Меню Рубрики

Тонкослойная хроматография как метод анализа

Тонкослойная хроматография (ТСХ) является одним из вариантов планарной хроматографии. Планарная хроматография — способ анализа, в котором процессы разделения смеси веществ осуществляются в плоском слое сорбента (неподвижной фазе). ТСХ подразделяется на бумажную и тонкослойную хроматографию. В первой в качестве сорбента используется специальная бумага. Во второй процессы разделения происходят в тонких слоях сорбента, нанесенного на инертную твердую подложку, или в пленках пористого полимерного материала. Бумажная и тонкослойная хроматография сходны по технике выполнения анализа. Тонкослойная хроматография, однако, заняла особое место среди других хроматографических методов благодаря простоте методики и доступности оборудования, широкой области применения, высокой экономичности, достаточно высокой селективности и чувствительности. ТСХ является единственным хроматографическим методом, который позволяет проводить полный анализ неизвестной смеси, поскольку исследователь может проверить, не осталось ли на старте неэлюированных (неразделенных) компонентов.

Метод ТСХ был предложен в 1938 г. отечественными учеными Н.А. Измайловым и М.С. Шрайбер. Однако широкие возможности метода были открыты позднее благодаря работам Ю. Кирхнера и Э. Шталя, посвященным биохимии и фармацевтике.

Общее описание метода. На результаты анализа в методе ТСХ влияет техника эксперимента. В методе ТСХ неподвижная фаза тонким слоем (100—300 мкм) наносится на стеклянную, металлическую или пластмассовую пластинку. В качестве сорбента чаще всего используют силикагель, оксид алюминия, целлюлозу, полиамид, кизельгур. На линию старта (1,5—2 см от края пластинки) очень малым пятном наносится анализируемая смесь и стандартные вещества. Для этого используют капилляры, микропипетки или микрошприцы. Затем пластинку в герметичной камере погружают в растворитель, который выполняет роль подвижной фазы. Под действием капиллярных сил растворитель движется вдоль слоя сорбента до финиша и с разной скоростью переносит компоненты смеси, что приводит к их разделению. Принцип разделения такой же, как в других видах хроматографии, — неодинаковое сродство разделяемых органических веществ к подвижной жидкой фазе и стационарному сорбенту. После достижения растворителем (элюентом) линии финиша пластинку высушивают и проводят идентификацию компонентов. Разделенные компоненты на пластинке или полоске бумаги образуют отдельные зоны (пятна) (рис. 5.94). Многие вещества не обнаруживаются в видимой области, и для их определения невидимые зоны проявляют опрыскиванием пластины ТСХ специальными реагентами. Для обнаружения пятен можно использовать УФ-излу- чение или термическую деструкцию веществ.

Рис. 5.94. Схема анализа методом ТСХ:

7 — анализируемая смесь; 2,3,4 — стандартные вещества («свидетели»)

Важной характеристикой степени разделения определяемых соединений в планарной хроматографии является величина Rf отношение расстояния от центра пятна на пластинке до линии старта (х) к расстоянию (у), пройденному растворителем от линии старта до финиша. Величина /^является качественной характеристикой определяемого соединения, хроматографируемого на данном сорбенте, в данном растворителе и в данных условиях опыта. Для надежности идентификации веществ при определении часто используют «свидетелей». Для этого на пластинке вместе с разделяемой смесью веществ хроматографируют стандартные вещества («свидетели»).

В зависимости от направления движения растворителя и от положения пластинки с сорбентом различают восходящую, горизонтальную и нисходящую тонкослойную хроматографию. В методе восходящей хроматографии растворитель поднимается по пластинке снизу вверх под действием капиллярных сил, которые преобладают над гравитационными силами. Здесь действуют также и силы диффузии, влияющие на перемещение хроматографируемого вещества как в продольном, так и в поперечном направлении. Продвижение растворителя на пластинке с закрепленным слоем сорбента обычно не должно превышать 10—12 см, так как в противном случае наблюдается замедление движения фронта растворителя, диффузия пятен и большие колебания Rj. Метод нисходящей хроматографии характеризуется подачей растворителя на пластинку сверху вниз. При горизонтальной хроматографии пластинка в камере расположена строго горизонтально.

Выбор хроматографической системы. Правильный выбор сорбента и растворителя (смеси растворителей) определяет эффективность (полноту) разделения. Выбор хроматографической системы определяется природой анализируемой смеси. В ТСХ наибольшее применение в качестве сорбентов получили силикагели и окись алюминия. Кроме них, используют кизельгур, целлюлозные порошки, полиамидные сорбенты, сефадекс, гидроокись кальция, силикат магния, различные модифицированные сорбенты. Выбор сорбента определяется свойствами разделяемых соединений, их растворимостью (гидрофильность, гидрофобность), содержанием и характером функциональных групп. Например, насыщенные углеводороды плохо сорбируются и поэтому движутся в сорбенте с более высокой скоростью. Для их разделения следует использовать наиболее активные сорбенты и малополярные растворители. Ненасыщенные углеводороды сорбируются тем сильнее, чем больше в них содержится двойных связей. Для органических веществ, содержащих разные функциональные группы, адсорбционное сродство повышается в следующем ряду: —СН3, —О-alk, >С=0, —NH2, —ОН, —СООН. Это приводит к тому, что на слоях силикагеля или оксида алюминия при применении в качестве растворителя, например, бензола простые или сложные эфиры располагаются в верхней части хроматограммы, кетоны и альдегиды — примерно в середине, спирты — ближе к линии старта, а кислоты остаются на старте.

Растворители разной природы, используемые в ТСХ, различаются по их элюирующему (вытеснительному) действию, и их можно расположить в так называемые элюотропные ряды. Наблюдается очевидная зависимость между полярностью и элюирующим действием растворителя. Например, элюотропный ряд для силикагеля по мере возрастания элюирующей способности выглядит следующим образом: н-гексан, пентан, циклогексан, четыреххлористый углерод, толуол, хлороформ, дихлорметан, диэтиловый эфир, уксусная кислота, этанол, метанол, пиридин, вода.

Подвижная фаза должна быть достаточно летуча и обладать минимальной вязкостью. Рекомендации по выбору сорбента и подвижной фазы в самом общем виде можно сформулировать следующим образом. Если вещество обладает слабым сродством к сорбенту, то используют активные слои и слабополярные растворители, стоящие в начале элюотропного ряда, и наоборот, если вещество сильно сорбируется сорбентом, то применяют слабоактивные сорбенты и сильнополярные растворители.

Методы обработки хроматограмм. Для получения информации о качественном и количественном составе анализируемой смеси используют как химические, так и физические методы детектирования. В последние годы значительно возросло использование ферментативных методов, особенно в клинической диагностике, при определении пестицидов. Пластинки ТСХ выполняют роль дискет, с которых может быть считана химическая, физическая или ферментативная информация — в любом месте и в любое время. Все это, в отличие от других вариантов хроматографии, происходит отдельно от процесса разделения, и этим устраняется влияние подвижной фазы. Отсюда следует, что селективность (избирательность) метода ТСХ складывается из селективности процесса разделения и специфичности детектирования.

Идентификацию веществ (качественный анализ) можно проводить по равенству значений ^анализируемого вещества и стандарта («свидетеля»). Если на хроматограмме образуются окрашенные зоны, то это значительно упрощает ее обработку. Невидимые хроматограммы проявляют (находят зоны разделенных веществ) химическими и физическими способами.

