Меню Рубрики

Анализы на мутацию при раке

Молекулярно-генетические маркеры для выбора тактики лечения и определения прогноза для пациентов с поставленным диагнозом

Мутации генов бывают генеративные (наследственные) и соматические. Последние возникают у человека на протяжении всей жизни и зависят от негативного влияния внешних факторов – стресса, вредных привычек, неправильного образа жизни.

Определить, какая мутация привела к образованию опухоли, поможет анализ крови и опухолевой ткани. ДНК-анализ крови позволяет выявить только наследственные мутации; ДНК-анализ опухолевой ткани позволяет выявить соматические мутации с определением их характера. ДНК-анализ опухолевой ткани необходимо проводить наравне с гистологией для диагностики и назначения терапии.

Лаборатории молекулярной генетики используют много разных методов для выявления генетических изменений, которые имеют терапевтическое значение при лечении рака. Так, для солидных опухолей (так обычно называют опухоли негемопоэтического происхождения) большинство тестов выполняется на образцах опухолевой ткани, зафиксированных парафином.

Основные типы исследований делятся на 3 класса:

Результаты каждого из тестов могут иметь различное клиническое значение, хотя все они могут анализировать одну и ту же мишень в опухолевой ткани. Например, для рака легкого выявление мутаций в гене EGFR позволяет предсказывать чувствительность опухоли к ингибиторам тирозинкиназы EGFR, в то время как число копий ДНК EGFR, уровни экспрессии его мРНК или уровни соответствующего белка имеют небольшую или вовсе нулевую прогностическую ценность.

Генетическая информация передается от одной клетки к другой в форме дезоксирибонуклеиновой кислоты (ДНК). ДНК кодирует переносчик информации — рибонуклеиновую кислоту (мРНК), которая затем транскрибируется в белок. Строительные блоки ДНК включают четыре нуклеотида, включая аденозин (А), цитозин (С), гуанин (G) и тимидин (Т).

Строительными блоками белков являются аминокислоты, которых насчитывается 20. Геном человека состоит примерно из 3 миллиардов нуклеотидов. Из этих 3 миллиардов нуклеотидов только около 5% кодируют гены, которые транслируются в белки внутри клетки. Далее ген делится на экзоны, которые содержат фактическую информацию, используемую при кодировании для синтеза белка, и интроны, которые представляют собой сегменты между экзонами, удаляющиеся до транслирования белка (интроны не содержат кодирующей информации).

Нуклеотиды организованы в трехбуквенные кодовые слова, называемые кодонами. Каждый кодон кодирует одну аминокислоту. Генетический код представляет собой полный набор из 64 трехбуквенных кодов, которые преобразуют кодоны в аминокислоты. Примечательно, что генетический код вырожден; другими словами, поскольку имеется 64 кодона и только 20 аминокислот, более одного кодона могут кодировать одну и ту же аминокислоту.

Некоторые кодоны называются стоп-кодонами, потому что вместо кодирования аминокислоты они сообщают клетке, какая аминокислота является последней в белке. Мутации изменяют нормальную последовательность ДНК. Соматические мутации возникают при раке, но не обнаруживаются в соответствующих нормальных

тканях одного и того же пациента.

Существует несколько видов мутаций, которые приводят к раковым образованиям:

амплификация генов (слияние);

изменение структуры белков.

Точечные мутации (такие, как EGFR L858R при раке легкого) возникают в результате однонуклеотидных замен. Если эти мутации происходят внутри экзонов, они могут быть синонимичными (то есть кодированная аминокислота остается неизменной) или не синонимичными (то есть кодированная аминокислота изменяется).

Инсерции (такие, как вставки экзона 20 HER2 при раке легкого) и делеции (такие, как делеции экзона 19 EGFR при раке легкого) возникают, когда нуклеотиды вставляются или удаляются, соответственно, в кодирующих частях (экзонах) генома.

Области ДНК, которые кодируют гены, могут стать амплифицированными. Другими словами, вместо обычных 2 копий (по одной от каждого родителя) клетки приобретают больше копий (например, амплификация гена HER2 при раке молочной железы). Участки ДНК могут также перестроиться: отрезки ДНК, которые обычно не соседствуют друг с другом, сливаются вместе (например, слияния генов EML4 и ALK при раке легких). Нормальные клетки должны иметь 2 копии гена-мишени. Несколько копий предполагают амплификацию генов.

мРНК соответствующих генов могут присутствовать или отсутствовать при раке. Присутствие в большинстве случаев является сверхэкпрессированным, т.е. присутствует на более высоких уровнях. Мутации также могут быть обнаружены с использованием анализа мРНК. Но, поскольку мРНК гораздо менее стабильны по сравнению с ДНК, они часто оказываются слишком сильно фрагментированными для анализа в клинических образцах. Таким образом, для обнаружения мутаций легче использовать ДНК. Единственным исключением является то, что известные слияния генов легче обнаруживается на уровне мРНК.

Специфические белки при раке могут отсутствовать или присутствовать. Когда они присутствуют, они так же как и мРНК, могут быть «сверхэкспрессированы» (иметь более высокие уровни, чем обычно). Однако показатели белка могут быть или не быть клинически значимыми. Например, при раке легких мутации ДНК EGFR, но не уровни белка EGFR по IHC, предсказывают чувствительность к ингибиторам тирозинкиназы EGFR.

Центр Инновационных Биотехнологий Аллель предлагает широкий спектр молекулярно-генетических исследований, направленных на выявление соматических изменений в ДНК при раковых заболеваниях.

Заполните форму на сайте или позвоните нам по номеру: +7 (495) 780-92-96, чтобы узнать подробнее, как проводится исследование, уточнить стоимость и сроки проведения анализов.

источник

Неотъемлемой частью традиционного лечения онкологии является воздействие на весь организм с помощью химиотерапевтических препаратов. Однако клинический эффект от этого лечения не всегда бывает достаточно высок. Это случается из-за сложного механизма возникновения рака и индивидуальных различий организмов пациентов, их ответа на лечение и количество осложнений. Чтобы повысить эффективность лечения в целом, в мире начали уделять все больше внимания индивидуализации лечения.

Индивидуальному подбору лечения в онкологии стали придавать большое значение вслед за развитием и внедрением в широкую клиническую практику таргетных препаратов, а генетический анализ помогает их правильно подобрать.

Индивидуальное лечение – это, прежде всего, точное лечение конкретной опухоли. Почему лечение должно проводиться точно, обьяснять нет необходимости. Поэтому получение большего количества полезных сведений об организме дает надежду на жизнь: 76% онкопациентов имеют те или иные варианты генных мутаций. Генетические анализы помогут найти эту мишень, исключить неэффективное лечение, чтобы не потерять самое продуктивное для лечения время. А также снизить физическое и психологическое бремя пациента и его родных.

Генетические анализы при онкологии — это анализы, определяющие мутации генов, устанавливающих последовательности ДНК и РНК. Каждая опухоль имеет свой индивидуальный генетический профиль. Генетический анализ помогает подобрать препараты таргетной терапии, именно те, которые подойдут конкретно для вашей формы опухоли. И помогут сделать выбор в пользу более эффективного лечения. Например, у пациентов с немелкоклеточным раком легких при наличии мутации EGFR эффективность лечения Гефитинибом составляет 71,2%, а химиотерапии Карбоплатин+Паклитаксел 47,3%. При отрицательном значении EGFR эффективность Гефитиниба 1,1%, то есть препарат не эффективен. Анализ этой мутации напрямую дает понять, какое лечение лучше предпочесть.

