкую стоимость. Отрицательной стороной является возможность идентифицировать только заранее предопределенные мутации. Используется для скрининга мутаций EGFR, HER2, METex14 и некоторых других, более редких аномалий
  • Секвенирование следующего поколения (англ. Next-generation sequencing – NGS) позволяет в краткие сроки проводить количественный анализ редких аллелей и одновременно оценивать множественные гены или даже целые геномы. Сохраняет высокую чувствительность в том числе и при анализе образцов ткани с низким содержанием опухолевых клеток, что предоставляет возможность выявлять новые аномалии, которые невозможно выявить аллель-специфическим тестированием. Недостатком метода является его высокая стоимость. Используется для скрининга мутаций EGFR, HER2, METex14, транслокации ALK
  • Флуоресцентная гибридизация in situ, или метод FISH (от англ. fluorescence in situ hybr >Хотя положительные клинические и рентгенографические ответы пациентов с НМРЛ и мутацией EGFR на терапию ИТК EGFR наблюдаются примерно в 70% случаев [3], у большинства больных возникает рецидив и прогрессирование заболевания через 8-16 месяцев после начала лечения, оправдывая клинический феномен, известный под названием приобретенная резистентность.

Самая частая причина развития приобретенной резистентности, мутация Т790М, по данным исследований, крайне редко обнаруживается в образцах материала пациентов, не получавших лечение [4]. В тех единичных случаях, когда ее удается выявить во время начальной диагностики, целесообразно подтвердить ее соматический или зародышевый статус путем тестирования нормальной ДНК пациента. Зародышевые мутации Т790М ассоциируются с семейным раком легкого, и подтверждение этого факта должно стать основанием для обследования и консультирования членов семьи больного [4].

В отношении исследований других мутаций, служащих основанием для развития приобретенной резистентности к ИТК EGFR, в том числе амплификации МЕТ, и других, более редких аномалий, пока не накоплен достаточный клинический опыт, поэтому для формулировки четких рекомендаций требуются дальнейшие исследования [3].

В настоящее время проводится несколько клинических исследований, изучающих возможности преодоления основных механизмов развития резистентности. Вероятно, в скором времени будут сформулированы дальнейшие рекомендации по определению статуса Т790М и амплификации генов, кодирующих другие рецепторы тирозинкиназ. Более того, статус Т790М может стать важным аспектом при принятии решения о целесообразности продолжения терапии ИТК EGFR в случае развития приобретенной резистентности. С целью ее выявления в подобных случаях может проводиться жидкостная биопсия. Она дает возможность определить генотип менее инвазивным и дорогостоящим способом, чем обычная биопсия. К тому же жидкостная биопсия позволяет контролировать молекулярные особенности рака уже в ходе лечения или прогнозировать рецидив после адъювантной терапии [5].

Согласно рекомендациям NCCN по лечению НМРЛ 2017 года, жидкостная биопсия с целью выявления мутаций, ассоциированных с приобретенной резистентностью к ИТК EGFR, назначается только при невозможности проведения традиционной тканевой биопсии [8].

Принцип жидкостной терапии основан на выявлении молекул, которые часто продуцирует опухоль при НМРЛ, с помощью анализа циркулирующих опухолевых клеток (ЦОК) и/или циркулирующей опухолевой ДНК (цоДНК) [6]. Он может давать информацию о молекулярной эволюции опухоли в процессе терапии.

Ограничение жидкостной биопсии, которая предоставляет возможность предсказывать клинический ответ на таргетные препараты, состоит в достаточно низкой ее чувствительности, которая колеблется в пределах 60-80% [7]. Для жидкостной биопсии характерен высокий риск получения ложноотрицательных результатов по сравнению с традиционной биопсией, обусловленный незначительным и нестабильным количеством цоДНК.

Полученные в последнее время данные свидетельствуют, что пациенты с приобретенной резистентностью к ИТК, ассоциированной с мутацией Т790М, могут получать клиническую пользу, продолжая принимать в качестве препаратов первой линии ИТК EGFR [9].

Современные рекомендации по лечению НМРЛ [8] настаивают на необходимости проведения развернутого молекулярно-генетического тестирования с целью выявления не только распространенных, но и редких «драйвер-мутаций» и последующего индивидуального подбора таргетной терапии.

Выявление мутации EGFR является предиктором чувствительности к ИТК EGFR. В частности, протоколы NCCN рекомендуют назначать пациентам с мутацией EGFR в качестве первой линии терапии эрлотиниб или афатиниб или гефитиниб.

Если мутация выявлена уже после того, как начата химиотерапия, рекомендуется завершить терапию или прервать ее и заменить на ИТК EGFR.

Транслокации ALK могут быть выявлены с помощью FISH, иммуногистохимического анализа, а также большинства панелей секвенирования следующего поколения. Их присутствие ассоциируется с высокой чувствительностью к ингибиторам ALK кризотинибу, церитинибу, алктинибу [8]. Пациентам с положительной транслокацией ALK в качестве терапии первой линии показан кризотиниб или церитиниб. Если аномалия выявлена уже во время химиотерапии, предлагается дополнить ее поддерживающей терапией или прервать, заменив на кризотиниб или церитиниб.

ROS1 представляет собой рецепторную тирозинкиназу, действующую как онкоген у более молодых никогда не курящих пациентов с аденокарциномой. Скрининг транслокации проводится с помощью метода FISH, а также некоторых панелей NGS. Пациенты с транслокацией ROS1 высокочувствительны к терапии кризотинибом[8].

BRAF представляет собой сигнальный медиатор, активирующий митоген-активированную протеинкиназу. Его мутации могут встречаться как в положении экзона 15 V600, так и вне этого домена и обычно ассоциируются с историей курения [10]. Обнаружение аномалии возможно методом секвенирования ПЦР или NGS.

FDA одобрило назначение комбинации дабрафениба и траметиниба пациентам с метастатическим НМРЛ с мутацией BRAF V600E. Также эффективной стратегией, судя по всему, является ингибирование BRAF с помощью низкомолекулярных ИТК вемурафениба и дабрафениба [11].

HER2 относится к семейству рецепторов ТК EGFR. Мутация HER2 может быть выявлена методом ПЦР или секвенирования следующего поколения. Пациенты с мутацией HER2 часто реагируют на HER2-таргетные препараты, в частности, трастузумаб [12], и химиотерапию, а также афатиниб [12].

Аномалии MET, рецептора тирозинкиназы для фактора роста гепатоцитов, включают «пропуск» 14 экзона в гене MET (встречается при аденокарциноме легких), амплификацию гена MET (выявляется у пациентов с НМРЛ, не проходивших лечение) и комбинацию MET и EGFR (в опухолях с приобретенной резистентностью к ИТК EGFR) [9].

Применение кризотиниба при амплификации МET и мутациях MET и EGFR изучается [14].

Ген RET кодирует рецептор тирозинкиназы клеточной поверхности. Его транслокации могут выявляться при аденокарциномах, чаще у более молодых пациентов и курильщиков [15], методами FISH или NGS. При выявлении транслокации RET целесообразно назначать RET-ингибиторы, например, кабозантиниб [16], вандетаниб или алектиниб .

источник