Меню Рубрики

Системный анализ как учебная дисциплина

Необходимо уметь мыслить абстрактно, чтобы по-новому воспринимать окружающий нас мир.

Одним из направлений перестройки в высшем образовании является преодоление недостатков узкой специализации, усиление междисциплинарных связей, развитие диалектического видения мира, системного мышления. В учебный план уже многих вузов введены общие и специальные курсы, реализующие эту тенденцию: для инженерных специальностей — «методы проектирования», «системотехника»; для военных и экономических специальностей — «иcследование операций»; в административном и политическом управлении — «политология», «футурология»; в прикладных научных исследованиях — «имитационное моделирование», «методология эксперимента» и т.д. К числу таких дисциплин принадлежит и курс системного анализа — типично меж- и наддисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем.

В настоящее время в развитии наук наблюдаются 2 противоположные тенденции:

  1. Дифференциации, когда при увеличении знаний и появлении новых проблем из более общих наук выделяются частные науки.
  2. 2. Интеграция, когда более общие науки возникают в результате обобщения и развития тех или иных разделов смежных наук и их методов.

В основе процессов дифференциации и интеграции лежат 2 фундаментальных принципа материалистической диалектики:

  1. принцип качественного своеобразия различных форм движения материи, опр. необходимость изучать отдельные аспекты материального мира;
  2. принцип материального единства мира, опр. необходимость получать целостное представление о каких-либо объектах материального мира.

В результате проявления интегративной тенденции появилась новая область научной деятельности: системные исследования, которые направлены на решение комплексных крупномасштабных проблем большой сложности.

В рамках системных исследований развиваются такие интеграционные науки, как: кибернетика, исследование операций, системотехника, системный анализ, искуственный интеллект и другие. Т.е. речь идет о создании ЭВМ 5 поколения (чтобы убрать всех посредников между ЭВМ и машиной. Пользователь неквалифицированный.), используется интеллектуальный интерфейс.

Системный анализ разрабатывает системную методологию решения сложных прикладных проблем, опираясь на принципы системного подхода и общей теории систем, развития и методологически обобщая концептуальный (идейный) и математический аппарат кибернетики, исследования операций и системотехники.

Системный анализ представляет собой новое научное направление интеграционного типа, которое разрабатывает системную методологию принятия решений и занимает определенное место в структуре современных системных исследований.

  1. системные исследования
  2. системный подход
  3. конкретные системные концепции
  4. общая теория систем (метатеория по отношению к конкретным системам)
  5. диалектический материализм (философские проблемы системных исследований)
  6. научные системные теории и модели (учение о биосфере земли; теория вероятностей; кибернетика и др.)
  7. технические системные теории и разработки — исследование операций; системотехника, системный анализ и др.
  8. частные теории системы.

Согласно классификации, предложенной Саймоном и Ньюэллом, все множество проблем в зависимости от глубины их познания подразделяется на 3 класса:

  1. хорошо структурированные или количественно выраженные проблемы, которые поддаются математической формализации и решаются с использованием формальных методов;
  2. неструктуризованные или качественно выраженные проблемы, которые описываются лишь на содержательном уровне и решаются с использованием неформальных процедур;
  3. слабоструктуризованные (смешанные проблемы), которые содержат количественные и качественные проблемы, причем качественные, малоизвестные и неопределенные стороны проблем имеют тенденцию доменирования.

Эти проблемы решаются на основе комплексного использования формальных методов и неформальных процедур. За основу классификации взята степень структуризации проблем, причем структура всей проблемы определяется 5-ю логическими элементами:

  1. цель или ряд целей;
  2. альтернативы достижения целей;
  3. ресурсы, расходуемые на реализацию альтернатив;
  4. модель или ряд моделей;
  5. 5.критерий выбора предпочтительной альтернативы.

Степень структуризации проблемы определяется тем, на сколько хорошо выделены и осознаны указанные элементы проблем.

Характерно, что одна и та же проблема может занимать различное место в таблице классификации. В процессе все более глубокого изучения, осмысления и анализа проблема может превратиться из неструктуризованной в слабоструктуризованную, а затем из слабоструктуризованной в структуризованную. При этом выбор метода решения проблемы определяется ее местом в таблице классификаций.

Рис.1.2 — Таблица классификаций

  1. выявление проблемы;
  2. постановка проблемы;
  3. решение проблемы;
  4. неструктуризованная проблема (может решаться с помощью эвристических методов);
  5. методы экспертных оценок;
  6. слабо структуризованная проблема;
  7. методы системного анализа;
  8. хорошо структуризованная проблема;
  9. методы исследования операций;
  10. принятие решения;
  11. реализация решения;
  12. оценка решения.

Для решения проблем этого класса широко используются математические методы И.О. В операционном исследовании можно выделить основные этапы:

  1. Определение конкурирующих стратегий достижения цели.
  2. Построение математической модели операции.
  3. Оценка эффективностей конкурирующих стратегий.
  4. Выбор оптимальной стратегии достижения целей.

Математическая модель операции представляет собой функционал:

  • Е — критерий эффективности операций;
  • x — стратегия оперирующей стороны;
  • α — множество условий проведения операций;
  • β — множество условий внешней среды.

Модель позволяет оценить эффективность конкурирующих стратегий и выбрать из их числа оптимальную стратегию.

  1. постоянство проблемы
  2. ограничения
  3. критерий эффективности операций
  4. математическая модель операции
  5. параметры модели, но часть параметров, как правило, не известна, поэтому (6)
  6. прогнозирование информации (т.е. нужно предугадать ряд параметров)
  7. конкурирующие стратегии
  8. анализ и стратегии
  9. оптимальная стратегия
  10. утвержденная стратегия (более простая, но которая удовлетворяет еще ряду критериев)
  11. реализация решения
  12. корректировка модели

Критерий эффективности операции должен удовлетворять ряду требований:

  1. Представительность, т.е. критерий должен отражать основную, а не второстепенную цель операции.
  2. Критичность — т.е. критерий должен изменяться при изменении параметров операций.
  3. Единственность, так как только в этом случае возможно найти строгое математическое решение задачи оптимизации.
  4. Учет стохастичности, которая связана обычно со случайным характером некоторых параметров операций.
  5. Учет неопределенностей, которая связана с отсутствием какой-либо информации о некоторых параметров операций.
  6. Учет противодействия, которое вызывает часто сознательный противник, управляющий полными параметрами операций.
  7. Простая, т.к. простой критерий позволяет упростить математические выкладки при поиске opt. решения.

Приведем схему, которая иллюстрирует основные требования к критерию эффективности исследования операций.

Рис. 1.4 — Схема, которая иллюстрирует требования к критерию эффективности исследования операций

  1. постановка проблемы (вытекают 2 и 4 (ограничения));
  2. критерий эффективности;
  3. задачи верхнего уровня
  4. ограничения (мы организуем вложенность моделей);
  5. связь с моделями верхнего уровня;
  6. представительность;
  7. критичность;
  8. единственность;
  9. учет стохастичности;
  10. учет неопределенности;
  11. учет противодействия (теория игр);
  12. простота;
  13. обязательные ограничения;
  14. дополнительные ограничения;
  15. искусственные ограничения;
  16. выбор главного критерия;
  17. перевод ограничений;
  18. построение обобщенного критерия;
  19. оценка математического отид-я;
  20. построение доверительных интервалов:
  21. анализ возможных вариантов (есть система; мы точно не знаем, какова интенсивность вх. потока; мы можем только с определенной вероятностью предположить ту или иную интенсивность; затем взвешиваем выходящие варианты ).

Единственность — чтобы можно было решить задачу строго математическими методами.