С помощью генетических анализов можно точно подобрать наиболее эффективный препарат, что позволит избежать потери времени и бесполезных нагрузок на организм.

  • Больным на поздних стадиях онкологии.

Подбор эффективной таргетной терапии может значительно продлить жизнь пациентов с поздними стадиями, лечение которых традиционными методами уже не представляется возможным.

  • Больным с редкими видами рака или же с онкологией неизвестного происхождения.

В таких случаях подбор стандартного лечения представляет большую сложность, а генетические анализы позволяют подобрать точное лечение даже без определения конкретного вида рака.

  • Больным, ситуация которых не поддается лечению традиционными методами.

Это хороший выбор для пациентов, которые уже исчерпали возможности традиционного лечения, потому что генетические анализы позволяют выявить целый ряд дополнительных препаратов, которые можно применять.

  • Больным с рецидивами. Генетические анализы при рецидивах рекомендуется проверять повторно, потому что генные мутации могут измениться. И тогда по новым генетическим анализам будут подбираться новые препараты таргетной терапии.

В Китае, стране с высокими показателями по заболеваемости онкологией, индивидуализация лечения получила широкое признание, а генетические анализы для подбора таргетной терапии прочно вошли в клиническую практику. В Харбине генетические анализы проводятся на базе отделения онкологии Хэйлунцзянской центральной больницы «Нункэн»

Наиболее информативно пройти полный комплекс генетических анализов – это секвентирование второго поколения, проводимое с помощью высокоплотного нейтронного потока. Технология генетических анализов второго поколения позволяет за один раз проверить 468 важных опухолевых генов, можно выявить все типы всех генетических участков, имеющих отношение к опухоли, обнаружить особые типы ее генных мутаций.

Определяются разрешенные FDA лекарственные мишени, мишени для экспериментальных лекарств.

  • Гены, определяющие пути лекарств к мишеням — более 200 генов
  • Гены, восстанавливающие ДНК — более 50 генов

Лучевая и химиотерапия, ингибиторы PARP, иммуная терапия

  • Показательные наследственные гены — около 25 генов

Имеющие отношение к некоторым мишеням и эффективности химиотерапии.

  • Другие высокочастотные мутирующие гены

Имеющие отношение к прогнозам, диагностике.

Из-за большого количества больных, китайские специалисты – онкологи традиционно пошли дальше своих коллег из других стран в развитии и применении таргетной терапии.

Исследования таргетной терапии в различных вариациях ее применения привели к интересным результатам. Разные таргетные препараты действуют на соответствующие мутации генов. Но сами генные мутации, как оказалось, далеко не так жестко привязаны к определеному виду рака.

Например, у пациента с раком печени после проведения полного комплекса генетических анализов была выявлена мутация, при которой высокий эффект показывает препарат Иресса, предназначенный для рака легкого. Лечение этого пациента препаратом для рака легкого привело к регрессу опухоли печени! Этот и другие подобные случаи придали совершенно новый смысл определению генетических мутаций.

В настоящее время проверка полного комплекса генетических анализов позволяет расширить список препаратов таргетной терапии теми лекарствами, которые изначально не предусматривались для использования, что существенно увеличивает клиническую эффективность лечения.

Генетические анализы определяются по тканям опухоли (это предпочтительнее! подойдет опухолевый материал после операции или после пункционной биопсии) или по крови (кровь из вены).

Для более точного определения генных мутаций, особенно при рецидивах, рекомендуется проводить повторную биопсию с забором нового опухолевого материала. Если биопсия практически невозможна или рискованна, тогда анализ проводят по венозной крови.

Результат готов через 7 дней. Заключение содержит не только результат, но и конкретные рекомендации с названиями подходящих препаратов.

источник

Поскольку препараты становятся более целенаправленными, новые анализы при раке кишечника играют важную роль в эффективном лечении заболевания.

Для диагностики рака толстой кишки (колоректального рака) пациенту приходится пройти через множество анализов.

Без них невозможно узнать тип опухоли и выбрать оптимальную терапию.

В последние годы список анализов при раке кишечника расширился.

Последние достижения в лабораторной диагностике колоректального рака позволяют онкологам прогнозировать, как будет вести себя опухоль у конкретного пациента. Этот подход носит название «персонализированная медицина».

Большинство рекомендаций по лечению требуют такой важной информации, как молекулярно-генетический тип рака, стадия и локализация процесса.

Анализ мутаций в гене KRAS. За рубежом этот лабораторный анализ уже активно назначается пациентам с метастатическим колоректальным раком.

Он определяет мутации в гене под названием KRAS. Статистика показывает, что KRAS мутирует у 40% больных колоректальным раком. Больных, у которых не выявлено таких мутаций, называют носителями гена KRAS «дикого типа».

Анализ на онкотип DX. Этот лабораторный анализ предназначен для пациентов с раком толстой кишки II стадии. Он включает исследование 12 разных генов с целью определить «показатель рецидива» заболевания.

Показатель рецидива (число от 0 до 100) характеризует риск возвращения рака после хирургической операции. Низкий балл означает низкий риск рецидива, и наоборот.

Анализ мутаций в гене KRAS определяет, насколько хорошо опухоль реагирует на ингибиторы EGFR, одну из групп таргетных препаратов.

Исследования показывают, что пациенты с мутацией гена KRAS не реагируют на такие таргетные препараты, как цетуксимаб (Erbitux) и панитумумаб (Vectibix).

Таким образом, если у вас обнаружен ген KRAS «дикого типа», ингибиторы EGFR могут подойти. Если у вас есть мутация KRAS, онколог должен порекомендовать другие методы лечения метастатического колоректального рака.

Анализ на онкотип DX помогает врачу решить, требуется ли вам химиотерапия.

Адъювантная химиотерапия после удаления опухолей кишечника обычно назначается для повышения эффективности лечения при высоком риске рецидива. Раньше врачи принимали во внимание только стадию и локализацию опухоли.

Новый анализ на онкотип DX дает онкологу бесценную информацию для решения о проведении адъювантной химиотерапии. Он подскажет, у каких пациентов с колоректальным раком II стадии высокий риск рецидива. Таким образом, простой анализ указывает подходящих кандидатов для химиотерапии.

Пациенты с низким риском могут избежать химиотерапии и ее побочных эффектов.

Эти современные анализы при раке кишечника требуют наличия опухолевых клеток. Выполняются они на образце ткани, удаленном во время операции.

В клиниках США полученные образцы отправляются вашим врачом в компанию, которая разработала конкретный анализ. Результаты могут быть готовы через несколько дней или недель, в зависимости от специфики исследования.

Лабораторные анализы на онкотип DX и мутации гена KRAS не могут сказать, вернется ли болезнь, и какое лечение будет самым лучшим. Здесь нужно учитывать многие факторы.

Цель этих исследований — предоставить дополнительную информацию о конкретной опухоли, чтобы помочь вам и вашим врачам в принятии объективного решения о терапии.

Константин Моканов: магистр фармации и профессиональный медицинский переводчик

источник

Три эксперта в области онкологии о раке, наследственности и генетическом тестировании

Онкологические заболевания ежегодно уносят миллионы жизней. Среди причин смерти рак занимает второе место после сердечно-сосудистых заболеваний, а по сопровождающему его страху — определённо первое. Такая ситуация сложилась из-за представления, что рак сложно диагностировать и практически невозможно предотвратить.

Однако каждый десятый случай заболеваемости раком — это проявление мутаций, заложенных в наших генах с самого рождения. Современная наука позволяет их отловить и значительно уменьшить риск возникновения заболевания.