При химическом способе пленку или бумагу опрыскивают раствором или держат в парах реактива, взаимодействующего с компонентами анализируемой смеси. Эти реактивы подразделяют на два типа: 1) реактивы общего назначения, позволяющие обнаружить большое число соединений различных классов; 2) более специфичные реактивы, позволяющие обнаружить соединения определенного класса или с определенной функциональной группой. К реагентам общего назначения относятся: концентрированная серная кислота; раствор дихромата калия в концентрированной серной кислоте; 1%-й спиртовой раствор йода; фосфорно-молибденовая кислота; родамин и др. Одно из существенных преимуществ ТСХ по сравнению с бумажной хроматографией — возможность использования агрессивных проявителей.

Примеры специфичных реагентов-проявителей для обнаружения различных классов органических соединений приведены в табл. 5.4.

Реагенты для обнаружения некоторых органических соединений

источник

Тонкослойная хроматография (ТСХ) является одним из наиболее простых и эффективных экспресс — методов разделения и анализа веществ в пищевых продуктах, биологических жидкостях и других объектах, не требующих сложного оборудования. В то же время метод обладает высокой избирательностью и чувствительностью (низким пределом обнаружения). Этим методом можно определить 10-20 мкг вещества с точностью до 5 -7%.

В зависимости от природы НФ тонкослойная хроматография может быть адсорбционной и распределительной. Наиболее широко применим в ТСХ первый вариант разделения.

Неподвижная твердая фаза (оксид алюминия, силикагель и др.) тонким слоем наносится на стеклянную, металлическую (алюминиевая фольга) или пластмассовую пластинку, закрепляется слой с помощью крахмала или гипса (иногда используют пластинки с незакрепленным слоем). Для хроматорафирования могут использоваться готовые пластинки, выпускаемые промышленностью, размером 5 х!5 или 20×20 см.

На расстоянии 2 см от края пластинки на стартовую линию с помощью микропипетки или микрошприца наносят пробы анализируемого раствора (диаметр пятен 3-5 мм). После испарения растворителя край пластинки помещают в стеклянную камеру, на дно которой налит растворитель (ПФ) в количестве, достаточном для образования слоя глубиной 0,5 см. Камеру закрывают крышкой.

Выбор растворителя (ПФ) зависит от природы сорбента и свойств анализируемых соединений. Например, разделение хлорорганических пестицидов на пластинке с силикагелем проводят в среде гексана. Часто применяют смеси растворителей из двух или трех компонентов. Так, при хрома-тографировании аминокислот используют смесь Н-бутанола с уксусной кислотой и водой, при анализе неорганических ионов — водные буферные растворы, создающие постоянное значение рН.

При хроматографировании растворитель движется снизу вверх (восходящий вариант) вдоль слоя сорбента и с разной скоростью переносит компоненты смеси, что приводит к их пространственному разделению. После окончания хроматографического процесса пластинку вынимают из камеры, отмечают линию фронта растворителя (обычно « 10 см) и высушивают.

Если компоненты смеси окрашены, то они четко видны на пластине после разделения. Неокрашенные соединения обнаруживают различными способами. Если пластину поместить в камеру с парами йода, то четко проявляются коричневые пятна для органических соединений с непредельными связями. Хроматограмму можно проявить, опрыскивая ее каким-либо реагентом, дающим с компонентами пробы окрашенные соединения. В состав нанесенного слоя в готовые пластины часто вводят люминофор. При облучении такой пластины ультрафиолетовым (УФ) светом она флуоресцирует, а разделенные компоненты пробы видны в виде темных пятен. Вещества, имеющие собственную флуоресценцию, также обнаруживают в УФ — свете (например, пестициды).

Идентификацию веществ на хроматограмме осуществляют по характеру окраски пятен, параметру удерживания Rf и с помощью стандартных веществ (свидетелей).

При стандартных условиях величина Rf является постоянной величиной, характерной для данного соединения. Но практика показывает, насколько трудно создавать постоянство всех факторов, от которых зависит воспроизводимость значений Rf. На величину Rf влияет качество и активность сорбента, его влажность, толщина слоя, качество растворителей и другие факторы, не всегда поддающиеся достаточному контролю.

Поэтом/ наряду с величиной Rf идентификацию проводят по «свидетелю». Стандартное вещество (свидетель), наличие которого предполагают в анализируемой смеси, наносят на линию стандарта рядом с исследуемой пробой. Таким образом, стандартное вещество хроматографируется в тех же условиях. После хроматографирования и детекции пятен сравнивают величины Rf определяемого вещества и «свидетеля».

Качественный анализ после разделения компонентов смеси методом ТСХ часто используют для определения состава пищевых продуктов. Так, на рис.7.3.2 представлена хроматограмма жира, выделенного из мясного фарша различного состава.

Хроматографирование проводили на пластинках с силика-гелем в системе гексан-диэтиловый эфир (в соотношении 3:1), пятна детектировали 10% раствором фосфорно-молибденовой кислоты, идентифицировали по голубому цвету зон на желтом фоне пластинки. Как видно из хроматограммы, при данных условиях произошло разделение фосфолипидов и триглицеридов. По характерному составу компонентов мяса и печени можно сделать вывод о натуральности мясного фарша в пробах 1 — 2, и добавках к нему печени в пробах 3 — 5.

Количественное определение в ТХС может быть проведено непосредственно на пластинке, или после удаления веществ с плаСтинки. При непосредственном определении на пластинке измеряют тем или иным способом площадь пятна (например, с помощью миллиметровой кальки) и по заранее построенному градуировочному графику находят количество вещества.

Более точен денситометрический метод определения веществ на хро-матограммах (ошибка 1-2%). В методе денситометрии производят измерение оптического поглощения проявленной хроматограммы сканирующим лучом в проходящем или отраженном свете на специальных приборах -денситометрах (рис.7.3.4.).

На денситограмме получают пики, площадь которых пропорциональна содержанию вещества в пятне. Построив с помощью стандартов калибровочный график, измеряют площадь пика компонента и по графику определяют его массу в пробе. Получают развитие также спектрофото-денситометрическос и флуори-метрическое определение веществ на хроматограммах. В первом случае используют специальные спектрофотоденситометры, измеряющие поглощение вещества в монохроматическом свете, во втором измеряют флюоресценцию пятна при облучении хроматограммы УФ светом. Широкое распространение получил способ экстрагирования компонентов из зон подходящим растворителем. При применении этого способа на хроматограмму наносят стандартный раствор и раствор пробы. После получеты хроматограммы производят ее обработку, детектируя зону стандарта, вырезают часть хроматограммы с зоной компонента пробы и производят его экстрагирование подходящим растворителем. Полученный раствор анализируют инструментальным методом, имеющим высокую чувствительность. Чаще всего применяют спектрофотометрические и фотоколориметрические методы. Если вещество не имеет цвета или не обладает поглощением в УФ-области, с экстрактом проводят фотометрическую реакцию, позволяющую получить интенсивно поглощающее производное вещества.

Тонкослойная хроматография находит применение при исследовании некоторых видов пищевых продуктов на безопасность. Например, для определения токсинов (афлатоксинов, микотоксинов, патулина и др.) в арахисе, в зерновых, овощах, фруктах, напитках; для определения пестицидов (ДЦ’Г и др.) в растительных и животных продуктах , определения гистами-на как показателя порчи рыбы. Кроме того, ТСХ часто сочетают с газовой хроматографией, электрофорезом и другими методами.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

В методе ТСХ хроматографирование веществ происходит в тонком слое сорбента (оксид алюминия) нанесенного на твердую плоскую подложку их алюминия или полимера (хроматографическая пластинка).

Разделение в этом методе происходит на основе сорбции-десорбции.