Пункты 16, 17 и 18 — это способы, которые позволяют избавиться от многокритериальности.

Учет стохастичности — большая часть параметров имеет стохастическое значение. В ряде случаев стох. мы задаем в виде ф-и распределения, следовательно, сам критерий необходимо усреднить, т.е. применять математические ожидания, следовательно, п.19, 20, 21.

Для решения проблем этого класса целесообразно использовать методы экспертных оценок.

Методы экспертных оценок применяются в тех случаях, когда математическая формализация проблем либо невозможна в силу их новизны и сложности, либо требует больших затрат времени и средств. Общим для всех методов экспертных оценок является обращение к опыту, указанию и интуиции специалистов, выполняющих функции экспертов. Давая ответы на поставленный вопрос, эксперты являются как бы датчиками информации, которая анализируется и обобщается. Можно утверждать, следовательно: если в диапазоне ответов имеется истинный ответ, то совокупность разразненных мнений может быть эффективно синтезирована в некоторое обобщенное мнение, близкое к реальности. Любой метод экспертных оценок представляет собой совокупность процедур, направленных на получение информации эвристического происхождения и обработку этой информации с помощью математико-статистических методов.

Процесс подготовки и проведения экспертизы включает следующие этапы:

  1. определение цепей экспертизы;
  2. формирование группы специалистов-аналитиков;
  3. формирование группы экспертов;
  4. разработка сценария и процедур экспертизы;
  5. сбор и анализ экспертной информации;
  6. обработка экспертной информации;
  7. анализ результатов экспертизы и принятия решений.

При формировании группы экспертов необходимо учитывать их индивидуальные х-ки, которые влияют на результаты экспертизы:

  • компетентность (уровень профессиональной подготовки)
  • креативность (творческие способности человека)
  • конструктивность мышления (не «летать» в облаках)
  • конформизм (подверженность влиянию авторитета)
  • отношение к экспертизе
  • коллективизм и самокритичность

Методы экспертных оценок применяются достаточно успешно в следующих ситуациях:

  • выбор целей и тематики научных исследований
  • выбор вариантов сложных технических и социально-экономических проектов и программ
  • построение и анализ моделей сложных объектов
  • построение критериев в задачах векторной оптимизации
  • классификация однородных объектов по степени выраженности какого-либо свойства
  • оценка качества продукции и новой техники
  • принятие решений в задачах управления производством
  • перспективное и текущее планирование производства, НИР и ОКР
  • научно-техническое и экономическое прогнозирование и т.д. и т.п.

Для решения проблем этого класса целесообразно использовать методы системного анализа. Проблемы, решаемые с помощью системного анализа, имеют ряд характерных особенностей:

  1. принимаемое решение относится к будущему (завод, которого пока нет)
  2. имеется широкий диапазон альтернатив
  3. решения зависят от текущей неполноты технологических достижений
  4. принимаемые решения требуют больших вложений ресурсов и содержат элементы риска
  5. не полностью определены требования, относящиеся к стоимости и времени решения проблемы
  6. проблема внутренняя сложна в следствие того, что для ее решения необходимо комбинирование различных ресурсов.

Основные концепции системного анализа состоят в следующем:

  • процесс решения проблемы должен начинаться с выявления и обоснования конечной цели, которой хотят достичь в той или иной области и уже на этом основании определяются промежуточные цели и задачи
  • к любой проблеме необходимо подходить, как к сложной системе, выявляя при этом все возможные подроблемы и взаимосвязи, а также последствия тех или иных решений
  • в процессе решения проблемы осуществляется формирование множества альтернатив достижения цели; оценка этих альтернатив с помощью соответствующих критериев и выбор предпочтительной альтернативы
  • организационная структура механизма решения проблемы должна подчиняться цели или ряду целей, а не наоборот.

Системный анализ представляет собой многошаговый итеративный процесс, причем исходным моментов этого процесса является формулировка проблемы в некоторой первоначальной форме. При формулировке проблемы необходимо учитывать 2 противоречивых требования:

  1. проблема должна формулироваться достаточно широко, чтобы ничего существенного не упустить;
  2. проблема должна формироваться т.о., чтобы она была обозримой и могла быть структуризована. В ходе системного анализа степень структуризации проблемы повышается, т.е. проблема формулируется все более четко и исчерпывающе.

Рис. 1.5 — Один шаг системного анализа

  1. постановка проблемы
  2. обоснование цели
  3. формирование альтернатив
  4. исследование ресурса
  5. построение модели
  6. оценка альтернатив
  7. принятие решения (выбор одного решения)
  8. анализ чувствительности
  9. проверка исходных данных
  10. уточнение конечной цели
  11. поиск новых альтернатив
  12. анализ ресурсов и критериев

СА предусматривает: разработку системного метода решения проблемы, т.е. логически и процедурно организованную последовательность операций, направленных на выбор предпочтительной альтернативы решения. СА реализуется практически в несколько этапов, однако в отношении их числа и содержании пока еще нет единства, т.к. Э большое разнообразие прикладных проблем.

Приведем таблицу, которая иллюстрирует основные закономерности СА з-х различных научных школ.

Основные этапы системного анализа
По Ф. Хансману
ФРГ, 1978 год
По Д. Джеферсу
США, 1981 год
По В. В. Дружинину
СССР, 1988 год
  1. Общая ориентация в проблеме (эскизная постановка проблемы)
  2. Выбор соответствующих критериев
  3. Формирование альтернативных решений
  4. Выделение существенных факторов внешней среды
  5. Построение модели и ее проверка
  6. Оценка и прогноз параметров модели
  7. Получение информации на основе модели
  8. Подготовка к выбору решения
  9. Реализация и контроль
  1. Выбор проблемы
  2. Постановка задачи и ограничение степени ее сложности
  3. Установление иерархии, целей и задач
  4. Выбор путей решения задачи
  5. Моделирование
  6. Оценка возможных стратегий
  7. Внедрение результатов
  1. Выделение проблемы
  2. Описание
  3. Установление критериев
  4. Идеализация (предельное упрощение, попытка построения модели)
  5. Декомпозиция (разбивка по частям, нахождения решений по частям)
  6. Композиция («склеивание» частей вместе)
  7. Принятие наилучшего решения

В научный инструментарий СА входят следующие методы:

  • метод сценариев (пытаются дать описание системы)
  • метод дерева целей (есть конечная цель, она разбивается на подцели, подцели на проблемы и т.д., т.е. декомпозиция до задач, которые мы можем решить)
  • метод морфологического анализа (для изобретений)
  • методы экспертных оценок
  • вероятностно-статистические методы (теория МО, игр и т.д.)
  • кибернетические методы (объект в виде черного ящика)
  • методы ИО (скалярная opt)
  • методы векторной оптимизации
  • методы имитационного моделирования (например, GPSS)
  • сетевые методы
  • матричные методы
  • методы экономического анализа и др.

В процессе СА на разных его уровнях применяются различные методы, в которых эвристика сочетается с формализмом. СА выполняет роль методологического каркаса, объединяющего все необходимые методы, исследовательские приемы, мероприятия и ресурсы для решения проблем.

Процесс принятия решения состоит в выборе рационального решения из некоторого множества альтернативных решений с учетом системы предпочтений ЛПР. Как и всякий процесс, в котором участвует человек, имеет 2 стороны: объективную и субъективную.

Объективная сторона — это то, что реально вне сознания человека, а субъективная — это то, что находит отражение в сознании человека, т.е. объективное в сознании человека. Объективное отражается в сознании человека не всегда достаточно адекватно, однако от сюда не следует, что не может быть правильных решений. Практически верным считается такое решение, которое в главных чертах правильно отражает обстановку и соответствует поставленной задаче.