Эксперты в области онкологии рассказывают, что такое рак, как сильно на нас влияет наследственность, кому показано генетическое тестирование в качестве меры профилактики и как оно может помочь, если рак уже обнаружен.

Читайте также:  Анализы для диагностики рака груди

Рак — это, по сути, генетическое заболевание. Мутации, вызывающие онкологические заболевания, либо наследуются, и тогда они есть во всех клетках организма, либо появляются в какой-то ткани или конкретной клетке. Человек может унаследовать от родителей определённую мутацию в гене, который защищает от рака, или мутацию которая сама по себе может привести к раку.

Ненаследственные мутации возникают в изначально здоровых клетках. Они возникают под воздействием внешних канцерогенных факторов, например, курения или ультрафиолетового излучения.

В основном рак развивается у людей в зрелом возрасте: процесс возникновения и накопления мутаций может занимать не один десяток лет. Этот путь люди проходят гораздо быстрее, если уже при рождении они унаследовали поломку. Поэтому при опухолевых синдромах рак возникает в гораздо более молодом возрасте.

Прошлой весной вышла замечательная статья в Science — о случайных ошибках, которые возникают в ходе удвоения молекул ДНК и являются основным источником появления онкогенных мутаций. При таких видах рака, как рак простаты, их вклад может достигать 95%.

Чаще всего причиной возникновения рака являются именно ненаследственные мутации: когда никаких генетических поломок человек не унаследовал, но в течение жизни в клетках накапливаются ошибки, которые рано или поздно приводят к возникновению опухоли. Дальнейшее накопление этих поломок уже внутри опухоли может сделать её более злокачественной или привести к возникновению новых свойств.

Несмотря на то, что в большинстве случаев онкологические заболевания возникают из-за случайных мутаций, надо очень серьёзно относиться к наследственному фактору. Если человек знает об имеющихся у него унаследованных мутациях, он сможет предотвратить развитие конкретного заболевания, риск возникновения которого у него очень велик.

Есть опухоли с ярко выраженным наследственным фактором. Это, например, рак молочной железы и рак яичников. До 10% случаев заболеваемости этими видами рака связаны с мутациями в генах BRCA1 и BRCA2. Самый распространенный среди нашего мужского населения вид рака — рак лёгкого — в основной массе вызывается внешними факторами, а конкретнее — курением.

Но если предположить, что внешние причины исчезли, то роль наследственности стала бы примерно такой же, как и у рака молочной железы. То есть, в относительном соотношении для рака лёгкого наследственные мутации видны довольно слабо, но в абсолютных числах это всё же вполне существенно.

Кроме того, наследственный компонент довольно значительно проявляет себя в раке желудка и поджелудочной железы, колоректальном раке, опухолях головного мозга.

Большая часть онкологических заболеваний возникает за счёт сочетания случайных событий на клеточном уровне и внешних факторов. Однако в 5-10% случаев предопределяющую роль в возникновении рака играет наследственность.

Представим себе, что одна из онкогенных мутаций появилась в половой клетке, которой повезло стать человеком. Каждая из примерно 40 триллионов клеток этого человека (а также его потомков) будет содержать мутацию. Следовательно, каждой клетке нужно будет накопить меньше мутаций, чтобы стать раковой, а риск заболеть определённым видом рака у носителя мутации будет существенно выше.

Повышенный риск развития рака передаётся из поколения в поколение вместе с мутацией и называется наследственным опухолевым синдромом. Опухолевые синдромы встречаются достаточно часто — у 2-4% людей, и вызывают 5-10% случаев рака.

Анджелина Джоли сделала профилактические операции, поскольку три её близких родственницы умерли от рака молочных желез и яичников (источник: fs.kinomania.ru)

Благодаря Анджелине Джоли самым известным опухолевым синдромом стал наследственный рак молочной железы и яичников, который вызывается мутациями в генах BRCA1 и BRCA2. У женщин с этим синдромом риск заболеть раком молочной железы составляет 45-87%, в то время как средняя вероятность этого заболевания гораздо ниже — 5,6%. Увеличивается вероятность развития рака и в других органах: яичниках (с 1 до 35%), поджелудочной, а у мужчин еще и предстательной железе.

Наследственные формы есть практически у любого онкологического заболевания. Известны опухолевые синдромы, которые вызывают рак желудка, кишечника, мозга, кожи, щитовидной железы, матки и другие, менее распространённые типы опухолей.

Знать о том, что у вас или и у ваших родственников есть наследственный опухолевый синдром, может быть очень полезно для того, чтобы снизить риск развития рака, диагностировать его на ранней стадии, и эффективнее лечить заболевание.

Носительство синдрома можно определить с помощью генетического теста, а на то, что вам стоит сдать тест, укажут следующие особенности семейной истории.

  • Несколько случаев одного вида рака в семье;
  • Заболевания в раннем для данного показания возрасте (для большинства показаний – раньше 50 лет);
  • Единичный случай определенного вида рака (например, рак яичников);
  • Рак в каждом из парных органов;
  • Больше одного типа рака у родственника.

Если для вашей семьи характерно что-либо из вышеперечисленного, вам следует проконсультироваться у врача-генетика, который определит, есть ли медицинские показания для того, чтобы сдавать генетический тест. Носителям наследственных опухолевых синдромов следует проходить тщательный скрининг на онкологические заболевания для того, чтобы обнаружить рак на ранней стадии. А в некоторых случаях риск развития рака можно существенно снизить с помощью превентивных операций и лекарственной профилактики.

Несмотря на то, что наследственные опухолевые синдромы встречаются очень часто, западные национальные системы здравоохранения пока не ввели генетическое тестирование на носительство мутаций в широкую практику. Тесты рекомендуется сдавать лишь при наличии определённой семейной истории, указывающей на определённый синдром, и только в том случае, если известно, что тестирование может принести человеку пользу.

К сожалению, такой консервативный подход пропускает множество носителей синдромов: слишком мало людей и врачей подозревает о существовании наследственных форм рака; высокий риск заболевания далеко не всегда проявляется в семейной истории; многие пациенты не знают о заболеваниях своих родственников, даже когда есть, кого спросить.

Всё это — проявление современной медицинской этики, которая гласит, что знать человеку стоит только то, что принесет ему больше пользы, чем вреда.

Причём право судить о том, что такое польза, что такое вред, и как они соотносятся друг с другом, врачи оставляют исключительно себе. Медицинское знание — такое же вмешательство в мирскую жизнь, как таблетки и операции, и поэтому меру знания должны определять профессионалы в светлых одеждах, а то как бы чего не вышло.

Я, как и мои коллеги, считаю, что право на знание о собственном здоровье принадлежит людям, а не врачебному сообществу. Мы делаем генетический тест на наследственные опухолевые синдромы, чтобы те, кто хочет узнать о своих рисках развития рака, могли реализовать это право, и взять на себя ответственность за собственную жизнь и здоровье.

В процессе развития рака клетки изменяются и теряют свой первоначальный генетический «вид», унаследованный от родителей. Поэтому, чтобы использовать молекулярные особенности рака для лечения, недостаточно исследовать только наследственные мутации. Чтобы узнать слабые места опухоли, нужно провести молекулярное тестирование образцов, полученных в результате биопсии или операции.

Нестабильность генома позволяет опухоли копить генетические нарушения, которые могут быть выгодными для самой опухоли. К ним относятся мутации в онкогенах — генах, которые регулируют деление клеток. Такие мутации могут многократно повышать активность белков, делать их нечувствительными к тормозящим сигналам или вызывать повышенную выработку ферментов. Это приводит к неконтролируемому делению клеток, а впоследствии и к метастазированию.