ТСХ в качестве подвижной фазы использует либо чистые вещества (этилацетат, бензол, этанол), либо смеси веществ в определенном соотношении.

Читайте также:  Простата анализ какие надо сдать

Техника проведения анализа

1) Нанесение анализируемой пробы.

Проводят линию на расстоянии 1 см от края пластинки (линия старта). На нее наносят с помощью капилляра несколько капель анализируемого образца.

Пластинку с нанесенной пробой помещают в хроматографическую камеру (с небольшим количеством растворителя). Погружают ее в растворитель до линии старта. Благодаря капиллярным смолам растворитель поднимается вверх по слою сорбента увлекая за собой анализируемые вещества при этом происходит их разделение.

ТСХ чаще всего используется как качественный метод для идентификации веществ.

Rf – подвижность, которая рассчитывается по экспериментальным даннымразделенных

2. Цветные реакции. Служат для определения местоположения раздельных компонентов (обработка H2SO4 парами I2), возможно определение класса вещества или идентификации, при наличии индивидуальной реакции.

3. Сравнение со свидетелями. При проведении хроматографирования смеси предполагаемого состава на линию старта наносят известные вещества (свидетели).

4. Физико-химические методы идентификации. Разделенные вещества снимают с пластинки вместе со слоем сорбента, а затем анализируют подходящим физико-химическим методом.

Совмещение хроматографических методов с другими видами физико-химических методов анализа.

Сущность электрогравиметрического метода (ЭГМА) состоит в количественном выделении определяемого вещества на предварительно взвешенном электроде и установление его содержания по привесу.

Метод в основном применяется для определения металла, который отлагается на катоде в виде чистого металла (например, серебро), либо в виде его оксида.

В основе анализа лежит реакция электролиза.

Электролизом называется окислительно-восстановительный процесс, связанный с разложением вещества при прохождении постоянного электрического тока, через раствор или расплав электролита.

В основе метода лежат законы Фарадея. В процессе электрогравиметрического анализа важно понятие выход по току.

Выход по току, является важной количественной характеристикой эффективности и точности метода, поэтому ЭГМА следует проводить при 100% выходе (идеальный случай) или при абсолютно точном выходе по току.

При проведении электроанализа недопустимо, чтобы наряду с металлом на катоде выделялся какой либо продукт. Нельзя, чтобы шел электролиз воды, т.к. выделяется водород, который мешает создавать нормальную кристаллическую решетку металла.

ЭГМА идет при большем напряжении, чем напряжение соответствующее расчетам.

В процессе проведения электролиза возникает поляризация, которую тоже следует преодолеть.

Кроме того необходимо приложить напряжение для преодоления сопротивления электролитической ванны и контактов. Поэтому напряжение разложение равняется сумме напряжения разложения иона, напряжения разложения воды, напряжения поляризации и напряжения сопротивления.

Перенапряжением называется разница между напряжением разложения и напряжением электролиза.

В ЭГМА любую электрохимическую реакцию можно рассматривать как ряд последовательных процессов:

1 ст. — подвод реагента к электроду;

2 ст. — собственно электрохимическая реакция;

3 ст. — отвод реагента от электрода.

Отсюда возникают различные типы перенапряжения:

перенапряжение диффузии возникает в случае, когда скорость реакции лимитируется первой и третьей стадией;

перенапряжение электрохимической реакции. Возникает, если лимитирующей стадией является вторая, а перенапряжение будет результатом прохождения частицы через двойной электрический слой.

Т.о. перенапряжение возникает вследствие поляризации электрода в результате замедленного протекания определенной стадии суммарного электрохимического процесса.

Она наблюдается на стадиях транспортировки продуктов к электроду и от него, концентрационная поляризация тесно связана с диффузией, а доставка исходных продуктов к поверхности электродов может осуществляться тремя видами диффузий:

Миграционная диффузия – это передвижение ионов под действием градиента электрического поля возникающего в электролите при прохождении через него электрического тока. Направление движения ионов зависит от их знаков, а скорость от чисел переноса.

Конвективная диффузия — это перенос частиц растворяемого вещества с потоком движущейся жидкости.

Молекулярная диффузия- это перемещение частиц или ионов под действием градиента концентрации, возникающего в растворе при качественной и количественной не однородности.

Для устранения концентрационной поляризации нужно использовать вещества, которые называются деполяризатора, которые сдвигают потенциал в положительную сторону, кроме того при электролизе растворов вводят такие деполяризаторы, которые восстанавливаются до водорода.

Таким деполяризатором часто является HNO3 в результате электролиза, которого образуется оксид азота NO, который обладая большой молекулой не нарушает кристаллической структуры металла.

ЭГМА может быть осуществлен двумя методами:

— методом внутреннего электролиза;

— методом внешнего электролиза.

Метод получил свое название вследствие того, что выделение происходит внутри работающего гальванического элемента.

Как правило, в качестве катода используют материал сходный с раствором. Лучше использовать платиновый электрод, а в качестве анода использовать электрод, выполненный из металла с большим отрицательным значением потенциала. Как правило, в качестве анода используют цинковый электрод. Чтобы на цинковом электроде не происходило отложение металла с последующей цементизацией, его необходимо защитить, поэтому его не просто опускают в раствор электролита, а помещают в пористый стаканчик заполненный раствором KCl.

Данным методом можно определить не только один ион, а больше. Кроме того, в отдельных случаях при большой разнице потенциала определяемых ионов, от одного можно избавиться, переведя его в комплексную соль.

+ прост в оформлении; высокая точность;

‒ токи очень малы, поэтому процесс очень длительный.

В данном методе напряжение подается от аккумулятора (1) и регулятора сопротивления (3). Сила тока измеряется гальванометром (2). 4,5 – электроды. 6 – электролитическая ячейка заполненная раствором электролита.

Особенностью данного метода являются сетчатые платиновые электроды, выполненные в виде цилиндров. Для предотвращения их соприкосновения имеются специальные резиновые прокладки.

Известно, что между временем протекания анализа и силой тока существует прямая зависимость. Однако применение больших токов приводит к тому, что на катоде не успевают сформироваться кристаллические структуры металла. Осадок получается рыхлым, вплоть до его осыпания. Поэтому в каждом случае необходимо подбирать силу тока индивидуально.

Во внешнем электролизе большое значение имеет даже не сила тока, а плотность тока:

Именно поэтому платиновые электроды делаются сетчатые, чтобы их поверхность была большой.

Метод используется для металлов; проводиться быстрее, чем предыдущий, но обязательно необходимо определять выход по току.

Косвенный ЭГМА – называется кулонометрический.

В процессе его проведения используется измерение количества электричества.

Количество электричества определяется кулонометром.

Платиновый тигель (2) соединен с взвешивающим прибором (3). В тигель опускается серебряный или медный электрод, погруженный в раствор AgNO3 или CuSO4. В электролитическую ячейку подается напряжение и на электроде (1) начинается выделение металла (серебро или медь). Через n-ое количество времени происходит убыль массы раствора. Тигель становится легче, что отмечается на весах, которые в свою очередь могут быть отградуированы в единицах количества электричества.

Кулонометры данного типа отличаются очень высокой точностью.

2) Титрационные кулонометры

В электролитическую ячейку помещают два электрода отделенные друг от друга полунепроницаемой перегородкой.

Кулонометры этого типа используются тогда, когда при прохождении электрического тока через раствор, образуется какое-либо вещество, которое может быть оттитровано.

Бюретку заполняют раствором способным разлагаться, давая при этом газообразное вещество, растворы кислот, солей, оснований.

При этом на катоде выделяется водород, а на аноде кислород. Выделившийся газ собирают в верхней части сосуда, которая может быть отградуирована в кулонах.