Система предпочтений ЛПР определяется многими факторами:

  • понимание проблемы и перспектив развития;
  • текущая информация о состоянии некоторой операции и внешние условия ее протекания;
  • директивы от вышестоящих инстанций и различного рода ограничений;
  • юридические, экономические, социальные, психологические факторы, традиции и др.

Рис. 1.6 — Система предпочтений ЛПР

  1. директивы от вышестоящих инстанций о целях и задачах операций (тех. процессы, прогнозирование)
  2. ограничения по ресурсам, степени самостоятельности и др.
  3. переработка информации
  4. операция
  5. информация о состоянии операции
  6. внешние условия (внешняя среда), а) детерминирование; б) стохастические (ЭВМ отказывает через случайный интервал t); в) организованное противодействие
  7. информация о внешних условиях
  8. рациональное решение
  9. синтез управления (зависит от системы)

Находясь в этих тисках, ЛПР должен нормировать множество потенциально возможных решений из них. Из них отобрать 4-5 лучших и из них — 1 решение.

Системный подход к процессу принятия решений состоит в реализации 3-х взаимосвязанных процедур:

  1. Выделяется множество потенциально возможных решений.
  2. Из их числа отбирается множество конкурирующих решений.
  3. Выбирается рациональное решение с учетом системы предпочтений ЛПР.

Рис. 1.7 — Системный подход к процессу принятия решений

  1. возможные решения
  2. конкурирующие решения
  3. рациональное решение
  4. цель и задачи операции
  5. информация о состоянии операции
  6. информация о внешних условиях
    1. стохастические
    2. организованное противодействие
  7. ограничение по ресурсам
  8. ограничение по степени самостоятельности
  9. дополнительные ограничения и условия
    1. юридические факторы
    2. экономические факторы
    3. социологические факторы
    4. психологические факторы
    5. традиции и другое
  10. критерий эффективности

Современный системный анализ является прикладной наукой, нацеленной на выяснение причин реальных сложностей, возникших перед «обладателем проблемы» и на выработку вариантов их устранения. В наиболее развитой форме системный анализ включает и непосредственное, практическое улучшающее вмешательство в проблемную ситуацию.

Читайте также:  Какие анализы нужно принести гастроэнтерологу

Системность не должна казаться неким нововведением, последним достижением науки. Системность есть всеобщее свойство материи, форма ее существования, а значит, и неотъемлемое свойство человеческой практики, включая мышление. Всякая деятельность может быть менее или более системной. Появление проблемы — признак недостаточной системности; решение проблемы — результат повышения системности. Теоретическая мысль на разных уровнях абстракции отражала системность мира вообще и системность человеческого познания и практики. На философском уровне — это диалектический материализм, на общенаучном — системология и общая теория систем, теория организации; на естественно-научном — кибернетика. С развитием вычислительной техники возникли информатика и искусственный интеллект.

В начале 80-х годов стало очевидным, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение». Системность становится не только теоретической категорией, но и осознанным аспектом практической деятельности. Поскольку большие и сложные системы по необходимости стали предметом изучения, управления и проектирования, потребовалось обобщение методов исследования систем и методов воздействия на них. Должна была возникнуть некая прикладная наука, являющаяся «мостом» между абстрактными теориями системности и живой системной практикой. Она и возникла — сначала, как мы отмечали, в различных областях и под разными названиями, а в последние годы сформировалась в науку, которая получила название «системный анализ».

Особенности современного системного анализа вытекают из самой природы сложных систем. Имея в качестве цели ликвидацию проблемы или, как минимум, выяснение ее причин, системный анализ привлекает для этого широкий спектр средств, использует возможности различных наук и практических сфер деятельности. Являясь по существу прикладной диалектикой, системный анализ придает большое значение методологическим аспектам любого системного исследования. С другой стороны, прикладная направленность системного анализа приводит к использованию всех современных средств научных исследований — математики, вычислительной техники, моделирования, натурных наблюдений и экспериментов.

В ходе исследования реальной системы обычно приходится сталкиваться с самыми разнообразными проблемами; быть профессионалом в каждой из них невозможно одному человеку. Выход видится в том, чтобы тот, кто берется осуществлять системный анализ, имел образование и опыт, необходимые для опознания и классификации конкретных проблем, для определения того, к каким специалистам следует обратиться для продолжения анализа. Это предъявляет особые требования к специалистам-системщикам: они должны обладать широкой эрудицией, раскованностью мышления, умением привлекать людей к работе, организовывать коллективную деятельность.

Прослушав настоящий курс лекций, или прочитав несколько книг по данной теме нельзя стать специалистом по системному анализу. Как выразился У.Шекспир: «Если бы делать было бы столь легко, как знать, что надо делать — часовни были бы соборами, хижины — дворцами». Профессионализм приобретается в практике.

Рассмотрим любопытный прогноз наиболее быстро расширяющихся сфер занятости в США: Динамика в % 1990-2000гг.

  • средний медицинский персонал — 70%
  • специалисты по радиационным технологиям — 66%
  • агенты бюро путешествий — 54%
  • аналитики компьютерных систем — 53%
  • программисты — 48%
  • инженеры-электронщики — 40%

Что означает само слово «система» или «большая система», что означает «действовать системно»? Ответы на эти вопросы мы будем получать постепенно, повышая уровень системности наших знаний, в чем и состоит цель данного курса лекций. Пока же нам достаточно тех ассоциаций, которые возникают при употреблении в обычной речи слова «система» в сочетании со словами «общественно-политическая», «Солнечная», «нервная», «отопительная» или «уравнений», «показателей», «взглядов и убеждений». Впоследствии мы будем подробно и всесторонне рассматривать признаки системности, а сейчас отметим только самые очевидные и обязательные из них:

  • структурированность системы;
  • взаимосвязанность составляющих ее частей;
  • подчиненность организации всей системы определенной цели.

По отношению, например, к человеческой деятельности указанные признаки очевидны, поскольку каждый из нас легко обнаружит их в своей собственной практической деятельности. Всякое наше осознанное действие преследует вполне определенную цель; во всяком действии легко увидеть его составные части, более мелкие действия. При этом составные части выполняются не в произвольном порядке, а в определенной их последовательности. Это и есть определенная, подчиненная цели взаимосвязанность составных частей, которая и является признаком системности.

Другое название для такого построения деятельности — алгоритмичность. Понятие алгоритма возникло вначале в математике и означало задание точно определенной последовательности однозначно понимаемых операций над числами или другими математическими объектами. В последние годы начинает осознаваться алгоритмичность любой деятельности. Уже говорят не только об алгоритмах принятия управленческих решений, об алгоритмах обучения, алгоритмах игры в шахматы, но и об алгоритмах изобретательства, алгоритмах композиции музыки. Подчеркнем, что при этом делается отход от математического понимания алгоритма: сохраняя логическую последовательность действий, допускается, что в алгоритме могут присутствовать неформализованные действия. Таким образом, явная алгоритмизация любой практической деятельности является важным свойством ее развития.

Одна из особенностей познания — наличие аналитического и синтетического образов мышления. Суть анализа состоит в разделении целого на части, в представлении сложного в виде совокупности более простых компонент. Но чтобы познать целое, сложное, необходим и обратный процесс — синтез. Это относится не только к индивидуальному мышлению, но и к общечеловеческому знанию. Скажем так, расчлененность мышления на анализ и синтез и взаимосвязанность этих частей являются важнейшим признаком системности познания.