Некоторые мутации имеют известные эффекты: мы знаем, как именно они меняют структуру белков. Это даёт возможность разработать лекарственные молекулы, которые будут действовать только на опухолевые клетки, и при этом не будут уничтожать нормальные клетки организма. Такие препараты называют таргетными. Чтобы современная таргетная терапия работала, нужно до назначения лечения знать, какие мутации есть в опухоли.

Эти мутации могут различаться даже в пределах одного типа рака (нозологии) у разных пациентов, и даже в опухоли одного пациента. Поэтому для некоторых лекарств молекулярно-генетическое тестирование рекомендовано в инструкции к препарату.

Определение молекулярных изменений опухоли (молекулярное профилирование) — важное звено в цепочке принятия клинических решений, а его значимость будет только расти со временем.

На сегодняшний день в мире проводится более 30 000 исследований противоопухолевой терапии. По разным данным, до половины из них используют молекулярные биомаркеры для включения больных в исследование или для наблюдения в ходе лечения.

Но что даст пациенту молекулярное профилирование? Где его место в клинической практике сегодня? Хотя для ряда лекарств тестирование является обязательным, это всего лишь «надводная часть айсберга» современных возможностей молекулярного тестирования. Результаты исследований подтверждают влияние различных мутаций на эффективность лекарств, а некоторые из них можно встретить в рекомендациях международных клинических сообществ.

Однако известно ещё не менее 50 дополнительных генов и биомаркеров, анализ которых может быть полезным в выборе лекарственной терапии (Chakravarty et al., JCO PO 2017). Их определение требует использования современных методов генетического анализа, таких как высокопроизводительное секвенирование (NGS). Секвенирование позволяет обнаружить не только распространенные мутации, но «прочитать» полную последовательность клинически значимых генов. Это позволяет выявить все возможные генетические изменения.

На этапе анализа результатов используются специальные биоинформатические методы, которые помогают выявить отклонения от нормального генома даже если важное изменение встречается в небольшом проценте клеток. Интерпретация полученного результата должна опираться на принципы доказательной медицины, так как не всегда ожидаемый биологический эффект подтверждается в клинических исследованиях.

Из-за сложности процесса проведения исследований и интерпретации результатов молекулярное профилирование пока не стало «золотым стандартом» в клинической онкологии.

Однако есть ситуации, в которых этот анализ может существенно повлиять на выбор лечения:

К сожалению, даже на фоне правильно подобранного лечения заболевание может прогрессировать, и не всегда есть выбор альтернативной терапии в рамках стандартов для данного онкологического заболевания. В этом случае молекулярное профилирование может выявить «мишени» для экспериментальной терапии, в том числе в рамках клинических исследований (например TAPUR).

Некоторые виды рака, например, немелкоклеточный рак лёгкого или меланома, известны множеством генетических изменений, многие из которых могут быть мишенями для таргетной терапии. В таком случае молекулярное профилирование может не только расширить выбор возможных вариантов лечения, но и помочь расставить приоритеты при выборе препаратов.

Молекулярное исследование в таких случаях помогает на начальном этапе определить более полный спектр возможных вариантов лечения.

Молекулярное профилирование и персонализация лечения требуют сотрудничества специалистов из нескольких областей: молекулярной биологии, биоинформатики и клинической онкологии.

Поэтому такое исследование, как правило, стоит дороже обычных лабораторных тестов, а его ценность в каждом конкретном случае может определить только специалист.

источник

Рак — заболевание, которое ежегодно уносит миллионы жизней, уступая среди причин смертности только сердечно-сосудистым патологиям. Ученые и врачи-онкологи уже давно ведут с ним борьбу, постоянно внедряя новые средства, которые помогают сохранить жизни всё большего числа пациентов. За последние десятилетия поле сражения сильно сместилось с гистологического и клеточного уровня на молекулярно-генетический.

Если раньше было лишь известно, что при раке меняется внешний вид и поведение клеток, то теперь ученые стремятся разобраться в процессах на уровне генов и отдельных молекул. Это стало возможным с развитием молекулярной биологии, и на этом поприще достигнуты немалые успехи.

Каждая клетка человеческого организма содержит около 30 тысяч генов. Среди них есть те, которые контролируют рост и размножение клетки, ее продолжительность жизни, отвечают за «починку» поврежденной ДНК.

Рак развивается из-за мутаций, в результате которых эти гены начинают работать неправильно. Генетические дефекты возникают случайно или при воздействии внешних факторов: курения, ультрафиолетового излучения, канцерогенов в пище и окружающей среде. Некоторые мутации (наследственные) человек получает от родителей, другие (приобретенные) — в течение жизни.

Каждый рак уникален, несет собственный набор мутаций. И эти различия могут сильно влиять на прогноз, чувствительность раковых клеток к тем или иным лекарственным препаратам. Выяснить это помогают специальные генетические анализы.

Генетические исследования в онкологии помогают решать важные задачи:

  • Обнаружить наследственные мутации и оценить риск развития рака, своевременно принять профилактические меры.
  • Разобраться, есть ли у человека генетические дефекты, связанные с повышенным риском онкологических заболеваний, которые он может передать своим детям.
  • Составить «молекулярно-генетический портрет» опухоли и выяснить, к каким препаратам она чувствительна.

Все генетические исследования на мутации, связанные с раком, можно разделить на две большие группы: те, которые проводят у здоровых людей, чтобы выявить риски, и те, которые проводят у онкологических больных, чтобы изучить опухолевые клетки и подобрать правильное лечение. Для каждой группы есть свои показания.

Обычно такие исследования назначают при поздних стадиях онкологических заболеваний, когда стандартные методы лечения не помогают. Эти анализы применяют для диагностики заболевания, подбора персонализированной терапии и оценки прогноза.

Наиболее распространенные исследования из этой группы:

  • При меланоме: исследования мутация в гене BRAF.
  • При немелкоклеточном раке легкого: гены EGFR, BRAF, ALK.
  • При раке толстой и прямой кишки: ген KRAS.
  • При раке молочной железы: ген HER2.
  • При раке яичников: гены BRCA1, BRCA2.

Эти мутации будут встречаться только в опухолевых клетках. В остальных, здоровых, тканях организма указанные гены будут функционировать нормально.

Наследственные мутации человек получает от родителей. Они присутствуют в половых клетках, а значит, их получат все клетки тела человека. В настоящее время с помощью генетического теста можно определить повышенный риск развития следующих типов рака:

  • яичников;
  • молочной железы;
  • щитовидной железы;
  • толстой кишки;
  • поджелудочной железы;
  • простаты;
  • желудка;
  • почки.

Кроме того, генетические исследования помогают оценить риск меланомы, сарком — злокачественных опухолей из соединительной ткани.

Эксперты из Американского общества клинической онкологии (American Society of Clinical Oncology) рекомендуют рассмотреть возможность проведения генетических исследований на наследственные мутации людям, у которых в семье часто встречались определенные типы злокачественных опухолей, если такой диагноз был установлен у близких родственников. Правильное решение о необходимости обследования помогут принять онколог, клинический генетик.

Читайте также:  Анализа на онкомаркер альфа фетопротеин

Генетические тесты показывают, в каких генах произошли изменения, связанные с повышенным риском рака. Выделяют две группы генов, в которых могут возникать такие мутации.

Протоонкогены кодируют белки, активирующие деление клеток. В норме они должны «включаться» лишь в определенное время. Если в протоонкогене возникает мутация, либо он становится чрезмерно активным (например, из-за увеличения количества копий), он превращается в онкоген, и нормальная клетка становится опухолевой.