Различают два вида кулонометрического анализа: прямую и косвенную кулонометрию.

— В методах прямой кулонометрии анализируемое вещество подвергается электрохимическому превращению в самой ячейке.

— В косвенной кулонометрии определяемое вещество реагирует с титрантом. Титрант получается в кулонометрической ячейке при электролизе специально подобранного раствора.

Прямая кулонометрия проводится при контролированном потенциале

Напряжение от аккумуляторной батареи (1) через регулируемое сопротивление (2) подается в кулонометр (6) куда опущены медные или серебряные электроды. Анализируемый раствор в кулонометрической ячейке (5), куда опущены 3 электрода, побочный электрод (4), электрод сравнения (3) (ХС) и вспомогательный электрод (7) опущенный в пористый стакан. Потенциал определяется мили вольтметром (9) , а сила током гальванометром (8). Т.к. данный метод проводится при контролированном, т.е. постоянном потенциале, то необходимо следит за ее величиной и регулировать сопротивление (2).

В данном методе изменение силы тока по мере протекания реакции в электролитической ячейке от времени, представляет зависимость lnJ=f(τ), которая представляет собой прямую линию

Точка эквивалентности определяется отдельными методами:

Кулонометрический анализ при контролируемой силе тока

Переключатель (4) питается стабилизирующим напряжением от аккумулятора (1), в сеть включено сопротивлении (2) и гальванометр (3). Гальванометр (3) контролирует силу тока при анализе. Переключатель соединен с потенциометром (6) и секундомером (5), по которому определяется время реакции. При включение генераторной цепи начинается электрохимическая реакция. Генераторная цепь содержит 2 генераторных электрода.Назначение генераторных электродов состоит в генерирование титранта, при прохождение электрического тока через ячейку. Один из электродов (8а) называют рабочим, а (8б) вспомогательным. Кроте того в эту же ячейку опущены 2 индикаторных электрода (7), которые представляют собой металлические электроды Pt→Pt, либо системы Pt→ХС электрод или Pt→КЭ электрод. Вспомогательный электрод (8б) помещен в пористый стаканчик заполненный раствором KCl. В измерительной схеме находится аккумулятор (11), гольванометр (13) и вольтметр (10), а так же регулятор сопротивления (12). Приборы показания, которого отвечают за ход химической реакции, это гальванометр (13). По мере того как протекает химическая реакция изменяется сила тока. По результатам анализа строят графики J=F(τ)

Вид графика зависит от природы пары: титруемое вещество — титрант:

1 график: оба вещества являются электрохимически активными, т.е. сопряженные пары есть и у титранта и у титруемого вещества.

2 график: титруется вещество, которое является электрохимически не активным, после достижения точки эквивалентности появляется сопряженная пара у титранта.

3 график: электролитически активным является титруемое вещество, а титрант является электролитически не активным.

Кулонометрическое титрование при контролируемой силе тока имеет ряд, преимуществ по сравнению с кулонометрией при контролированном потенциале: нет необходимости готовить раствор титранта, стандартизировать его, т.к. титрант генерирует в кулонометрической ячейке в количестве необходимом для анализа; легко анализируется, многие легко летучие вещества, а так же множество органических соединений; Это метод малых концентраций ± 0,05моль/л; высокая чувствительность 10-6 моль/л; высокая селективность; возможность автоматизации; метод является универсальным.

источник

Содержимое (Table of Contents)

Хроматографический процесс, протекающий при движении подвижной фазы в тонком слое сорбента, нанесенном на инертную твердую подложку (пластинку) из соответствующего материала – стекла, металла или полимера, называется тонкослойной хроматографией или хроматографией в тонком слое сорбента.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Тонкослойная ОФС.1.2.1.2.0003.15

хроматография Взамен ст. ГФ XI, вып.1

Хроматографический процесс, протекающий при движении подвижной фазы в тонком слое сорбента, нанесенном на инертную твердую подложку (пластинку) из соответствующего материала – стекла, металла или полимера, называется тонкослойной хроматографией или хроматографией в тонком слое сорбента.

Тонкослойная хроматография (ТСХ) может использоваться для анализа как однокомпонентных, так и многокомпонентных лекарственных средств. В последнем случае подбираются условия хроматографирования, обеспечивающие разделение компонентов смеси.

Разделение может осуществляться по различным механизмам: адсорбционному, распределительному, ионообменному или какой-либо их комбинации.

Хроматографическое разделение осуществляется в результате движения анализируемых веществ в тонком слое (неподвижной фазе), растворенных в растворителе или соответствующей смеси растворителей (подвижная фаза, элюент). При разделении вещества образуют на поверхности сорбента зоны адсорбции в виде пятен (круглых или эллипсовидных) или полос.

Подвижность вещества при его хроматографировании характеризуется величинами Rf и Rst (см. ОФС «Хроматография»).

Параметры Rf и Rst используются для идентификации веществ и для оценки разделительной способности системы.

ТСХ используется при испытаниях лекарственных средств на подлинность (идентификация анализируемых веществ), посторонние примеси (испытание на чистоту) полуколичественным и количественным методами.

– пластинки с закрепленным слоем сорбента (неподвижной фазы) различных модификаций;

– калиброванные капилляры и микрошприцы;

– устройства для нанесения на хроматограммы обнаруживающих реаген-тов (пульверизаторы для опрыскивания, камеры для погружения хро-матограмм в раствор и др.);

– стандартные образцы, растворители, реагенты для обнаружения хрома-тографических зон;

– ультрахемископы с УФ-лампами на 254 и 365 нм;

– системы обработки и хранения данных.

Используемая лампа должна удовлетворять следующим требованиям теста.

Проверка работы лампы. На пластинку силикагель G наносят 5 мкл 0,04 % раствора натрия салицилата в спирте 96 % для ламп с максимумом излучения при 254 нм или 5 мкл 0,2 % раствора натрия салицилата в спирте 96 % для ламп с максимумом излучения при 365 нм в виде пятна диаметром около 5 мм; пятно должно светиться. Проверка работы ламп проводится не реже одного раза в три месяца, а также при возникновении сомнений в правильности работы лампы с учетом срока её эксплуатации.

При проведении анализов расстояние между лампой и хроматографической пластинкой не должно превышать расстояния, используемого при проверке работы лампы.

Примечание. Используемый спирт должен быть свободен от флуоресцирующих веществ.

Пластинка для ТСХ представляет собой твердую подложку (стеклянную, металлическую или полимерную) с нанесенным слоем сорбента. Толщина слоя сорбента от 0,10 до 0,25 мм для аналитического варианта и от 0,5 до 2,0 мм для препаративного.

В качестве сорбента в пластинках для ТСХ чаще всего используются: алюминия оксид, модифицированный и немодифицированный силикагель, модифицированная и немодифицированная целлюлоза.

Готовые хроматографические пластинки могут содержать флуоресцентный индикатор для детектирования веществ, поглощающих в ультрафиолетовой области спектра при 254 и 365 нм.

Размер частиц сорбента для классического аналитического варианта ТСХ составляет 10 – 20 мкм. Наряду с такими пластинками можно использовать пластинки для высокоэффективной тонкослойной хроматографии, содержащие сорбент с частицами размером 5 – 7 мкм. Такие пластинки позволяют увеличить эффективность разделения и уменьшить предел обнаружения.

выпускаются также пластинки с монолитными сорбентами и пластинки с концентрирующей зоной (двухфазовые пластинки). Последние используются в фармацевтическом анализе для разделения сложных и гетерогенных смесей (экстракты из лекарственного растительного сырья, растворы таблеток со вспомогательными компонентами, мягкие лекарственные формы, смеси, содержащие пигменты, суспензии и др.).

