Системный анализ – это есть не набор каких-то руководств или принципов для управляющих, это способ мышления по отношению к организации и управлению. Системный анализ используется в тех случаях, когда стремятся исследовать объект с разных сторон, комплексно. Наиболее распространенным направлением системных исследований считается системный анализ, под которым понимают методологию решения сложных задач и проблем, основанную на концепциях, разработанных в рамках теории систем. Системный анализ определяется и как «приложение системных концепций к функциям управления, связанным с планированием», или даже со стратегическим планированием и целевой стадией планирования.
Термин «системный анализ» впервые появился в 1948 г . в работах корпорации RAND в связи с задачами внешнего управления, а в отечественной литературе широкое распространение получил после перевода книги С. Оптнера [220]. Дальнейшее развитие системный анализ получил в трудах зарубежных и отечественных ученых: Гэйна К., Сарсона Т., Клиланда Д., Кинга В. [108], Перегудова Ф.И., Тарасенко Ф.П. [334], Юдина Б. Г. [357], Валуева С.А. [37], Губанова В.А., Захарова В.В., Коваленко А.Н. [65], Кафарова В.В., Дорохова И.Н., Маркова Е.П. [100], Мисюра Я.С., Купрюхина А.И., Дубенчака Г.И., Джагарова Ю.А. Дубенчака В.Е. [234].
Во многих работах системный анализ развивается применительно к проблеме планирования и управления в период усиления внимания к программно-целевым принципам. В планировании термин «системный анализ» был практически неотделим от терминов «целеобразование», «программно-целевое планирование». Для исследования этих вопросов пока еще почти нет формализованных средств: имеются методики, обеспечивающие полноту расчленения системы на части, но почти нет работ, в которых исследовалось бы, как при расчленении на части не утратить целого.
Понимая недостаточность и необходимость разработки средств декомпозиции и сохранения целостности, в последнее время часто возвращаются к определению системного анализа как формализованного здравого смысла, к пониманию системного анализа как искусства.
Системный анализ основывается на следующих принципах:
1) единства – совместное рассмотрение системы как единого целого и как совокупности частей;
2) развития – учет изменяемости системы, ее способности к развитию, накапливанию информации с учетом динамики окружающей среды;
3) глобальной цели – ответственность за выбор глобальной цели. Оптимум подсистем не является оптимумом всей системы;
4) функциональности – совместное рассмотрение структуры системы и функций с приоритетом функций над структурой;
5) децентрализации – сочетание децентрализации и централизации;
6) иерархии – учет соподчинения и ранжирования частей;
7) неопределенности – учет вероятностного наступления события;
8) организованности – степень выполнения решений и выводов.
Сущность системного подхода формулировалась многими авторами. В развернутом виде она сформулирована Афанасьевым В.Н., Колмановским В.Б. и Носовым В.Р., определившими ряд взаимосвязанных аспектов, которые в совокупности и единстве составляют системный подход [12]:
– системно-элементный, отвечающий на вопрос, из чего (каких компонентов) образована система;
– системно-структурный, раскрывающий внутреннюю организацию системы, способ взаимодействия образующих ее компонентов;
– системно-функциональный, показывающий, какие функции выполняет система и образующие ее компоненты;
– системно-коммуникационный, раскрывающий взаимосвязь данной системы с другими как по горизонтали, так и по вертикали;
– системно-интегративный, показывающий механизмы, факторы сохранения, совершенствования и развития системы;
– системно-исторический, отвечающий на вопрос, как, каким образом возникла система, какие этапы в своем развитии проходила, каковы ее исторические перспективы.
Быстрый рост современных организаций и уровня их сложности, разнообразие выполняемых операций привели к тому, что рациональное осуществление функций руководства стало исключительно трудным делом, но в тоже время еще более важным для успешной работы предприятия. Чтобы справится с неизбежным ростом числа операций и их усложнением, крупная организация должна основывать свою деятельность на системном подходе. В рамках этого подхода руководитель может более эффективно интегрировать свои действия по управлению организацией.