Распространенные примеры онкогенов — EGFR и HER2. Эти белки-рецепторы встроены в клеточную мембрану. При активации они запускают цепочку биохимических реакций, в результате чего клетка начинает активно, бесконтрольно размножаться. Все мутации в протоонкогенах — приобретенные, они не наследуются.

Гены-супрессоры опухолей ограничивают размножение клеток, восстанавливают поврежденную ДНК, отвечают за «смерть» отработавших своё клеток. Рак возникает из-за того, что в результате мутаций эти гены перестают справляться со своей функцией. Например, гены BRCA1 и BRCA2 отвечают за репарацию ДНК. При наследственных мутациях в них у женщин повышен риск того, что будет диагностирован рак молочной железы, яичников.

Европейская клиника сотрудничает с ведущими зарубежными лабораториями. Они применяют современные технологии секвенирования, которые помогают быстро изучить ДНК человека и выявить изменения в сотнях генов:

  • замену оснований — «букв» генетического кода;
  • делеции — утрату участка хромосомы;
  • инсерции — «лишние» вставки ДНК в хромосомах;
  • изменение числа копий определенного гена;
  • фьюжн-мутации — слияние генов, в результате которого образуется новый, гибридный ген;
  • микросателлитную нестабильность;
  • мутационную нагрузку опухоли.

Генетические тесты могут нести некоторые негативные эффекты. Когда здоровый человек узнаёт, что у него мутация, связанная с повышенным риском рака, это может стать сильным эмоциональным потрясением. Врач порекомендует рассказать об этом членам семьи, чтобы они тоже знали о рисках, и это может сделать семейную атмосферу более напряженной. Сам по себе генетический анализ стоит недешево. Если его проводят у онкологического больного для подбора персонализированной терапии, рекомендованные по результатам исследования препараты тоже могут оказаться очень дорогими.

Если речь идет о наследственных мутациях, для анализа достаточно сдать кровь из вены. Для составления «молекулярно-генетического портрета» рака чаще всего нужен биоптат — образец ткани злокачественной опухоли. Существует и более современная методика — жидкостная биопсия, когда исследуют ДНК опухолевых клеток, циркулирующую в крови.

Точность обнаружения мутаций с помощью современных генетических исследований составляет почти 95%.

Для того чтобы анализ показал достоверный результат, врач-онколог должен правильно провести биопсию, соблюдать технику фиксации (специальной обработки) ткани. Организация, которая отправляет материал в лабораторию, должна соблюдать правила транспортировки. В противном случае провести исследование не получится.

Если анализ на наследственные мутации показал отрицательный результат, это значит, что у человека нет генетических дефектов, повышающих риск развития тех или иных злокачественных опухолей. Но это не значит, что он никогда не заболеет раком. Просто его риски несколько ниже. Аналогично положительный результат не говорит о том, что у пациента обязательно будет диагностировано онкологическое заболевание. У него повышены риски, и, возможно, потребуются некоторые профилактические мероприятия.

Иногда результат исследования на наследственные мутации сомнителен. В таких случаях многие онкологи и клинические генетики предпочитают считать, что риск рака всё же повышен, и рекомендуют некоторые меры профилактики. В ряде случаев ситуацию помогают прояснить анализы близких родственников.

Иногда обнаруживают неизвестные изменения в генах. Непонятно, то ли это вариант нормы, то ли нейтральная мутация, то ли она повышает риск рака.

Если анализ проводится у онкологического пациента для подбора эффективного лечения, лаборатория высылает лечащему врачу отчет, в котором указывает:

  • обнаруженные мутации;
  • список научных публикаций, в которых эти мутации фигурируют;
  • препараты, одобренные для лечения рака с такими генетическими дефектами;
  • препараты, которые в настоящее время не одобрены для лечения данного типа рака, но успешно применяются для борьбы с другими злокачественными опухолями с аналогичными мутациями.

На основе этой информации онколог принимает решение по поводу дальнейшего лечения.

В Европейской клинике есть всё для того, чтобы, при необходимости, назначить онкологическому пациенту персонализированную терапию, замедлить прогрессирование болезни и продлить жизнь. Мы применяем все препараты последних поколений, зарегистрированные на территории России, и сотрудничаем с ведущими европейскими, американскими лабораториями, которые проводят генетические исследования в онкологии.

Мы знаем, как помочь, если в другой клинике сказали, что больше ничего нельзя сделать, или лечение, назначенное ранее, перестало помогать. Свяжитесь с нами.

источник

Когда в 1962 году американский ученый обнаружил в экстракте слюнной железы мышей сложное вещество, эпидермальный фактор роста (EGF), состоящий из более чем пяти десятков аминокислот, он и не представлял, что сделал первый шаг к большому открытию, которому будет суждено изменить представление о раке легкого. Но лишь в начале XXI века станет достоверно известно, что мутации рецептора, с которым связывается EGF, могут становиться отправной точкой в развитии одной из самых агрессивных опухолей – рака легкого.

Что такое эпидермальный фактор роста?

Следует отметить, что EGF – белок, необходимый нашему организму. Так, находящийся в слюнных железах эпидермальный фактор роста обеспечивает нормальный рост эпителия пищевода и желудка. Кроме того, EGF содержится в плазме крови, моче, молоке.

Свою работу EGF выполняет, связываясь с рецептором эпидермального фактора роста, EGFR, расположенным на поверхности клеток. Это приводит к активации ферментов тирозинкиназ, которые и передают сигнал о необходимости активной деятельности. В результате происходят несколько последовательных процессов, в том числе увеличение скорости выработки белков и синтез молекулы, которая обеспечивает хранение и реализацию программы развития живых организмов, ДНК. Итогом этого и становится деление клеток.

В 90-х годах прошлого века стала очевидна роль рецептора эпидермального фактора роста как онкогена, играющего одну из ведущих ролей в развитии ряда злокачественных заболеваний.

Эпидермальный фактор роста и рак

В конце XX века было проведено несколько исследований, подтверждающих значение EGF в развитии злокачественных заболеваний. В 1990 году американские ученые доказали, что блокирование связывания эпидермального фактора роста с рецепторами и, как следствие, предотвращение активации фермента тирозинкиназы останавливает рост злокачественных клеток [1].

Конечно, далеко не у всех и не всегда эпидермальный фактор роста «запускает» процессы ненормируемого деления клеток. Чтобы нормальный белок, необходимый для жизнедеятельности нашего организма, вдруг стал его злейшим врагом, в молекуле рецептора эпидермального фактора роста должны произойти генетические изменения, или мутации, которые приводят к многократному увеличению числа рецепторов EGF – их гиперэкспрессии.

Причиной мутаций могут быть потенциально агрессивные факторы окружающей среды, например, токсины, а также курение, поступление канцерогенных веществ с пищей. В некоторых случаях «поломки» в рецепторе эпидермального фактора роста накапливаются на протяжении нескольких поколений, передаваясь от родителей детям. Тогда говорят о наследственных мутациях.

Следует отметить, что «поломки» в молекуле рецептора эпидермального фактора роста связаны с несколькими видами рака. Прежде всего, это немелкоклеточный рак легкого (НМРЛ). Гораздо реже мутации и, как следствие, гиперэкспрессия EGFR приводят к развитию опухолей шеи, головного мозга, толстой кишки, яичника, шейки матки, мочевого пузыря, почки, молочной железы, эндометрия.

Есть ли у вас мутация эпидермального фактора роста?