Читайте также:  Какие анализы нужно принести гастроэнтерологу

Предварительная подготовка пластинок. В некоторых случаях перед хроматографированием предусмотрена предварительная обработка пластинок. Это может быть предварительное хроматографирование чистых пластинок в соответствующем растворителе, импрегнирование пластинок при помощи опрыскивания, погружения или элюирования. При необходимости перед использованием пластинки активируют нагреванием в сушильном шкафу в течение 1 ч при температуре 100 – 105 °С. Описание предварительной обработки пластинок должно быть приведено в фармакопейной статье.

Используют хроматографические камеры для вертикального или горизонтального элюирования с герметичными крышками. Камеры для горизонтального элюирования снабжены также устройствами для подачи подвижной фазы на пластинку. Использование камеры для горизонтального элюирования позволяет осуществлять одновременное элюирование с противоположных сторон пластинки, что увеличивает производительность анализа в два раза по сравнению с использованием камеры для вертикального элюирования. при этом также уменьшается расход подвижной фазы приблизительно в 10 раз. В горизонтальной камере движение подвижной фазы по пластинке происходит только за счет капиллярных сил, вклад гравитации при этом отсутствует, что повышает эффективность разделения по сравнению с камерами для вертикального элюирования.

Подвижные фазы (элюенты) должны быть предпочтительно малотоксичными, содержать минимум компонентов, не вступать в химические реакции ни с сорбентом (неподвижной фазой), ни с компонентами разделяемой смеси. Подвижные фазы должны также достаточно быстро испаряться с поверхности хроматограмм после элюирования.

Для подавления диссоциации полярных молекул компонентов разделяемой смеси к подвижной фазе добавляют вещества кислого или основного характера (модификаторы).

Нанесение проб осуществляют:

– калиброванными капиллярами с тупым концом;

– поршневыми микрошприцами с тупым концом иглы;

– полуавтоматическими или автоматическими приборами для нанесения образцов.

Нанесение осуществляют двумя способами: в виде пятен 2 – 5 мм диаметром (1 – 2 мм на высокоэффективных пластинках) с промежутками между пятнами не менее 10 мм и в виде полос длиной 10 – 20 мм (5 – 10 мм на высокоэффективных пластинках) с промежутком между ними не менее 10 мм. Расстояние до линии старта от нижнего края пластинки должно составлять не менее 10 мм. Если в методике фармакопейной статьи предусмотрено использование как обычных, так и высокоэффективных пластинок, условия для высокоэффективных пластинок должны быть указаны в квадратных скобках. Расстояния на стартовой линии от боковых краев пластинки до мест нанесения первой и последней проб должны составлять не менее 10 мм. В процессе нанесения проб недопустимо повреждение сорбента на линии старта. Подсушивание нанесенных проб осуществляют в токе холодного или теплого воздуха, либо на специальном столе с электроподогревом.

Используют следующие способы элюирования: восходящее элюирование (одно- и многоступенчатое, одномерное и двумерное – с поворотом пластинки на 90° или 180°) и горизонтальное.

Если не указано иначе в фармакопейной статье, пластинку с нанесенными пробами помещают вертикально в камеру. При необходимости камеру предварительно насыщают парами подвижной фазы (в этом случае в фармакопейной статье должно быть указано время насыщения). Для этого перед проведением анализа обычно внутренние стенки камеры обкладывают фильтровальной бумагой, смоченной подвижной фазой. уровень подвижной фазы должен быть расположен ниже линии старта. Камеру закрывают и проводят процесс при 20 – 25 °С в защищенном от света месте. После прохождения фронтом подвижной фазы расстояния, указанного в нормативном документе, пластинку вынимают из камеры, сушат до удаления следов растворителей, проявляют и детектируют зоны адсорбции указанным способом.

При проведении двумерной хроматографии пластинку сушат после хроматографирования в первом направлении и хроматографируют в направлении, перпендикулярном первому.

Пластинку с нанесенными пробами помещают в камеру и направляют поток подвижной фазы из лотка в камеру согласно инструкции к прибору для горизонтального элюирования. Процесс проводят при 20 – 25 °С (если это указано в фармакопейной статье, одновременно с противоположных сторон пластинки). Когда подвижная фаза пройдет расстояние, указанное в нормативном документе, пластинку вынимают, сушат до удаления следов растворителей, проявляют и детектируют зоны адсорбции указанным способом.

Двухмерную хроматографию выполняют, как указано в разделе «Восходящая хроматография».

Обнаружение (детектирование) зон адсорбции после проведения качественной и полуколичественной ТСХ осуществляют следующими способами:

– в видимом и ультрафиолетовом свете (при определенной длине волны);

– опрыскиванием растворами обнаруживающих реагентов;

– выдерживанием в парах обнаруживающего реагента;

– погружением в растворы обнаруживающих реагентов с использованием для этих целей специальных камер.

Испытание на подлинность (идентификация) анализируемых веществ проводится при одновременном хроматографировании одинакового количества анализируемого вещества и стандартного образца на одной и той же хроматографической пластинке. Основную зону адсорбции (пятно или полосу) на хроматограмме испытуемого раствора сравнивают с основной зоной адсорбции (пятном или полосой) на хроматограмме стандартного раствора (раствора сравнения), сравнивая окраску (цвет флуоресценции), размер и величину фактора Rf соответствующих зон адсорбции (ОФС «Хроматография»).

При испытаниях на чистоту основное вещество и примеси в условиях хроматографирования должны иметь разные значения Rf. При этом о степени чистоты анализируемого вещества можно судить по величине и интенсивности зон адсорбции обнаруживаемых на хроматограмме примесей. Их содержание может быть определено полуколичественно. Для этого на пластинку наносят определенные количества анализируемого вещества и свидетелей. Для определения идентифицированных примесей в качестве свидетелей используют стандартные образцы идентифицированных примесей в количествах, соответствующих их предельно допустимому содержанию. Для определения неидентифицированных примесей чаще всего используют растворы сравнения, приготовленные путем разведения испытуемого раствора. Содержание примеси в анализируемом лекарственном средстве оценивают, сравнивая зону адсорбции примеси по совокупности величины и интенсивности поглощения или окраски с соответствующими зонами адсорбции на хроматограмме свидетелей. Дополнительное пятно (пятна) на хроматограмме испытуемого раствора сравнивают визуально с дополнительным пятном (пятнами) на хроматограмме стандартного раствора, содержащего примесь (примеси), или с пятном на хроматограмме раствора сравнения, приготовленного из разбавленного испытуемого раствора.

Требования к проверке разделительной способности приводят в фармакопейной статье.

Чувствительность считается удовлетворительной, если зона адсорбции четко обнаруживается на хроматограмме наиболее разбавленного стандартного раствора примеси или раствора сравнения.

Если вещества, разделяемые методом ТСХ реагируют на излучение в ультрафиолетовой или видимой области спектра, их можно количественно определить непосредственно на пластинке, используя соответствующее оборудование. Для этого измеряют интенсивность отраженного света, передвигая пластинку или регистрирующее устройство вдоль оси хроматограммы. Аналогичным образом можно измерять флуоресценцию.

Вещества, содержащие радионуклиды, могут быть количественно определены непосредственно на пластинке с использованием соответствующего счетчика радиоактивных веществ, а также удалением неподвижной фазы в районе зон адсорбции и измерением радиоактивности с использованием жидкостного сцинциляционного счетчика.