Здесь нам важно выделить ту мысль, что системность — это не только свойство человеческой практики, включающей и внешнюю активную деятельность, и мышление, но свойство всей материи. Системность нашего мышления вытекает из системности мира. Современные научные данные и современные системные представления позволяют говорить о мире как о бесконечной иерархической системе систем, находящихся в развитии и на разных стадиях развития, на разных уровнях системной иерархии.

В заключении, в качестве информации к размышлению, приведем схему изображающую связь вопросов, рассмотренных выше.

Рис 1.8 — Связь вопросов рассмотренных выше

источник

В научных исследованиях и технических разработках, на производстве, в социальных областях мы постоянно сталкиваемся с совокупностями объектов, которые принять называть сложными системами. Их отличительные особенности – это многочисленные и разные по типу связи между отдельными элементами системы и наличие у системы функции (назначения), которой нет у составляющих ее частей. Каждая конкретная система имеет только ей присущую организацию, то есть определенный порядок, внутренние свойства связей между элементами, направленность на выполнение функции системы. Примерами систем являются человек, трактор, ЛТА.

Задача изучения системы и ее организации – понять поведение системы (это задача анализа). Задачей более высокого уровня выступает создание нужной нам системы и управление ею (это задача синтеза). Ведущей операцией при этом является принятие решения, то есть некоторый формализованный или неформализованный выбор, позволяющий достичь некоторой цели или продвинуться в ее направлении. Принятие решений в сложной системе производится техническим средством или человеком и основано на сравнении и оценке вариантов действий. Изучение процедур принятия решения и связанной с этим организации системы составляют актуальную проблему создания и эксплуатации сложных систем. Решение указанной проблемы невозможно без применения системного анализа.

В современном понимании системный анализ – это научная дисциплина, занимающаяся разработкой методов и моделей анализа и синтеза систем, а также проблемами принятия решений в условиях анализа большого количества информации различной природы.

В системном анализе могут быть выделены методология, аппаратная реализация, опыт применения в различных областях науки и практики.

Методология есть базовое начало системного анализа. Она включает определения используемых понятий, принципы системного подхода, а также постановку и общую характеристику основных проблем организации системных исследований.

Под аппаратной реализацией понимаются стандартные приемы моделирования сложных систем и общие способы работы с моделями.

Опыт применения системного анализа в различных областях в настоящее время чрезвычайно велик. Важнейшими областями применения являются научно-технические разработки, экономика, биология, экология, военное дело, социология, психология, управление государством и регионами, обучение, выработка научного мировоззрения и др.

В связи с развитием науки образовалась сложная иерархия узкоспециализированных дисциплин. В конце 19-го – начале 20 в. появилась жизненная необходимость в выполнении комплексных проектов. Появились новые науки: «Кибернетика», «Теория информации», «Исследование операций» и др. Начиная с 50-х годов 20 в. стала формироваться общенаучная дисциплина «Общая теория систем» или «Системология». Системный анализ тесно связан с этими дисциплинами.

Общая теория систем занимается всевозможными вопросами исследования систем, а не только проблемами принятия решений, как это делается в системном анализе. В этом смысле системный анализ составляет существенную, важную в прикладном отношении часть теории систем. Значительным достижением по теории систем выступают теория организации русского экономиста Александра Богданова и общая теория систем американского биолога Людвига фон Берталанфи (изобретатель модели человеческого мозга – персифтона). Истоки образования общей теории систем относят к 1954 г., когда группа из четырех ученых по моделированию в биологии, психологии и экономике образовали общество системных исследований. Достаточно сформировавшейся является математическая теория сложных систем (Р.Калман, М.Месарович, Н.П.Бусленко, Г.С.Поспелов, В.М.Глушков). В нашей стране эти работы особенно интенсивно стали выполняться после 60 г., когда был снят запрет на кибернетику.

Частью теории систем следует считать кибернетику, которая традиционно определяется как наука об управлении, связи и переработке информации. Понятие управление близко, но не совпадает с принятием решения. Системный анализ перенял у кибернетики значительное количество терминов, такие как входы и выходы в системе, модули, потоки информации, структурные схемы.

Системотехника определяется и как применение теории систем к области техники, и как применение техники, прежде всего вычислительной, при исследовании сложных систем. Еще более узко – как использование системного анализа для проектирования ЭВМ и сетей ЭВМ, а также создания их программного обеспечения.

Понятие информатика чаще всего понимается как исследование проблем хранения, использования и преобразования информации при помощи средств вычислительной техники. Эта ветвь знания является одной из основ при проведении системного анализа при помощи ЭВМ.

В отечественной научной литературе исследование операций традиционно обозначает математическую дисциплину, занимающуюся исследованием математических моделей для выбора параметров, оптимизирующих некоторый критерий (или критерии) эффективности системы. Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной. В литературе США термин «исследование операций» не является чисто математическим и приближается к термину «системный анализ».

Системный анализ взаимодействует со всеми перечисленными дисциплинами, а наиболее тесно связан с теорией систем. Системный анализ в значительной мере опирается на такие ее части, как структуризация, иерархия в системе, связь системы с «не системой» (внешней средой), законы протекания процессов в системе, эволюция системы, в том числе, самоорганизация. Специфические части самого системного анализа: целенаправленная система, выделение действий и приемы работы с ними, сочетание формализованных и неформализованных процедур, действия лица, принимающего решения, системные вопросы информатики. Широкая опора на исследование операций, которая имеет место, по крайней мере, в технике и экономике, приводит его к таким математическим разделам, как постановка задач принятия решения, описание множества альтернатив, методы и модели задач оптимизации, исследование многокритериальных задач и др.

источник

Системный анализ – методология исследования сложных технических, природных и социальных систем, решение сложных проблем произвольной природы: история развития и становления. Характеристика задач, назначение и формализация цели, выбор критерия решения.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1.1 Определения системного анализа

1.2 Характеристика задач системного анализа

2. Понятие «проблемы» в системном анализе

Системный анализ с практической точки зрения представляет собой универсальную методику решения сложных проблем произвольной природы, где понятие «проблемы» определяется как «субъективное отрицательное отношение субъекта к реальности». Сложность диагностики проблемы отчасти связана с тем, что субъект может не обладать специальными знаниями и потому не способен адекватно интерпретировать результаты исследования, проведенного системным аналитиком.

Системный анализ со временем стал меж- и над дисциплинарным курсом, обобщающий методологию исследования сложных технических и социальных систем.

С ростом населения на планете, ускорением научно-технического прогресса, угрозой голода, безработицы и различных экологических катастроф, становится все более важным применение системного анализа.

Западные авторы (Дж. ван Гиг, Р. Эшби, Р. Акофф, Ф. Эмери, С. Бир) большей частью склоняются к прикладному системному анализу, применению его для анализа и проектирования организаций. Классики советского системного анализа (А.И. Уемов, М.В. Блауберг, Э.Г. Юдин, Ю.А. Урманцев и др.) большее внимание уделяют теории системного анализа, как каркаса увеличивающегося научного знания, определению философских категорий «система», «элемент», «часть», «целое» и т.п.

Системный анализ требует дальнейшего исследования особенностей и закономерностей самоорганизующихся систем; развития информационного подхода, основанного на диалектической логике; подхода, основанного на постепенной формализации моделей принятия решений на основе сочетания формальных методов и методик; становления теории системно-структурного синтеза; разработки методов организации сложных экспертиз.

Разработанность темы «системный анализ» достаточно велика: понятием системности занимались многие ученые, исследователи, философы. Однако можно отметить недостаточное количество полных и явных теорий исследования тематики его применения в управлении.

Объектом исследования работы является системный анализ, а предметом — изучение и анализ эволюции системного анализа в теории и практики.