У некоторых категорий больных вероятность «поломки» значительно повышена. Так, известно, что мутация рецептора эпидермального фактора роста гораздо чаще происходит у людей, которые никогда не курили. Это вовсе не означает, что приверженцы табакокурения реже болеют раком легкого – напротив, известно, что вредная привычка становится причиной развития заболевания в 90% случаев. Просто у курильщиков рак легкого развивается по другому механизму.

Показательные результаты, отражающие распределение мутаций эпидермального фактора роста среди россиян, были получены в одном крупном отечественном исследовании, в котором были изучены данные более 10 тысяч больных раком легкого [2]. Они показали, что мутации EGFR обнаруживались:

  • У 20,2% больных аденокарциномой, 4,2% больных плоскоклеточным раком и 6,7% больных крупноклеточной карциномой легкого
  • У 38,2% некурящих женщин и только у 15,5% некурящих мужчин
  • У 22% курящих женщин и 6,2% курящих мужчин

Кроме того, в исследовании было выявлено, что вероятность появления «поломки» в рецепторе эпидермального фактора роста увеличивается у больных аденокарциномой с возрастом, вырастая от 3,7% в 18-30 лет до 18,5% в 81-100 лет.

Результаты зарубежного исследования, в котором участвовали более 2000 больных аденокарциномой легкого [3], показали, что мутация EGFR была выявлена:

  • У 15% больных, которые курили в прошлом
  • 6% больных, куривших в настоящем
  • 52% больных, которые никогда не курили

Эти данные подтверждают: мутации рецептора эпидермального фактора роста могут быть обнаружены и у тех, кто не представляет жизни без сигареты, просто гораздо реже, чем у приверженцев здорового образа жизни.

Несмотря на вполне однозначную тенденцию распространения «драйвер-мутации» EGFR, точный ответ на вопрос, есть ли эта «поломка» у вас, можно получить только по результатам молекулярно-генетического тестирования, которое проводят всем больным раком легкого.

Если у вас обнаружена мутация EGFR

Еще каких-то десять лет назад у половины больных раком легкого было гораздо меньше шансов успешно бороться с опухолью. Однако сегодня стали доступны препараты, которые позволили в корне изменить эту ситуацию. Речь идет о таргетной терапии, которая стала доступной в последнее десятилетие.

Наличие мутации эпидермального фактора роста, подтвержденное результатами молекулярно-генетического исследования, предоставляет онкологам возможность ввести в схему лечения таргетные препараты. Создание таргетных лекарственных средств для лечения рака легкого стало прорывом в современной онкологии.

Таргетные препараты действуют на первопричину злокачественного заболевания, влияя на сам механизм, запускающий неограниченный клеточный рост и деление. Они блокируют фермент тирозинкиназу, которая передает сигнал к «началу боевых действий» и, собственно, активирует процессы размножения и роста клеток.

Таргетная терапия рака позволяет значительно отдалить его прогрессирование, в том числе и по сравнению со стандартной химиотерапией. Это – значимое преимущество таргетных лекарств.

Способность таргетных препаратов (ингибиторов тирозинкиназы EGFR) продлевать время до прогрессирования опухоли была доказана в крупном анализе, изучающем результаты 23 исследований, в которых участвовало более 14 тысяч больных немелкоклеточным раком легкого с мутацией рецептора эпидермального фактора роста [6].

Важно отметить, что при наличии мутации EGFR лечение рака, как правило, не исчерпывается только таргетными препаратами. Вы должны быть готовым к сложной, длительной и комплексной терапии, в том числе оперативному вмешательству, лучевой терапии и др.

Если у вас не обнаружена мутация EGFR

Отрицательный результат молекулярно-генетического анализа на мутацию EGFR еще не говорит о том, что таргетная терапия вам не поможет. Прежде всего, важно выяснить, обнаружены ли в вашей опухоли какие-либо другие «поломки». Хотя мутация рецептора эпидермального фактора роста является самой распространенной среди больных раком легкого, не исключена вероятность и других, более редких «ошибок».

В современных протоколах, на которые опираются онкологи при подборе индивидуальной схемы лечения НМРЛ, настоятельно рекомендуют проводить развернутый молекулярно-генетический анализ для выявления не только самых распространенных «драйвер-мутаций», но и редких «поломок». Современный выбор таргетных препаратов позволяет подобрать «целевое» лекарство для большинства известных мутаций при раке легкого.

Если же в образце вашей опухоли не было обнаружено ни одной генетической «ошибки», таргетная терапия вам действительно не показана. Препараты, которые созданы для того, чтобы попадать «в яблочко», бесцельно не принимают, поскольку они просто не будут работать. Но у онкологов есть и другие терапевтические возможности, которые в вашем случае будут эффективны: это химиотерапия и, возможно, иммунотерапия. И все же вы должны помнить – индивидуальную схему лечения будет определять ваш лечащий врач, опираясь на данные о гистологическом типе вашей опухоли, стадии заболевания и др.

  1. Divgi C.R., et al. Phase I and Imaging Trial of Indium 111-Labeled Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 225 in Patients With Squamous Cell Lung Carcinoma. JNCI J. Natl. Cancer Inst. Oxford University Press, 1991. Vol.83, №2, P. 97-104.
  2. Imyanitov E.N., et al. Distribution of EGFR Mutations in 10,607 Russian Patients with Lung Cancer. Mol. Diagn. Ther. Springer International Publishing, 2016. Vol.20, №4, P. 40-406.
  3. D’Angelo S.P., et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J. Clin. Oncol. American Society of Clinical Oncology , 2011. Vol.29, №15, P. 2066-2070.
  4. Sharma S.V., et al. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer. 2007. Vol.7, №3, P. 169-181.
  5. Lynch T.J., et al. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib. N. Engl. J. Med. Massachusetts Medical Society, 2004. Vol.350, №21, P. 2129-2139.
  6. Lee C.K., et al. Impact of EGFR Inhibitor in Non-Small Cell Lung Cancer on Progression-Free and Overall Survival: A Meta-Analysis. JNCI J. Natl. Cancer Inst. Oxford University Press, 2013. Vol.105, №9, P. 595-605.

При копировании материалов
ссылка на сайт обязательна.

источник

Информация о работе и расписание

Госпитальная высококвалифицированная медицинская помощь

Услуги центра по восстановительной медицине

Современная диагностика – шанс предупредить болезнь

Он-лайн консультации для врачей по сложным практическим случаям

Трудоустройство в ФГАУ ЛРЦ

Стандарты и порядки оказания медицинской помощи

Проведение этической экспертизы клинических исследований, медицинских испытаний

В нашем центре мы проводим генетические анализы на выявление мутаций, отвечающих за возникновение наследственного рака молочной железы, яичников, поджелудочной железы, предстательной железы, щитовидной железы, толстой кишки и наследственных других новообразований (ссылка на прейскурант услуг). Материалом для исследования является кровь.

Читайте также:  Анализы чтобы узнать есть ли рак

2. Определение чувствительности к таргетной терапии опухолей

Одним из современных методов борьбы со злокачественными опухолями является таргетная терапия. Она заключается в использовании таргетных (то есть адресно действующих) лекарственных препаратов, которые способны убивать раковые клетки, не нанося вреда здоровым тканям. Назначение таргетной терапии показывает впечатляющие результаты при раке легкого, колоректальном раке и меланоме.

Генетическое тестирование позволяет врачам подобрать лекарства, воздействующие на конкретный вид мутировавших опухолевых клеток, что повышает эффективность лечения и уменьшает побочные эффекты от приема препаратов.

Анализ мутаций в опухолевых клетках позволяет сделать прогноз эффективности лечения таргетными препаратами. В нашем центре такие исследования проводят для большого спектра мутаций (ссылка на прейскурант услуг).