Системный подход способствует, как уже говорилось, главным образом выработке правильного метода мышления о процессе управления. Руководитель должен мыслить в соответствии с системным подходом. При изучении системного подхода прививается такой образ мышления, который, с одной стороны, способствует устранению излишней усложненности, а с другой – помогает руководителю уяснять сущность сложных проблем и принимать решения на основе четкого представления об окружающей обстановке. Важно структурировать задачу, очертить границы системы. Но столь же важно учесть, что системы, с которыми руководителю приходится сталкиваться в процессе своей деятельности, являются частью более крупных систем, возможно, включающих всю отрасль или несколько, порой много, компаний и отраслей промышленности, или даже все общество в целом. Далее следует сказать, что эти системы постоянно изменяются: они создаются, действуют, реорганизуются и, бывает, ликвидируются.
Принципиальной особенностью системного анализа является использование методов двух типов – формальных и неформальных (качественных, содержательных).
Методика системного анализа разрабатывается и применяется в тех случаях, когда у лиц, принимающих решения, на начальном этапе нет достаточных сведений о проблемной ситуации, позволяющих выбрать метод ее формализованного представления, сформировать математическую модель или применить один из новых подходов к моделированию, сочетающих качественные и количественные приемы. В таких условиях может помочь представление объектов в виде систем, организация процесса принятия решения с использованием разных методов моделирования.
Для того чтобы организовать такой процесс, нужно определить последовательность этапов, рекомендовать методы для выполнения этих этапов, предусмотреть при необходимости возврат к предыдущим этапам. Такая последовательность определенным образом выделенных и упорядоченных этапов с рекомендованными методами или приемами их выполнения представляет собой методику системного анализа.
Таким образом, методика системного анализа разрабатывается для того, чтобы организовать процесс принятия решения в сложных проблемных ситуациях. Она должна ориентироваться на необходимость обоснования полноты анализа, формирование модели принятия решения, адекватно отображать рассматриваемый процесс или объект.
Одной из принципиальных особенностей системного анализа, отличающей его от других направлений системных исследований, является разработка и использование средств, облегчающих формирование и сравнительный анализ целей и функций систем управления. Вначале методики формирования и исследования структур целей базировались на сборе и обобщении опыта специалистов, накапливающих этот опыт на конкретных примерах. Однако в этом случае невозможно учесть полноту получаемых данных.
Таким образом, основной особенностью методик системного анализа является сочетание в них формальных методов и неформализованного (экспертного) знания. Последнее помогает найти новые пути решения проблемы, не содержащиеся в формальной модели, и таким образом непрерывно развивать модель и процесс принятия решения, но одновременно быть источником противоречий, парадоксов, которые иногда трудно разрешить. Поэтому исследования по системному анализу начинают все больше опираться на методологию прикладной диалектики.
С учетом вышесказанного в определении системного анализа нужно подчеркнуть, что системный анализ:
– применяется для решения таких проблем, которые не могут быть поставлены и решены отдельными методами математики, т.е. проблем с неопределенностью ситуации принятия решения, когда используют не только формальные методы, но и методы качественного анализа («формализованный здравый смысл»), интуицию и опыт лиц, принимающих решения;.
– объединяет разные методы с помощью единой методики; опирается на научное мировоззрение;
– объединяет знания, суждения и интуицию специалистов различных областей знаний и обязывает их к определенной дисциплине мышления;
– уделяет основное внимание целям и целеобразованию.
Приведенная характеристика научных направлений, возникших между философией и узкоспециальными дисциплинами, позволяет расположить их примерно в следующем порядке: философско-методологичекие дисциплины, теория систем, системный подход, системология, системный анализ, системотехника, кибернетика, исследование операций, специальные дисциплины.
Системный анализ расположен в середине этого перечня, так как он использует примерно в одинаковых пропорциях философско-методологические представления (характерные для философии, теории систем) и формализованные методы и модели (что характерно для специальных дисциплин).
Системология и теория систем по сравнению с системным анализом больше пользуются философскими понятиями и качественными представлениями и ближе к философии. Исследование операций, системотехника, напротив, имеют более развитый формальный аппарат, но менее развитые средства качественного анализа и постановки сложных задач с большой неопределенностью и с активными элементами.