Целью работы является выявление основных этапов развития и становления системного анализа.

Данная цель обусловливает необходимость решения следующих основных задач:

— изучить историю развития и изменение системного анализа;

— рассмотреть методологию системного анализа;

— изучить и проанализировать возможности реализации системного анализа.

1.1 Определения системного анализа

Системный анализ как дисциплина сформировался в результате возникновения необходимости исследовать и проектировать сложные системы, управлять ими в условиях неполноты информации, ограниченности ресурсов и дефицита времени.

Системный анализ является дальнейшим развитием целого ряда дисциплин, таких как исследование операций, теория оптимального управления, теория принятия решений, экспертный анализ, теория организации эксплуатации систем и т.д. Для успешного решения поставленных задач системный анализ использует всю совокупность формальных и неформальных процедур. Перечисленные теоретические дисциплины являются базой и методологической основой системного анализа. Таким образом, системный анализ — междисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем. Широкое распространение идей и методов системного анализа, а главное — успешное их применение на практике стало возможным только с внедрением и повсеместным использованием ЭВМ. Акофф, Р.О целеустремленных системах / Р. Акофф, Ф. Эмери. — М.: Советское радио, 2008. — 272 с. Именно применение ЭВМ как инструмента решения сложных задач позволило перейти от построения теоретических моделей систем к широкому их практическому применению. В связи с этим Н.Н. Моисеев пишет, что системный анализ — это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем — технических, экономических, экологических и т.д. Центральной проблемой системного анализа является проблема принятия решения.

Читайте также:  Как сделать анализ анкетирования пример

Применительно к задачам исследования, проектирования и управления сложными системами проблема принятия решения связана с выбором определённой альтернативы в условиях различного рода неопределённости. Неопределённость обусловлена многокритериальностью задач оптимизации, неопределённостью целей развития систем, неоднозначностью сценариев развития системы, недостаточностью априорной информации о системе, воздействием случайных факторов в ходе динамического развития системы и прочими условиями. Учитывая данные обстоятельства, системный анализ можно определить как дисциплину, занимающуюся проблемами принятия решений в условиях, когда выбор альтернативы требует анализа сложной информации различной физической природы. Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. — Л.: ЛПИ, 2008. — 83 с.

Главным содержанием дисциплины «Системный анализ» являются сложные проблемы принятия решений, при изучении которых неформальные процедуры представления здравого смысла и способы описания ситуаций играют не меньшую роль, чем формальный математический аппарат.

Системный анализ является дисциплиной синтетической. В нём можно выделить три главных направления. Эти три направления соответствуют трём этапам, которые всегда присутствуют в исследовании сложных систем:

1) построение модели исследуемого объекта;

2) постановка задачи исследования;

3) решение поставленной математической задачи.

Построение модели (формализация изучаемой системы, процесса или явления) есть описание процесса на языке математики. При построении модели осуществляется математическое описание явлений и процессов, происходящих в системе.

Поскольку знание всегда относительно, описание на любом языке отражает лишь некоторые стороны происходящих процессов и никогда не является абсолютно полным. С другой стороны, следует отметить, что при построении модели необходимо уделять основное внимание тем сторонам изучаемого процесса, которые интересуют исследователя. Глубоко ошибочным является желание при построении модели системы отразить все стороны существования системы. При проведении системного анализа, как правило, интересуются динамическим поведением системы, причём при описании динамики с точки зрения проводимого исследования есть первостепенные параметры и взаимодействия, а есть несущественные в данном исследовании параметры. Таким образом, качество модели определяется соответствием выполненного описания тем требованиям, которые предъявляются к исследованию, соответствием получаемых с помощью модели результатов ходу наблюдаемого процесса или явления. Построение математической модели есть основа всего системного анализа, центральный этап исследования или проектирования любой системы. От качества модели зависит результат всего системного анализа. Берталанфи Л. Фон. Общая теория систем: критический обзор / Берталанфи Л. Фон // Исследования по общей теории систем. — М.: Прогресс, 2009. — С. 23 — 82.

Постановка задачи исследования

На данном этапе формулируется цель анализа. Цель исследования предполагается внешним фактором по отношению к системе. Таким образом, цель становится самостоятельным объектом исследования. Цель должна быть формализована. Задача системного анализа состоит в проведении необходимого анализа неопределённостей, ограничений и формулировании, в конечном счёте, некоторой оптимизационной задачи

Анализируя требования к системе, т.е. цели, которые предполагает достигнуть исследователь, и те неопределённости, которые при этом неизбежно присутствуют, исследователь должен сформулировать цель анализа на языке математики. Язык оптимизации оказывается здесь естественным и удобным, но вовсе не единственно возможным.

Решение постановленной математической задачи

Только этот третий этап анализа можно отнести собственно к этапу, использующему в полной степени математические методы. Хотя без знания математики и возможностей её аппарата успешное выполнение двух первых этапов невозможно, так как и при построении модели системы, и при формулировании цели и задач анализа широкое применение должны находить методы формализации. Однако отметим, что именно на завершающем этапе системного анализа могут потребоваться тонкие математические методы. Но следует иметь в виду, что задачи системного анализа могут иметь ряд особенностей, которые приводят к необходимости применения наряду с формальными процедурами эвристических подходов. Причины, по которым обращаются к эвристическим методам, в первую очередь связаны с недостатком априорной информации о процессах, происходящих в анализируемой системе. Также к таковым причинам можно отнести большую размерность вектора х и сложность структуры множества G. В данном случае трудности, возникающие в результате необходимости применения неформальных процедур анализа, зачастую являются определяющими. Успешное решение задач системного анализа требует использования на каждом этапе исследования неформальных рассуждений. Ввиду этого проверка качества решения, его соответствие исходной цели исследования превращается в важнейшую теоретическую проблему.

1.2 Характеристика задач системного анализа

Системный анализ в настоящее время вынесен на самое остриё научных исследований. Он призван дать научный аппарат для анализа и изучения сложных систем. Лидирующая роль системного анализа обусловлена тем, что развитие науки привело к постановке тех задач, которые призван решать системный анализ. Особенность текущего этапа состоит в том, что системный анализ, ещё не успев сформироваться в полноценную научную дисциплину, вынужден существовать и развиваться в условиях, когда общество начинает ощущать потребность в применении ещё недостаточно разработанных и апробированных методов и результатов и не в состоянии отложить решение связанных с ними задач на завтра. В этом источник, как силы, так и слабости системного анализа: силы — потому, что он постоянно ощущает воздействие потребности практики, вынужден непрерывно расширять круг объектов исследования, и не имеет возможности абстрагироваться от реальных потребностей общества; слабости — потому, что нередко применение «сырых», недостаточно проработанных методов системных исследований ведёт к принятию скороспелых решений, пренебрежению реальными трудностями. Клир, Д. Системология / Д. Клир. — М.: Радио и связь, 2009. — 262 с.

Рассмотрим основные задачи, на решение которых направлены усилия специалистов и которые нуждаются в дальнейшей разработке. Во-первых, следует отметить задачи исследования системы взаимодействий анализируемых объектов с окружающей средой. Решение данной задачи предполагает:

— проведение границы между исследуемой системой и окружающей средой, предопределяющей предельную глубину влияния рассматриваемых взаимодействий, которыми ограничивается рассмотрение;

— определение реальных ресурсов такого взаимодействия;

— рассмотрение взаимодействий исследуемой системы с системой более высокого уровня.