Материал для исследования

— парафиновый блок опухолевой ткани, фиксированной формалином (хранится в патологоанатомическом отделении)

— цитологическое стекло с опухолевыми клетками (хранится в клинико-диагностической лаборатории)

Определение мутаций онкогена EGFR при раке легкого.

Препараты-ингибиторы TK EGFR применяются в современной таргетной терапии немелкоклеточного рака легкого. Лишь около 20% случаев НМРЛ чувствительны к ингибиторам TK EGFR. Это связано с наличием в данных опухолях активирующих мутаций в гене EGFR.

При лечении ингибиторами TK EGFR улучшение состояния наблюдается у 80% пациентов с мутациями и менее чем у 10% пациентов без мутаций. У отдельных пациентов с мутациями EGFR положительный эффект очень сильный и длительный. По рекомендациям Европейского Общества Медицинских Онкологов (ESMO) наличие мутаций в гене EGFR является показанием к применению ингибиторов TK EGFR.

Кому рекомендуется EGFR тест?

Тест на мутации гена EGFR рекомендуется пациентам с НМРЛ для оценки возможности терапии препаратами Иресса или Тарцева.

Наличие в опухолях активирующих мутаций в гене EGFR является показанием к применению препаратов – ингибиторов TK EGFR (Иресса, Тарцева).

Определение мутаций онкогенов RAS при колоректальном раке

Препараты последнего поколения – ингибиторы EGFR – анти-EGFR антитела применяются в современной таргетной терапии рака толстой кишки.

Эффективность лечения этими препаратами зависит от наличия мутаций в онкогенах KRAS и NRAS, и некоторых других факторов. При отсутствии мутаций в генах семейства RAS эффективность лечения метастатического рака толстой и прямой кишки очень высока – увеличивается средняя продолжительность жизни больного на 1-2 года, уменьшается количество рецидивов.

В то же время, в случае наличия активирующих мутаций в гене KRAS в клетках опухоли больного, использование препаратов не приводит к позитивным результатам.

В связи с этим Американское Общество Клинических Онкологов и Европейское Медицинское Агенство рекомендует применение препаратов Эрбитукс и Вектибикс только для лечения опухолей, содержащих ген KRAS дикого типа (т.е. без мутаций).

Необходимость теста на наличие активирующих мутаций перед использованием препаратов указана и в руководствах по использованию этих препаратов.

Кому рекомендуется KRAS тест?

Таким образом, тест на мутации гена KRAS необходим пациентам с РТК для оценки возможности терапии препаратами-ингибиторами EGFR.

Наличие в опухолях активирующих мутаций KRAS является противопоказанием к применению препаратов – ингибиторов EGFR.

Прейскурант генетических услуг.

Определение чувствительности к таргетной терапии

Определение мутаций в гене K-ras (2, 3, 4 экзоны) для определения резистентности опухоли к цетуксимабу, панитумумабу

Определение мутаций в гене N-ras (2, 3, 4 экзоны) для определения резистентности опухоли к цетуксимабу, панитумумабу

Определение мутаций в гене EGFR (18, 19, 20, 21 экзоны) для определения чувствительности опухоли к гефитинибу, эрлотинибу, афатинибу

Определение шести мутаций в генах BRCA1/2 для определения чувствительности опухоли к олапарибу

Определение мутации в гене BRAF (мутация V600E) для определения чувствительности к вемурафенибу, дабрафенибу, траметинибу

Анализ метилирования гена MGMT для определения чувствительности к темозоломиду

Определение чувствительности к таргетной терапии

Синдром фон Хиппель-Линдау

Прямое секвенирование гена VHL (1-3 экзоны)

Определение двух мутаций в гене CHEK2

Определение восьми мутаций в генах BRCA1/2

MMR (mismatch repair system) статус — анализ микросателлитной нестабильности: оценка системы репарации (анализ маркеров D2S123, D17S250, D5S346, BAT25, BAT26)

Разработка прямой ДНК-диагностики других заболеваний

Определение мутаций при синдромах МЭН 2А/2Б (10, 11, 13-16 экзонов гена RET)

Наследственные онкологические синдромы

Поиск мутаций при наследственном раке молочной железы в генах BRCA1, BRCA2, CHEK2, PALB2, ATM, BRIP1, TP53, PTEN, STK11, CDH1, NBN, BARD1, MLH1, MRE11, MSH2, MSH6, MUTYH, PMS1, PMS2, RAD50, RAD51C.

Поиск мутаций при наследственном раке яичников в генах BRCA1, BRCA2, TP53, STK11, MEN1, MLH1, MSH2, MSH6, PMS2.

Поиск мутаций при наследственном эндометриальном раке в генах MLH1, MSH2, MSH6, PMS2, PTEN.

Поиск мутаций при наследственном колоректальном раке в генах APC, AXIN2, EPCAM, MLH1, MLH3, MSH2, MSH6, MUTYH, PMS1, PMS2, STK11, PTEN, SMAD4, BMPR1A.

Поиск мутаций при наследственном раке желудка в генах CDH1, MLH1, MSH2, MSH6, PMS2, EPCAM, APC.

Поиск мутаций при наследственном раке поджелудочной железы в генах CDH1, PRSS1, BRCA2, CDKN2, ATM, PALB2, MLH1, MSH2, MSH6, PMS2, EPCAM.

Поиск мутаций при наследственном раке почки в генах VHL, MET, FH, FLCN.

Поиск мутаций при наследственном раке предстательной железы в генах BRCA2, CHEK2, CDH1, PTEN, ELAC2, HSD17B3, HSD3B2, RNASEL, SRD5A2, HOXB13, HPC5, MAD1L1, HPC4, HIP1, MSR1, KLF6, PTEN, MXI1, CD82, ZFHX3, HPCQTL19, HPC3, HPC6, AR.

Поиск мутаций при наследственном раке щитовидной и паращитовидной желез в генах RET, NTRK1, PRKAR1A, PTEN, CDC73, MEN1.

Поиск мутаций при наследственных новообразованиях кожи в генах NF1, NF2, CDKN2A, CDK4, CMM1.

Поиск мутаций при наследственной феохромоцитоме в генах SDHAF2, SDHB, SDHC, SDHD, RET, VHL, MAX, NF1.

Поиск мутаций при наследственной параганглиоме в генах SDHB, SDHC, SDHD, SDHAF2.

Поиск мутаций при синдроме множественной эндокринной неоплазии в генах MEN1, RET, CDKN1B.

источник

Тест на основе особого типа геномного секвенирования обнаруживает только те мутации, которые связаны с возникновением онкологических заболеваний.

За последние несколько лет исследователи создали немало новых методов диагностики онкологических заболеваний. Новые тесты, в том числе, нацелены на выявление рака по анализу крови. Например, российские учёные научились диагностировать рак, выявляя определённые белки-онкомаркеры в плазме крови, а их японские коллеги ищут в крови пациентов микроРНК опухолевых клеток – такой метод помогает обнаружить сразу 13 форм рака.

Новый метод диагностики, также основанный на анализе крови, представили специалисты из Онкологического центра имени Сидни Киммеля при Больнице Джона Хопкинса (США). Их тест направлен на выявление крошечных участков ДНК, специфичных для раковых клеток. Новаторство подхода состоит в том, что исследователи могут отличить ДНК опухолевых клеток от других биомаркеров, которые можно ошибочно принять за признак злокачественного новообразования.

Точность такой диагностики обеспечили предыдущие исследования, в ходе которых эксперты изучали генетические мутации, обнаруженные в образцах раковых опухолей. Команда выяснила, что как минимум 82% этих мутаций соотносятся с изменениями в крови пациентов, у которых были вырезаны те самые опухоли.