Оборудование. Для проведения количественных измерений непосредственно на хроматографической пластинке оборудование содержит:

— полуавтоматическое или автоматическое устройство для точного и воспроизводимого нанесения необходимого количества вещества в определенном месте пластинки;

— фотометр (денситометр), способный перемещать пластику или измерительное устройство вдоль осей «x» и «y», с источником монохроматического излучения для измерения отражения или пропускания; в том случае, когда измеряется флуоресценция, требуется дополнительный монохроматический фильтр для выбора соответствующей спектральной области излучаемого света; полученные в результате денситограммы обрабатывают в соответствии с методом обработки хроматограмм, описанным в ОФС «Хроматография».

Критерии оценки пригодности системы описаны в ОФС «Хроматография». В этой же ОФС приводятся пределы изменения параметров хроматографической системы, которые допустимы для выполнения условий пригодности.

Эффективность разделения увеличивается как вследствие увеличения площади раздела подвижной и неподвижной фазы за счет уменьшения диаметра частиц сорбента, так и благодаря большей однородности размеров этих частиц. Применяют пластинки для высокоэффективной тонкослойной хроматографии, выполненные как в нормально-фазовом (полярная неподвижная фаза), так и в обращенно-фазовом (неполярная неподвижная фаза) вариантах.

По сравнению с классической ТСХ использование высокоэффективных пластинок позволяет:

– увеличить число анализируемых проб за счет уменьшения размеров зон адсорбции первичной хроматограммы: диаметра пятен (до 1 – 2 мм) или длины полос (до 5 – 10 мм);

– значительно увеличить разделительную способность системы;

– снизить пределы обнаружения и количественного определения анализируемых веществ в 10 – 100 раз.

Применение высокоэффективной тонкослойной хроматографии обеспечивает получение более компактных зон адсорбции разделяемых соединений, что улучшает метрологические характеристики количественного определения с помощью сканирующей хроматоденситометрии.

источник

Хроматография применяется для анализа сложных многокомпонентных смесей. Хроматографические методы определяют качественный и количественный состав органических веществ, включая летучие углеводороды и биологические жидкости. Фармацевтика, медицина, нефтеперерабатывающий комплекс, химическое производство и другие промышленные отрасли используют хроматографы для контроля качества сырья и готовой продукции, а также обеспечивают с их помощью соблюдение норм экологической безопасности.

Широкое распространение хроматографических методов анализа обусловлено их разнообразием и спецификой, которые раскрываются в данной статье:

Хроматографические методы анализа основаны на цикличных актах сорбции‑десорбции, происходящих между подвижной фазой (элюентом) с растворенной пробой и неподвижным сорбентом. Компоненты сложных смесей имеют различную сорбируемость, и проходя вдоль неподвижной фазы, поглощаются с неодинаковой скоростью и в разном количестве. Последующее изучение результатов и их сравнение с эталоном позволяет установить точный состав реактива.

В традиционном методе в качестве неподвижной фазы используется материал с развитой поверхностью, а элюентом выступает поток инертного газа или жидкости. Фильтрация элюента через слой сорбента запускает многократное повторение сорбции и десорбции, что и отличает хроматографические методы анализа от других аналитических методик и обуславливает их эффективность.

Хроматографические методы анализа устанавливают качественный и количественный состав вещества. При качественных испытаниях пробу идентифицируют по ее хроматограмме, сравнивая полученные параметры с эталонными значениями, хранящимися в библиотеке данных.

Количественный метод анализа строится на измерении пиков, формирующихся в зависимости от концентрации примесей. Лаборант изучает хроматограмму одним из следующих методов:

  • Метод абсолютной градуировки. Зависимость параметров пика от концентрации разных веществ определяется экспериментально. Затем составляются графики и таблицы, с которыми в последующем и сравнивается хроматограмма. Благодаря простоте и высокой точности, метод является основным для выявления микропримесей.
  • Метод внутренней нормализации. Сумма выбранных пиковых параметров (например, их высота или площадь) принимается за 100%. Далее рассчитывается отношение высоты отдельного изучаемого пика к суммарному значению, благодаря чему определяется массовая доля конкретного компонента в пробе.
  • Метод внутреннего стандарта. В смесь вводится стандартное вещество, для которого заранее известен калибровочный график. Затем пики изучаемых компонентов сравниваются с пиками «стандарта». Метод применяют в случае исследования составов с переменным, но известным количеством анализируемых компонентов.

Методы постоянно дорабатываются и совершенствуются, что позволяет получать более точные данные при анализе сложных смесей и нивелировать шумы на хроматограммах.

Впервые хроматография была описана русским ученым Михаилом Цветом, изучавшим строение хлорофилла. Ботаник предположил, что зеленый пигмент состоит из нескольких отдельных компонентов и нуждался в методе, который позволил бы разделить вещество на составляющие. Для этого он пропустил экстракт хлорофилла через стеклянную колонку, заполненную толченым мелом. Промыв сорбент эфиром, ученый получил несколько зон разного цвета, что позволило подтвердить многокомпонентный состав пробы. Разработанный метод был назван хроматографией.

Цвет описывал принцип хроматографии следующим образом: вещество в подвижной фазе постоянно реагирует с новыми участками адсорбента и частично впитывается, но при этом адсорбированные компоненты «вымываются» свежими порциями поступающего элюента. То есть, ученый открыл только один метод взаимодействия разделяемых компонентов: молекулярную адсорбцию.

Из‑за этого ботаник ошибочно предположил, что основным условием для осуществления хроматографического анализа является разница в адсорбируемости отдельных компонентов. Однако в современной хроматографии помимо молекулярной адсорбции для изучения сложных смесей используются и другие физико‑химические явления. В результате появилось множество хроматографических методов, и для их разграничения была разработана общепринятая классификация.

Хроматографические методы разделяются на несколько групп в зависимости от сравниваемых параметров. По агрегатному состоянию фаз хроматографические методы анализа делятся на:

  • Газожидкостные. Подвижной фазой служит поток инертного газа, который проходит через жидкий сорбент.
  • Газоадсорбционные. Проба в газообразном состоянии пропускается через твердое вещество, на поверхности которого осуществляется адсорбция.
  • Жидкостно‑жидкостные. В качестве элюента и неподвижной фазы используются жидкие среды.
  • Жидкостно‑адсорбционные. Реагент подается вместе с растворителем и проходит через твердый пористый материал.
  • Жидкостно‑гелевые. В этом методе неподвижная фаза представлена гелеобразным веществом.

Вторая классификация касается конструкции хроматографического оборудования. В большинстве методов применяется колоночный хроматограф: адсорбция осуществляется в колонках, заполненных неподвижной фазой. Но иногда используется плоскостная хроматография, в которой используется тонкий срез сорбента или специальная бумага. Также в последнее время получили распространение капиллярный хроматографический метод, при котором разделение происходит в пленке жидкости, и хроматография в полях, требующая для проведения анализа создания дополнительных магнитных, центробежных или иных сил.

Хроматографические методы анализа отличаются особенностями взаимодействия элюента и адсорбента. По механизмам разделения хроматография делится на:

  • адсорбционную — основывается на разнице в адсорбируемости компонентов пробы;
  • распределительную — протекает за счет различной растворимости веществ в фазах;
  • ионообменную — осуществляется благодаря достижению констант ионообменного равновесия;
  • проникающую — строится на разнице в формах и размерах молекул;
  • осадочную — происходит благодаря осаждению нерастворимых соединений;
  • адсорбционно‑комплексообразовательную — выполняется за счет образования на поверхности неподвижной фазы координационных соединений разной прочности.