Задачи следующего типа связаны с конструированием альтернатив этого взаимодействия, альтернатив развития системы во времени и в пространстве. Важное направление развития методов системного анализа связано с попытками создания новых возможностей конструирования оригинальных альтернатив решения, неожиданных стратегий, непривычных представлений и скрытых структур. Другими словами, речь здесь идёт о разработке методов и средств усиления индуктивных возможностей человеческого мышления в отличие от его дедуктивных возможностей, на усиление которых, по сути дела, направлена разработка формальных логических средств. Исследования в этом направлении начаты лишь совсем недавно, и единый концептуальный аппарат в них пока отсутствует. Тем не менее, и здесь можно выделить несколько важных направлений — таких, как разработка формального аппарата индуктивной логики, методов морфологического анализа и других структурно-синтаксических методов конструирования новых альтернатив, методов синтектики и организации группового взаимодействия при решении творческих задач, а также изучение основных парадигм поискового мышления.

Задачи третьего типа заключаются в конструировании множества имитационных моделей, описывающих влияние того или иного взаимодействия на поведение объекта исследования. Отметим, что в системных исследованиях не преследуется цель создания некоей супермодели. Речь идёт о разработке частных моделей, каждая из которых решает свои специфические вопросы.

Даже после того как подобные имитационные модели созданы и исследованы, вопрос о сведении различных аспектов поведения системы в некую единую схему остается открытым. Однако решить его можно и нужно не посредством построения супермодели, а анализируя реакции на наблюдаемое поведение других взаимодействующих объектов, т.е. путём исследования поведения объектов — аналогов и перенесения результатов этих исследований на объект системного анализа.

Такое исследование даёт основание для содержательного понимания ситуаций взаимодействия и структуры взаимосвязей, определяющих место исследуемой системы в структуре суперсистемы, компонентом которой она является.

Задачи четвёртого типа связаны с конструированием моделей принятия решений. Всякое системное исследование связано с исследованием различных альтернатив развития системы. Задача системных аналитиков — выбрать и обосновать наилучшую альтернативу развития. На этапе выработки и принятия решений необходимо учитывать взаимодействие системы с её подсистемами, сочетать цели системы с целями подсистем, выделять глобальные и второстепенные цели.

Наиболее развитая и в то же время наиболее специфическая область научного творчества связана с развитием теории принятия решений и формированием целевых структур, программ и планов. Здесь не ощущается недостатка и в работах, и в активно работающих исследователях. Однако и в данном случае слишком многие результаты находятся на уровне неподтверждённого изобретательства и разночтений в понимании, как существа стоящих задач, так и средств их решения. Исследования в этой области включают: Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. — Л.: ЛПИ, 2008. — 83 с.

а) построение теории оценки эффективности принятых решений или сформированных планов и программ;

б) решение проблемы многокритериальности в оценках альтернатив решения или планирования;

в) исследования проблемы неопределённости, особенно связанной не с факторами статистического характера, а с неопределённостью экспертных суждений и преднамеренно создаваемой неопределённостью, связанной с упрощением представлений о поведении системы;

г) разработка проблемы агрегирования индивидуальных предпочтений на решениях, затрагивающих интересы нескольких сторон, которые влияют на поведение системы;

д) изучение специфических особенностей социально-экономических критериев эффективности;

е) создание методов проверки логической согласованности целевых структур и планов и установления необходимого баланса между предопределённостью программы действий и её подготовленностью к перестройке при поступлении новой информации, как о внешних событиях, так и изменении представлений о выполнении этой программы.

Для последнего направления требуется новое осознание реальных функций целевых структур, планов, программ и определение тех, которые они должны выполнять, а также связей между ними.

Рассмотренные задачи системного анализа не охватывают полного перечня задач. Здесь перечислены те, которые представляют наибольшую сложность при их решении. Следует отметить, что все задачи системных исследований тесно взаимосвязаны друг с другом, не могут быть изолированы и решаться отдельно как по времени, так и по составу исполнителей. Более того, чтобы решать все эти задачи, исследователь должен обладать широким кругозором и владеть богатым арсеналом методов и средств научного исследования. Анфилатов, В.С. Системный анализ в управлении : учеб. пособие / В.С. Анфилатов и др.; под ред. А.А. Емельянова. — М.: Финансы и статистика, 2008. — 368 с.

Конечной целью системного анализа является разрешение проблемной ситуации, возникшей перед объектом проводимого системного исследования (обычно это конкретная организация, коллектив, предприятие, отдельный регион, социальная структура и т.п.). Системный анализ занимается изучением проблемной ситуации, выяснением её причин, выработкой вариантов её устранения, принятием решения и организацией дальнейшего функционирования системы, разрешающего проблемную ситуацию. Начальным этапом любого системного исследования является изучение объекта проводимого системного анализа с последующей его формализацией. На этом этапе возникают задачи, в корне отличающие методологию системных исследований от методологии других дисциплин, а именно, в системном анализе решается двуединая задача. С одной стороны, необходимо формализовать объект системного исследования, с другой стороны, формализации подлежит процесс исследования системы, процесс постановки и решения проблемы. Приведём пример из теории проектирования систем. Современная теория автоматизированного проектирования сложных систем может рассматриваться как одна из частей системных исследований. Согласно ей проблема проектирования сложных систем имеет два аспекта. Во-первых, требуется осуществить формализованное описание объекта проектирования. Причём на этом этапе решаются задачи формализованного описания как статической составляющей системы (в основном формализации подлежит её структурная организация), так и её поведение во времени (динамические аспекты, которые отражают её функционирование). Во-вторых, требуется формализовать процесс проектирования. Составными частями процесса проектирования являются методы формирования различных проектных решений, методы их инженерного анализа и методы принятия решений по выбору наилучших вариантов реализации системы.

В различных областях практической деятельности (технике, экономике, социальных науках, психологии) возникают ситуации, когда требуется принимать решения, для которых не удаётся полностью учесть предопределяющие их условия.

Принятие решения в таком случае будет происходить в условиях неопределённости, которая имеет различную природу.

Один из простейших видов неопределённости — неопределённость исходной информации, проявляющаяся в различных аспектах. В первую очередь, отметим такой аспект, как воздействие на систему неизвестных факторов.

Неопределённость, обусловленная неизвестными факторами, также бывает разных видов. Наиболее простой вид такого рода неопределённости — стохастическая неопределённость. Она имеет место в тех случаях, когда неизвестные факторы представляют собой случайные величины или случайные функции, статистические характеристики которых могут быть определены на основании анализа прошлого опыта функционирования объекта системных исследований.

Следующий вид неопределённости — неопределённость целей. Формулирование цели при решении задач системного анализа является одной из ключевых процедур, потому что цель является объектом, определяющим постановку задачи системных исследований. Неопределённость цели является следствием из многокритериальности задач системного анализа.

Назначение цели, выбор критерия, формализация цели почти всегда представляют собой трудную проблему. Задачи со многими критериями характерны для крупных технических, хозяйственных, экономических проектов.

И, наконец, следует отметить такой вид неопределённости, как неопределённость, связанная с последующим влиянием результатов принятого решения на проблемную ситуацию. Дело в том, что решение, принимаемое в настоящий момент и реализуемое в некоторой системе, призвано повлиять на функционирование системы. Собственно для того оно и принимается, так как по идее системных аналитиков данное решение должно разрешить проблемную ситуацию. Однако поскольку решение принимается для сложной системы, то развитие системы во времени может иметь множество стратегий. И, конечно же, на этапе формирования решения и принятия управляющего воздействия аналитики могут не представлять себе полной картины развития ситуации. Анфилатов, В.С. Системный анализ в управлении : учеб. пособие / В.С. Анфилатов и др.; под ред. А.А. Емельянова. — М.: Финансы и статистика, 2008. — 368 с.