При разработке нового теста учёные сосредоточились на 58 генах, которые, как уже было доказано ранее, связаны с конкретными видами рака. При этом основная сложность состояла в том, чтобы отличить мутации, вызванные раком, от других генетических изменений, которые также присутствуют в крови человека и принадлежат к нормальным унаследованным вариациям ДНК, либо появляются в результате ошибок при делении клеток.

Кроме того, при подобной диагностике учёных могут сбивать с толку так называемые зародышевые мутации, которые действительно являются изменениями в ДНК, но происходят в результате обычных изменений в организме и не связаны с окнологическим заболеванием.

Учитывая все эти факторы, исследователи разработали тест на основе особого типа геномного секвенирования – «целенаправленной последовательности исправления ошибок». Этот метод основан на глубоком упорядочении: каждая «буква» кода ДНК считывается 30 тысяч раз.

«Мы пытаемся найти иголку в стоге сена, поэтому, когда мы обнаруживаем изменение ДНК, мы хотим убедиться, что это именно то, что мы ищем», — поясняет руководитель работы профессор Виктор Велкулеску (Victor Velculescu).

Такая работа, охватывающая более 80 тысяч пар оснований ДНК, потенциально может быть очень дорогостоящей, но, по словам авторов, сегодня технология секвенирования становится всё дешевле. Кроме того, дальнейшая работа поможет уменьшить количество фрагментов ДНК, которые необходимо проверить.

Новая методика уже прошла тестирование в США, Дании и Нидерландах: в нём приняли участие 200 пациентов с различными стадиями рака. У них были взяты образцы опухолевых тканей, а также анализы крови.

Результаты показали, что новая точечная идентификация помогает обнаружить рак лёгких, яичников, молочной железы, а также колоректальный рак (это собирательное понятие для рака различных отделов толстой и прямой кишок) на самых ранних стадиях.

При помощи нового метода эти типы рака выявлялись у пациентов с точностью в среднем 62%, причём на первой или второй стадии развития болезни.

При этом точность обнаружения колоректального рака на различных стадиях составила более 80%, рака лёгких – 69%, рака яичников – 75%, а рака молочной железы – 57%.

Одновременно в 44 образцах крови здоровых пациентов тест не выявил ни одной мутации, указывающей на онкологическое заболевание.

«Это исследование показывает, что выявление рака на ранних стадиях, основанное на поиске изменений ДНК в крови, возможно. Наш метод высокоточного секвенирования является многообещающим для достижения этой цели», — добавляет Велкулеску.

Но, несмотря на эти воодушевляющие результаты, новый метод диагностики ещё должен пройти испытания с участием большего количества пациентов, подчёркивают авторы разработки.

Более подробно с научной работой можно ознакомиться в издании Science Translational Medicine.

Добавим, что ранее американские учёные открыли новые биомаркеры, которые также могут быть использованы для выявления рака по анализам крови. Тем временем их российские коллеги создали тест-систему, способную распознать сложный для диагностики вид опухолей.

Кроме того, исследователи рассказали про «биологическое невезение»: оказывается, два из трёх случаев рака обусловлены случайными мутациями.

источник

Немелкоклеточный рак легкого (НМРЛ)

  • плоскоклеточный рак (40% больных)
  • аденокарцинома (40–50% больных)
  • крупноклеточный рак (5–10% больных)

Мелкоклеточный рак легкого (МРЛ)

Таргетная терапия является основой лечения пациентов с НМРЛ. Интенсивное исследование точных молекулярных механизмов рака легких выявило возможность не только избирательно влиять на патологический молекулярный каскад в опухолевой клетке при помощи таргетных препаратов, но также определять эффективность / побочные эффекты классической химиотерапии и давать прогноз развития заболевания и метастатического потенциала опухоли.

Возможность исследования свободноциркулирующей опухолевой ДНК ( технология жидкостной биопсии ) открывает новые горизонты в диагностике, мониторинге и лечении рака легкого.

В последнее время генетическое тестирование позволило выделить подтипы рака легкого с наличием активирующих мутаций в ряде онкогенов. Наибольшее значение имеют мутации в генах EGFR, BRAF, MET и транслокации с участием генов ALK и RET. Нарушения в этих генах являются мишенями для таргетной терапии.

В отличие от химиотерапии, которая убивает любые клетки, включая здоровые, таргетная терапия действует на раковые клетки специфическим образом, точечно на конкретную мишень. Таргетная терапия обладает гораздо меньшим спектром побочных эффектов в сравнении со стандартной химиотерапией.

Становится очевидной необходимость комплексного генетического тестирования, позволяющего одномоментно диагностировать все возможные «мишени» для таргетной терапии

Представляем тесты для анализа мутаций, связанных с эффективностю таргетных препаратов

ХАРАКТЕРИСТИКА NGS ПЦР СЕКВЕНИРОВАНИЕ ПО СЭНГЕРУ
Чувствительность (доля мутантного аллеля в образце) 0.1% 1% 15-20%
Возможность определения точных координат мутации + +
Возможность исследования ранее не описанных мутации + +
Возможность исследования соматических мутаций в плазме + +

Панели генов позволяют определить наличие мутаций сразу в нескольких генах, что дает возможность сразу подобрать оптимальное лечение и делают исследование экономически эффективным

Панель для рака легкого базовая

Базовая панель позволяет подобрать лечение таргетными препаратами за короткое время.

Гены входящий в панель: EGFR, BRAF, KRAS, NRAS

  • Частота мутаций в гене EGFR при аденокарциноме легкого составляет 25%.
  • Мутация L858R и делеции 19 экзона гена EGFR ассоциированы с наибольшим ответом на лечение ингибиторами тирозинкиназ: гефитинибом, эрлотинибом и афатинибом.
  • Мутации в гене BRAF встречаются в 4% случаев немелкоклеточного рака легкого.
  • Обнаружение мутации в гене позволяет назначить препараты ингибиторы BRAF: вемурафениб и траметиниб.

Мутации в генах KRAS и NRAS обнаруживаются почти у 30% пациентов с немелкоклеточным раком легкого. Наибольшая частота драйверных мутаций обнаруживается в гене KRAS. Мутации в генах KRAS и NRAS чаще всего взаимоисключающие с мутациями в гене EGFR и транслокациями гена ALK.

Базовая панель для рака легкого предоставляет почти половине пациентов с немелкоклеточным раком легкого важную информацию, определяющую дальнейшую тактику диагностики и лечения.

Обнаружение мутаций в генах EGFR и BRAF позволяет назначить пациенту таргетную терапию. В то же время наличие мутации в генах KRAS и NRAS избавляет пациента от дальнейшего поиска транслокаций с участием гена ALK.

Базовая панель выполняется с помощью секвенирования нового поколения (NGS), что позволяет одномоментно диагностировать несколько сотен мутаций по низкой цене.

Стоимость исследования 4 генов методом NGS соответствует стоимости исследования одного гена методом ПЦР, а в ряде случаев даже дешевле.

Вместе с базовой панелью возможно выполнение
исследования на транслокации гена ALK

Исследование транслокаций с участием ген ALK выполняется методом
флуоресцентной гибридизации in situ или FISH методом

  • Транслокации с участием гена ALK встречается в 4% случаев НМРЛ. Обнаружение транслокации с участием гена ALK позволяет назначить таргетные препараты, ингибиторы тирозинкиназы ALK кризотиниб, церитиниб.

Панель для рака легкого базовая

Панель для рака легкого базовая
+ транслокации ALK

источник