Рассматриваемые научные направления имеют много общего. Необходимость в их применении возникает в тех случаях, когда проблема (задача) не может быть решена методами математики или узкоспециальных дисциплин. Несмотря на то, что первоначально направления исходили из разных основных понятий (исследование операций – из понятия «операция»; кибернетика – из понятий «управление», «обратная связь», «системный анализ», теория систем, системотехника; системология – из понятия «система»), в дальнейшем направления оперируют со многими одинаковыми понятиями – элементы, связи, цели и средства, структура и др.
Разные направления пользуются также одинаковыми математическими методами. В то же время есть между ними и отличия, которые обусловливают их выбор в конкретных ситуациях принятия решений. В частности, основными специфическими особенностями системного анализа, отличающими его от других системных направлений, являются:
– наличие, средств для организации процессов целе-образования, структуризации и анализа целей (другие системные направления ставят задачу достижения целей, разработки вариантов пути их достижения и выбора наилучшего из этих вариантов, а системный анализ рассматривает объекты как системы с активными элементами, способные и стремящиеся к целеобразованию, а затем уже и к достижению сформированных целей);
– разработка и использование методики, в которой определены этапы, подэтапы системного анализа и методы их выполнения, причем в методике сочетаются как формальные методы и модели, так и методы, основанные на интуиции специалистов, помогающие использовать их знания, что обусловливает особую привлекательность системного анализа для решения экономических проблем.
Рассмотрим основные методы, направленные на использование интуиции и опыта специалистов, а также методы формализованного представления систем [234].
Методы данного типа преследуют основную цель – поиск новых идей, их широкое обсуждение и конструктивную критику. Основная гипотеза заключается в предположении, что среди большого числа идей имеются по меньшей мере несколько хороших. При проведении обсуждений по исследуемой проблеме применяются следующие правила:
1) сформулировать проблему в основных терминах, выделив единственный центральный пункт;
2) не объявлять идею ложной и не прекращать исследование ни одной идеи;
3) поддерживать идею любого рода, даже если ее уместность кажется вам в данное время сомнительной;
4) оказывать поддержку и поощрение, чтобы освободить участников обсуждения от скованности.
При всей кажущейся простоте данные обсуждения дают неплохие результаты.
Основа этих методов – различные формы экспертного опроса с последующим оцениванием и выбором наиболее предпочтительного варианта. Возможность использования экспертных оценок, обоснование их объективности базируется на том, что неизвестная характеристика исследуемого явления трактуется как случайная величина, отражением закона распределения которой является индивидуальная оценка эксперта о достоверности и значимости того или иного события. При этом предполагается, что истинное значение исследуемой характеристики находится внутри диапазона оценок, полученных от группы экспертов и что обобщенное коллективное мнение является достоверным. Наиболее спорным моментом в данных методиках является установление весовых коэффициентов по высказываемым экспертами оценкам и приведение противоречивых оценок к некоторой средней величине. Данная группа методов находит широкое применение в социально-экономических исследованиях.
Первоначально метод «Дельфи» был предложен как одна из процедур при проведении мозговой атаки и должен был помочь снизить влияние психологических факторов и повысить объективность оценок экспертов. Затем метод стал использоваться самостоятельно. Его основа – обратная связь, ознакомление экспертов с результатами предшествующего тура и учет этих результатов при оценке значимости экспертов.
Термин «дерево» предполагает использование иерархической структуры, полученной путем разделения общей цели на подцели. Для случаев, когда древовидный порядок строго по всей структуре не выдерживается, В. И. Глушков ввел понятие «прогнозного графа». Метод «дерева целей» ориентирован на получение относительно устойчивой структуры целей проблем, направлений. Для достижения этого при построении первоначального варианта структуры следует учитывать закономерности целеобразования и использовать принципы формирования иерархических структур.
Основная идея морфологического подхода – систематически находить все возможные варианты решения проблемы путем комбинирования выделенных элементов или их признаков. В систематизированном виде метод морфологического анализа был впервые предложен Ф. Цвикки и часто так и называется «метод Цвикки» [234]. Известны три основные схемы метода:
– метод систематического покрытия поля, основанный на выделении так называемых опорных пунктов знаний в исследуемой области и использование для заполнения поля некоторых сформулированных принципов мышления;
– метод отрицания и конструирования, который заключается в формулировке некоторых предположений и замене их на противоположные с последующим анализом возникающих несоответствий;
– метод морфологического ящика, который состоит в определении всех возможных параметров, от которых может зависеть решение проблемы. Выявленные параметры формируют матрицы, содержащие все возможные сочетания параметров по одному из каждой строки с последующим выбором наилучшего сочетания.