Следующая классификация разделяет хроматографические метода анализа на три группы по способам перемещения поглощаемых компонентов вдоль адсорбционного слоя. Выделяют проявительный (или элюентный), фронтальный и вытеснительный методы. Рассмотрим их подробнее.

К наиболее простым хроматографическим методам анализа относится фронтальный, при котором роль элюента сведена к минимуму. Предположим, что проба представляет собой растворитель Solv, в котором содержатся два компонента: A и B. Анализируемое вещество непрерывным потоком пропускается через сорбционную колонку. После прохождения через хроматографическое оборудование, измеряется концентрация A и B в выходном растворе и учитывается изначальный объем Solv. На основании полученных данных строится график зависимости, который и является выходной кривой (хроматограммой).

Читайте также:  Какие анализы сдать при кровотечение

Из‑за поглощения неподвижной фазой компонентов A и B, из колонки сначала будет поступать растворитель, затем вещество с меньшим коэффициентом сорбции (допустим, A), и только потом B. В результате спустя некоторое время из хроматографического оборудования будет поступать раствор с неизменным составом (одинаковой пропорцией Solv, A и B). Данный хроматографический метод анализа применяется не только для изучения сложных веществ, но и для их очистки от примесей, при условии, что они поглощаются лучше, чем основные элементы реагента.

В лабораторных испытаниях чаще всего используется проявительный или элюентный хроматографический метод. Специалист добавляет в колонку пробу реагента Solv c растворенными в нем компонентами A и B, после чего под постоянным давлением подает подвижную фазу. Под воздействием физико‑механических сил происходит разделение состава. Вещество с лучшей сорбируемостью займет верхнюю часть колонки, с меньшей — нижнюю. На выходе из оборудования сначала появится компонент A, затем чистый Solv, потом — элемент B, что и отразится в хроматограмме. Количественный анализ проводится измерением высоты и площади пиков: чем они больше, тем выше концентрация изучаемого вещества в составе.

Главное преимущество элюентного хроматографического метода заключается в возможности разделения сложных многокомпонентных реактивов. Однако при изучении хроматограммы необходимо учитывать снижение концентрации выходящих растворов из‑за разбавления подвижной фазой.

Третий метод — вытеснительный. Он предполагает использование вытеснителя (препарата D), который постоянно воздействует на раствор Solv, введенный в хроматографическую колонку. Коэффициент сорбции D должен быть выше, чем у любых компонентов анализируемой пробы. Благодаря этому препарат постепенно вытесняет вещество с худшей сорбируемостью, что и фиксируется при выходе смеси из колонки. Вытеснительный метод не требует применения газа‑носителя, в результате чего сокращаются издержки на проведение исследований. Однако стоит помнить, что анализ полученных данных затрудняется из‑за наложения зон разных веществ друг на друга, поскольку они не разделяются зоной растворителя.

В аналитической химии широко используется газожидкостный хроматографический метод. Благодаря разнообразию применяемых жидких неподвижных фаз, можно создать оптимальные условия для идентификации практически любого вещества, содержащегося в исследуемой пробе в незначительной концентрации. Это обуславливает универсальность метода. Для этого необходимо правильно настроить хроматографическое оборудование и подобрать неподвижную фазу, отвечающую следующим параметрам:

  • высокая способность к растворению элементов, содержащихся в реактиве — в противном случае проба быстро выходит из колонки и не дает достаточный материал для проведения анализа;
  • низкая летучесть — во время исследования фаза не должна испаряться, поскольку это осложнит чтение хроматографического графика;
  • химическая инертность — адсорбент не должен вступать в реакции с компонентами пробы или газом‑носителем;
  • минимальная вязкость — в противном случае замедлится диффузия.

Также для реализации метода важна максимальная разделительная способность компонентов конкретной пробы.

Помимо выбора жидкой среды, в которой будет происходить разделение смеси на отдельные составляющие, во время подготовки хроматографического анализа необходимо подобрать носитель неподвижной фазы. В качестве носителя используется твердый и прочный материал, на котором жидкость образует тонкую однородную пленку. Чаще всего применяется силанизированный хромосорбат, фторуглеродные полимеры и гранулы из высококачественного стекла. Данные носители отличаются следующими преимуществами:

  • легко и равномерно смачиваются неподвижной фазой;
  • практически не впитывают жидкость, то есть не препятствуют нормальному протеканию реакции между жидкой и газообразной средами;
  • не реагируют на повышение температуры в рабочей колонке.

Хроматографические методы анализа, построенные по газожидкостному принципу, относятся к наиболее современным, и применяются в случае необходимости разделения веществ, относящихся к одному классу. Их активно используют в химической и нефтегазовой промышленности для контроля над качеством получаемой продукции. Среди ключевых преимуществ газожидкостного метода анализа можно выделить:

  • экспрессность;
  • максимальная точность;
  • полная автоматизация;
  • небольшие затраты на подготовку пробы и проведение исследования.

Для использования метода требуется подобрать не только жидкую среду и ее носитель, но и решить вопрос с непрерывной подачей элюента. Для минимизации расходов к хроматографу подключается генератор газа (например, водорода), который продуцирует нужное количество вещества и отвечает за его равномерную подачу в оборудование.

По технологии выполнения жидкостно‑жидкостный хроматографический метод анализа похож на газожидкостную хроматографию. На твердый носитель наносится жидкая среда, выступающая в роли неподвижной фазы. Для подготовки пробы используется не инертный газ, а раствор.

Изучаемый реагент вместе с потоком жидкого растворителя движется через сорбент, на поверхности которого происходит разделение компонентов. Чаще всего неподвижной фазой заполняют колонку хроматографа, но для некоторых исследований прибегают к методу тонкослойной хроматографии, при котором адсорбентом смачивают специальную бумагу.

Разделение осуществляется за счет распределения веществ между несмешивающимися растворами. То есть, концентрация одного и того же вещества в подвижной и неподвижной фазах будет различаться и зависеть от коэффициента распределения. Значения коэффициента устанавливаются эмпирически для каждого компонента, в результате чего жидкостно‑жидкостные хроматографические методы анализа позволяют с высокой точностью идентифицировать отдельные элементы в сложном составе.

Для успешной реализации метода необходимо правильно выбрать несмешивающиеся фазы. Обычно они подбираются исходя из опыта прошлых анализов. Чаще всего применяются так называемые «тройные системы», в которые включены два несмешивающихся друг с другом растворителя и третья жидкость, растворимая в обеих фазах. Например, это может быть система из несмешивающихся гептанов и воды, в которую вводится хорошо растворимый в обеих средах этанол.

При выборе составов для подвижной и неподвижной фаз, следует учитывать, что их нерастворимость друг в друге относительна, и при проведении исследования вещества будут вступать во взаимодействие (пусть и в незначительном объеме), что сказывается на значениях, которые показывают хроматографические методы анализа. Для минимизации погрешности используется одна из двух технологий: предварительное насыщение подвижной фазы неподвижной или химическое закрепление жидкости на сорбенте.

Эффективность проведенного хроматографического анализа зависит также от выбора носителя для неподвижной фазы. Требования к нему следующие:

  • развитая поверхность;
  • химическая инертность;
  • высокая способность к удержанию жидкости;
  • устойчивость к используемым растворителям.

Чаще всего в жидкостно‑жидкостных хроматографических методах исследования в качестве носителя выбирается целлюлоза, фторопласт, силикатные гели или полимеры.

Помимо вышеописанных носителей, заполняющих колонки, в распределительных хроматографических методах анализа может использоваться специальная бумага, на которой происходит разделение исследуемых компонентов. Данный метод редко применяется в промышленных масштабах (по сравнению с колоночной хроматографией), но достаточно часто используется в аналитической химии.