анализ система технический природный социальный

2. Понятие «проблемы» в системном анализе

Системный анализ с практической точки зрения представляет собой универсальную методику решения сложных проблем произвольной природы. Ключевым понятием в данном случае является понятие «проблемы», которое можно определить как «субъективное отрицательное отношение субъекта к реальности». Соответственно этап выявления и диагностики проблемы в сложных системах является наиболее важными, т. к. определяет цели и задачи проведения системного анализа, а также методы и алгоритмы, которые будут применяться в дальнейшем при поддержке принятия решений. В тоже время этот этап является наиболее сложным и наименее формализованным.

Читайте также:  Какие анализы сдать при кровотечение

Анализ русскоязычных трудов по системному анализу позволяет выделить два наиболее крупных направления в данной области, которые можно условно назвать рациональный и объективно-субъективный подходы.

Первое направление (рациональный подход) рассматривает системный анализ как набор методов, и в том числе методов, основанных на использовании ЭВМ, ориентированных на исследование сложных систем. При таком подходе наибольшее внимание уделяется формальным методам построения моделей систем и математическим методам исследования системы. Понятия «субъект» и «проблема» как таковые не рассматриваются, а вот понятие «типовых» систем и проблем как раз встречается часто (система управления — проблема управления, финансовая система — финансовые проблемы и др.).

При таком подходе «проблема» определяется как несоответствие действительного желаемому, т. е. несоответствие между реально наблюдаемой системой и «идеальной» моделью системы. Важно отметить, что в данном случае система определяется исключительно как та часть объективной реальности, которую необходимо сравнить с эталонной моделью.

Если опираться на понятие «проблемы», то можно сделать заключение, что при рациональном подходе проблема возникает только у системного аналитика, который имеет некую формальную модель некоторой системы, находит данную систему и обнаруживает несоответствие модели и реальной системы, что и вызывает его «отрицательное отношение к реальности». Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. — Л.: ЛПИ, 2008. — 83 с.

Очевидно, что существуют системы, организация и поведение которых строго регламентирована и признана всеми субъектами — это, например, юридические законы. Несоответствие модели (закона) и действительности в данном случае является проблемой (правонарушением), которую нужно решить. Однако для большинства искусственных систем строгих регламентов не существует, а субъекты имеют свои личные цели по отношению к подобным системам, редко совпадающие с целями других субъектов. Более того, конкретный субъект имеет свое собственное представление о том, частью какой системы он является, с какими системами он взаимодействует. Понятия, которыми оперирует субъект, могут кардинально отличаться от «рациональных» общепринятых. Например, субъект может вообще не выделять из окружающей среды систему управления, а использовать некую только ему понятную и удобную модель взаимодействия с миром. Получается, что навязывание общепринятых (даже если и рациональных) моделей может привести к возникновению «отрицательного отношения» у субъекта, а значит к появлению новых проблем, что в корне противоречит самой сути системного анализа, который предполагает улучшающее воздействие — когда хотя бы одному участнику проблемы станет лучше и никому не станет хуже.

Очень часто постановку задачи системного анализа в рациональном подходе выражают в терминах задачи оптимизации, т. е. идеализируют проблемную ситуацию до уровня, позволяющего использовать математические модели и количественные критерии для определения наилучшего варианта разрешения проблемы.

Как известно для системной проблемы не существует какой-либо модели, исчерпывающе устанавливающей причинно-следственные связи между ее компонентами, потому оптимизационный подход кажется не вполне конструктивным: «…теория системного анализа исходит из отсутствия оптимального, абсолютно лучшего варианта разрешения проблем любой природы… предлагается итеративный поиск реально достижимого (компромиссного) варианта разрешения проблемы, когда желаемым можно поступиться в угоду возможному, а границы возможного могут быть существенно расширены за счет стремления достичь желаемого. Тем самым предполагается использование ситуативных критериев предпочтительности, т. е. критериев, которые не являются исходными установками, а вырабатываются в ходе проведения исследования…».

Другое направление системного анализа — объективно-субъективный подход, основанное на работах Акоффа, ставит понятие субъекта и проблемы во главу системного анализа. По сути, в данном подходе мы включаем субъекта в определение существующей и идеальной системы, т.е. с одной стороны системный анализ исходит из интересов людей — вносит субъективную составляющую проблемы, с другой стороны исследует объективно наблюдаемые факты и закономерности.

Вернемся к определению «проблемы». Из него, в частности, следует, что когда мы наблюдаем нерациональное (в общепринятом смысле) поведение субъекта, и субъект не имеет отрицательного отношения к происходящему, то нет и проблемы, которую нужно было бы решать. Данный факт хотя и не противоречит понятию «проблемы», но в определенных ситуациях исключать возможность существования объективной составляющей проблемы нельзя.

Системный анализ имеет в своем арсенале следующие возможности решить проблему субъекта:

* вмешаться в объективную реальность и, устранив объективную часть проблемы, изменить субъективное отрицательное отношение субъекта,

* изменить субъективное отношение субъекта, не вмешиваясь в реальность,

* одновременно вмешаться в объективную реальность и изменить субъективное отношение субъекта.

Очевидно, что второй способ не решает проблему, а всего лишь устраняет ее влияние на субъект, а значит объективная составляющая проблемы остается. Справедлива и обратная ситуация, когда объективная составляющая проблемы уже проявилась, но субъективное отношение еще не сформировано, либо по ряду причин оно пока не стало отрицательным.

Вот несколько причин, почему у субъекта может отсутствовать «отрицательное отношение к реальности»: Директор, С. Введение в теорию систем / С. Директор, Д. Рорар. — М.: Мир, 2009. — 286 с.

* имеет не полную информацию о системе или использует ее не полностью;

* меняет оценку взаимоотношений с окружающей средой на психическом уровне;

* прерывает взаимоотношение с окружающей средой, которая вызывала «отрицательное отношение»;

* не верит информации о существовании проблем и их сущности, т.к. полагает, что сообщающие ее люди очерняют его деятельность или преследуют свои корыстные интересы, а может быть и потому, что просто лично не любит этих людей.

Следует помнить о том, что при отсутствии отрицательного отношения субъекта объективная составляющая проблемы остается и в той или иной степени продолжает влиять на субъект, либо проблема может существенно обостриться в будущем.

Поскольку выявление проблемы требует анализа субъективного отношения, то этот этап относится к неформализуемым этапам системного анализа.

Каких-либо эффективных алгоритмов или приемов на настоящий момент не предложено, чаще всего авторы работ по системному анализу полагаются на опыт и интуицию аналитика и предлагают ему полную свободу действий.

Системный аналитик должен обладать достаточным набором инструментов для описания и анализа той части объективной реальности, с которой взаимодействует или может взаимодействовать субъект. Инструменты могут включать методы экспериментального исследования систем и их моделирования. С повсеместным внедрением современных информационных технологий в организациях (коммерческих, научных, медицинских и др.) почти каждый аспект их деятельности регистрируется и сохраняется в базах данных, которые уже сегодня имеют очень большие объемы. Информация в подобных базах данных содержит детальное описание, как самих систем, так и истории их (систем) развития и жизни. Можно сказать, что сегодня при анализе большинства искусственных систем аналитик вероятнее столкнется с недостатком эффективных методов исследования систем, нежели с недостатком информации о системе.

Однако субъективное отношение должен сформулировать именно субъект, а он может не обладать специальными знаниями и потому не способен адекватно интерпретировать результаты исследования, проведенного аналитиком. Поэтому знания о системе и прогнозные модели, которые в итоге получит аналитик, должны быть представлены в явном, доступном к интерпретации виде (возможно на естественном языке). Такое представление можно назвать знаниями об исследуемой системе.