Технология проведения бумажного хроматографического анализа предполагает вычисление коэффициента Rf, представляющего собой отношение смещения зоны компонента к смещению фронта раствора. В теории коэффициент зависит только от исследуемого вещества, растворителя и параметров бумаги. Однако в действительности при реализации метода на коэффициент также влияют компоненты, присутствующие в пробе в микроконцентрации, и используемая техника. В результате возникает определенная погрешность, которую необходимо учитывать при расшифровке анализа.

Распределительные хроматографические методы анализа чувствительны к характеристикам используемой бумаги. Она должна соответствовать следующим критериям:

  • химическая чистота;
  • нейтральность;
  • инертность по отношению к реагентам в пробе;
  • однородность.

При подборе материала учитывается также ориентация волокон, качество целлюлозы, сорбируемость. Параметры определяют скорость движения раствора и осаждения обнаруживаемых молекул.

В бумажном методе есть еще один нюанс — некоторые вещества могут поменять свойства носителя с гидрофильных на гидрофобные, что полностью нарушит ход эксперимента. В таком случае хроматографическая бумага предварительно пропитывается парафином или растительными маслами.

Большое влияние на точность хроматографических методов анализа оказывает выбранный растворитель. В качестве подвижной фазы необходимо взять жидкость, которая в меньшей степени растворяет обнаруживаемые компоненты, чем неподвижная фаза. Если пренебречь данным условием, метод не сработает: при слишком высокой растворимости проба пройдет вместе с жидкостью, не адсорбируясь на поверхности, при слишком низкой — останется на начальной линии и не даст требуемую для расшифровки градацию.

Если с помощью распределительного метода анализируется водорастворимая смесь, в качестве неподвижной фазы берется очищенная вода, в качестве подвижной — любой удобный органический растворитель. Выбранные жидкости не должны смешиваться, менять свои свойства в процессе исследования, важна их доступность и нетоксичность для человека.

Распределительные хроматографические методы анализа основаны на использовании смешанных фаз: смесей спиртов друг с другом и органическими кислотами, аммиаком, водных растворов фенола или крезола и так далее. Меняя концентрацию, насыщенность и пропорции в растворе удается плавно менять коэффициент Rf, создавать оптимальные условия для анализа, и получать дополнительные данные при расшифровке хроматограммы.

Как и прочие хроматографические методы анализа, бумажная хроматография определяет и качественный, и количественный состав пробы. В первом случае изучается специфическая окраска пятен на хроматограмме и анализируется числовое значение Rf для каждого обнаруживаемого реактива.

Для определения количественного состава смеси исследуется площадь образовавшихся пятен, интенсивность их окраски. Также применяют метод вымывания, при котором каждое цветовое пятно обрабатывают экстрагентом и затем подсчитывают количество вымытого вещества.

Хроматографические методы анализа отличаются информативностью, сложностью проведения и актуальностью для решения практических промышленных задач. Одним из самых распространенных является метод тонкослойной хроматографии (ТСХ), разработанный группой ученых в 1938 году.

Твердая фаза наносится тонким слоем на специально подготовленную стеклянную, металлическую или пластиковую пластину. Затем на ее край лаборант вносит анализируемую пробу и погружает пластинку в жидкий растворитель, выступающий в качестве подвижной фазы. Под действием капиллярных сил исследуемый состав начинает двигаться по сорбенту, разделяясь на свои компоненты. Диффузия в твердом неподвижном слое происходит в двух направлениях: продольном и поперечном, что дает дополнительные сведения для анализа.

Особенность хроматографического метода заключается в относительной простоте исполнения. Для проведения эксперимента требуются:

  • Пластинки для твердого адсорбента. Обычно подложки изготавливаются из алюминиевой фольги, полимерной пленки или стекла.
  • Сорбент. Чаще других в данном методе применяются сорбенты из силикагеля, крахмала и целлюлозы.
  • Растворитель. Выбор подвижной фазы зависит от физико‑химических свойств твердого вещества и исследуемых реагентов. Как и в бумажном методе, допустимо использование многокомпонентных жидкостей.

После окончания работы перед построением хроматографического графика пластинку опрыскивают проявляющим реактивом либо подвергают воздействию ультрафиолета. Затем приступают к определению компонентов пробы и их дальнейшему изучению любым удобным для лаборанта методом.

Для качественного исследования пробы одним из самых надежных и показательных является «метод свидетелей». Вместе с составом на линию старта наносятся индивидуальные вещества («свидетели») — предполагаемые компоненты смеси. На все жидкости влияют одинаковые силы, поэтому совпадение коэффициента Rf одного из «свидетелей» с компонентом реагента позволяет предположить наличие в пробе данного вещества.

Что касается количественных определений в данном методе, то они выполняются непосредственно на пластине либо уже после снятия с нее слоя сорбента. В первом случае измеряется площадь цветового пятна и с помощью заранее подготовленного графика вычисляется количество вещества.

Однако более показательным считается спектрофотометрический метод. Сорбент удаляется с пластинки и помещается в специальное оборудование, которое и показывает процентное содержание различных компонентов с высокой точностью.

Метод ионообменной хроматографии основан на замене элементарных частиц, входящих в реактив, на атомы, содержащиеся в ионообменнике. Поэтому результативность анализа зависит от параметров используемого оборудования. Современные ионообменники обладают важными преимуществами:

  • Высокая обменная емкость.
  • Воспроизводимые ионообменные свойства.
  • Устойчивость к воздействию кислот и щелочей, любых сильных окислителей.

Для их производства чаще всего используются различные полимерные соединения: например, полистирол с разным набором функциональных групп, определяющим характерные свойства готового материала.

Ионообменный хроматографический метод применяется преимущественно для разделения элементарных частиц, после которого можно провести количественный подсчет анализируемых компонентов. Данная технология используется для обнаружения разнообразных анионов в питьевой и технической воде, продуктах переработки, пищевом, фармацевтическом и химическом сырье. Наиболее показателен метод для определения катионов щелочных и щелочноземельных металлов, и замещенных солей аммония.

Хроматографические методы анализа постоянно совершенствуются и модифицируются. Появляются новые технологии, позволяющие определять компоненты смеси в наноконцентрациях. Благодаря этому удается повысить качество готовой продукции в различных отраслях промышленности, минимизировать экологические риски за счет установления жесткого контроля над составом сточных вод.

Однако возможности хроматографии ограничены не только применяющимися методами, но и используемым оборудованием. Важно, чтобы хроматографы отвечали следующим требованиям:

  • Простая подготовка и введение проб.
  • Быстрое получение результатов и легкая расшифровка хроматографических графиков.
  • Принцип работы, основанный на передовых методах.
  • Максимальная точность анализа.
  • Нивелирование погрешностей, возникающих из‑за физико‑химических свойств используемых подвижных и неподвижных фаз.
  • Минимальные затраты на ввод оборудования в эксплуатацию и его дальнейшее обслуживание.
  • Возможность анализа сырья или продукции без прерывания основного технологического процесса.
  • Определение широкого спектра соединений, включая летучие углеводороды и другие сложные для обнаружения вещества.
  • Быстрое обучение персонала методам работы с лабораторным оборудованием.

Дальнейшее совершенствование хроматографов позволит удешевить хроматографические методы анализа и расширить области их применения. Именно к этому и стремится компания ООО «НПФ Мета‑хром». Мы предлагаем высококлассное оборудование, соответствующее всем стандартам качества. Узнать подробную информацию о методах работы на хроматографах можно у менеджеров по контактному телефону компании или с помощью формы обратной связи в разделе «Контакты».

источник