К сожалению эффективных методов получения знаний о системе на текущий момент не предложено. Наибольший интерес представляют модели и алгоритмы Data Mining (интеллектуальные анализ данных), которые в частных приложениях используются для извлечения знаний из «сырых» данных. Стоит отметить, что Data Mining является эволюцией теории управления баз данными и оперативного анализа данных (OLAP), основанной на использовании идеи многомерного концептуального представления.

Но в последние годы в связи с нарастающей проблемой «перегрузки информацией», все больше исследователей используют и совершенствуют методы Data Mining для решения задач извлечения знаний.

Широкое применение методов извлечения знаний весьма затруднено, что с одной стороны связано с недостаточной эффективностью большинства известных подходов, которые базируется на достаточно формальных математических и статистических методах, а с другой — с трудностью использования эффективных методов интеллектуальных технологий, которые не имеют достаточного формального описания и требуют привлечения дорогих специалистов. Последнее можно преодолеть, используя перспективный подход к построению эффективной системы анализа данных и извлечения знаний о системе, основанный на автоматизированном генерировании и настройке интеллектуальных информационных технологий. Такой подход позволит, во-первых, за счет применения передовых интеллектуальных технологий существенно повысить эффективность решения задачи извлечения знаний, которые будут предъявляться субъекту на этапе выявления проблемы при системном анализе. Во-вторых, исключить потребность в специалисте по настройке и использования интеллектуальных технологий, т. к. последние будут генерироваться, и настраиваться в автоматическом режиме. Берталанфи Л. Фон. История и статус общей теории систем / Берталанфи Л. Фон // Системные исследования: ежегодник. — М.: Наука, 2010. — C. 20 — 37.

Становление системного анализа связывают с серединой ХХ века, но на самом деле он начал применялся значительно раньше. Именно в экономике его использование связывают с именем теоретика капитализма К. Марксом.

Сегодня этот метод можно назвать универсальным — системный анализа применяется в управлении любыми организациями. Значение его в управленческой деятельности сложно не переоценить. Управление с позиции системного похода есть осуществление совокупности воздействий на объект для достижения заданной цели, на основании информации о поведении объекта и состояния внешней среды. Системный анализ позволяет учитывать различие социокультурных особенностей людей, которые работают в компании, и культурной традиции общества, в которой функционирует организация. Менеджеры могут проще согласовывать свою конкретную работу с работой организации в целом, если они понимают систему и свою роль в ней.

К минусам системного анализа, можно отнести то, что системность означает определенность, непротиворечивость, целостность, а в реальной жизни это не наблюдается. Но эти принципы относятся к любой теории, и это не делает их неопределенными или противоречивыми. В теории каждый исследователь должен найти основные принципы и корректировать их в зависимости от ситуации. В рамках системного так же можно выделить проблемы копирования стратегии или даже техники ее формирования, которая может работать в одной фирме и быть совершенно бесполезной в другой

Системный анализ в процессе развития совершенствовался, изменялась и сфера его применения. На его базе разрабатывались задачи управления в нескольких направлениях.

1. Акофф, Р. Основы исследования операций / Р. Акофф, М. Сасиенн. — М.: Мир, 2009. — 534 с.

2. Акофф, Р. О целеустремленных системах / Р. Акофф, Ф. Эмери. — М.: Советское радио, 2008. — 272 с.

3. Анохин, П.К. Избранные труды: философские аспекты теории систем / П.К. Анохин. — М.: Наука, 2008.

4. Анфилатов, В.С. Системный анализ в управлении : учеб. пособие / В.С. Анфилатов и др.; под ред. А.А. Емельянова. — М.: Финансы и статистика, 2008. — 368 с.

5. Берталанфи Л. Фон. История и статус общей теории систем / Берталанфи Л. Фон // Системные исследования: ежегодник. — М.: Наука, 2010. — C. 20 — 37.

6. Берталанфи Л. Фон. Общая теория систем: критический обзор / Берталанфи Л. Фон // Исследования по общей теории систем. — М.: Прогресс, 2009. — С. 23 — 82.

7. Богданов, А.А. Всеобщая организационная наука: текстология: в 2 кн. / А.А. Богданов. — М., 2005

8. Волкова, В.Н. Основы теории систем и системного анализа: учебник для вузов / В.Н. Волкова, А.А. Денисов. — 3-е изд. — СПб.: Изд-во СПбГТУ, 2008.

9. Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. — Л.: ЛПИ, 2008. — 83 с.

10. Воронов, А.А. Основы теории автоматического управления / А.А. Воронов. — М.: Энергия, 2009. — Т. 1.

11. Директор, С. Введение в теорию систем / С. Директор, Д. Рорар. — М.: Мир, 2009. — 286 с.

12. Клир, Д. Системология / Д. Клир. — М.: Радио и связь, 2009. — 262 с.

Выбор критерия оценки эффективности управленческого решения. Предварительная формулировка задачи. Составление математических моделей. Сопоставление вариантов решения по критерию эффективности. Системный анализ как методология принятия сложных решений.

контрольная работа [30,4 K], добавлен 11.10.2012

Предмет и история развития системного анализа. Моделирование – составляющие целенаправленной деятельности. Субъективные и объективные цели. Классификация систем. Модели обработки данных. Множественность задач принятия решений. Выбор как реализации цели.

шпаргалка [921,0 K], добавлен 19.10.2010

Основные положения теории систем. Методология системных исследований в экономике. Процедуры системного анализа, их характеристика. Модели поведения человека и общества. Постулаты системного подхода к управлению. Ключевые идеи для поиска решения проблем.

контрольная работа [40,0 K], добавлен 29.05.2013

Определение системного анализа. Основные аспекты системного подхода. Процедура принятия решений. Разработка управленческого решения создания службы управления персоналом в соответствии с технологией применения системного анализа к решению сложных задач.

курсовая работа [46,5 K], добавлен 07.12.2009

Изучение объектов как систем, выявление особенностей и закономерностей их функционирования. Методы принятия решения. Организационная структура службы. Диагностика состояния производственной системы ОАО «Муромский радиозавод» с помощью сложных графиков.

контрольная работа [60,2 K], добавлен 16.06.2014

Состояние, проблемы и основные направления развития ЖКХ. Системный анализ деятельности ООО «Хабтеплосеть 1», выявление проблем, направления и пути их решения. Построение дерева решений, структурно-логическая схема обработки информации на предприятии.

курсовая работа [211,0 K], добавлен 18.07.2011

Анализ и выявление основных проблем приобретения квартиры на современном этапе. Порядок и принципы применения методов системного анализа в решении данной проблемы. Выбор системы оценки для решений и выявление оптимального решения поставленной задачи.

контрольная работа [31,1 K], добавлен 18.10.2010

Системный подход к управлению производством, проектирование и обеспечение функционирования систем. Принятие управленческих решений, выбор одного курса действия из альтернативных вариантов. Принцип проектной организации. Системный анализ в управлении.

реферат [19,8 K], добавлен 07.03.2010

Зависимость успеха предприятия от способности быстро адаптироваться к внешним изменениям. Требования к системе управления предприятием. Исследование систем управления, методика выбора оптимального варианта решения проблемы по критериям результативности.

реферат [25,6 K], добавлен 15.04.2010

Понятие управления сложными организационно-экономическими системами в логистике. Системный подход к проектированию логистической системы промышленного предприятия. Совершенствование управляющих параметров сложных организационно-экономических систем.

курсовая работа [765,6 K], добавлен 05.05.2015

источник