Одна из наиболее полных классификаций, базирующаяся на формализованном представлении систем, т.е. на математической основе, включает следующие методы:
– аналитические (методы как классической математики, так и математического программирования);
– статистические (математическая статистика, теория вероятностей, теория массового обслуживания);
– теоретико-множественные, логические, лингвистические, семиотические (рассматриваемые как разделы дискретной математики);
– графические (теория графов и пр.).
Классу плохо организованных систем соответствует в данной классификации статистические представления. Для класса самоорганизующихся систем наиболее подходящими являются модели дискретной математики и графические модели, а также их комбинации.
Прикладные классификации ориентированы на экономико-математические методы и модели и в основном определяются функциональным набором задач, решаемых системой.
2.1.3. Этапы системного анализа (по Перегудову и Тарасенко , Лийву, Спицнаделю, Симанкову, Казиеву ) и вопросы его детализации
Ведущие зарубежные Акофф Р. [5], Бир С., Винер Р.[44], Месарович М., Мако Д., Такахара И. [190. 191], Оптнер С.Л. [220], Черчмен У., Эшби У.Р. [356], Янг С. [363], и отечественные ученые в области системного анализа Ф.И.Перегудов, Ф.П.Тарасенко [234], В.С.Симанков [271], Э.Х.Лийв [132], В.Н.Спицнадель [298], предлагают несколько отличающиеся друг от друга схемы основных этапов системного анализа.
Отечественные классики в области системного анализа Ф.И.Перегудов и Ф.П.Тарасенко считают [234], что системный анализ не может быть полностью формализован. Ими предложена схема неформализованных этапов системного анализа, представленная на рисунке 2.1:
Однако, в утверждении этих авторов есть некоторый смысловой парадокс, состоящий в том, что предложенная ими схема, приведенная на рисунке 2.1, сама может рассматриваться как первый шаг на пути формализации представленных на ней этапов системного анализа в форме алгоритма:
1. Определение конфигуратора.
2. Постановка проблемы – отправной момент исследования. В исследовании сложной системы ему предшествует работа по структурированию проблемы.
3. Расширение проблемы до проблематики, т.е. нахождение системы проблем, существенно связанных с исследуемой проблемой, без учета которых она не может быть решена.
4. Выявление целей: цели указывают направление, в котором надо двигаться, чтобы поэтапно решить проблему.
5. Формирование критериев. Критерий – это количественное отражение степени достижения системой поставленных перед ней целей. Критерий –это правило выбора предпочтительного варианта решения из ряда альтернативных. Критериев может быть несколько. Многокритериальность является способом повышения адекватности описания цели. Критерии должны описать по возможности все важные аспекты цели, но при этом необходимо минимизировать число необходимых критериев.
6. Агрегирование критериев. Выявленные критерии могут быть объединены либо в группы, либо заменены обобщающим критерием.
7. Генерирование альтернатив и выбор с использованием критериев наилучшей из них. Формирование множества альтернатив является творческим этапом системного анализа.
8. Исследование ресурсных возможностей, включая информационные потоки и ресурсы.
9. Выбор формализации (построение и использование моделей и ограничений) для решения проблемы.
10. Оптимизация (для простых систем).
12. Наблюдение и эксперименты над исследуемой системой.
14. Использование результатов проведенного системного исследования.
Чтобы облегчить выбор методов в реальных условиях принятия решения, необходимо разделить методы на группы, охарактеризовать особенности этих групп и дать рекомендации по их использованию при разработке моделей и методик системного анализа.
Как уже отмечалось, специфической особенностью системного анализа является сочетание качественных и формальных методов. Такое сочетание составляет основу любой используемой методики. Различные схемы системного анализа, предлагаемые ведущими учеными в этой области (Оптнер С.Л., Янг С., Федоренко Н.П., Никаноров С.П., Черняк Ю.И., Перегудов Ф.И., Тарасенко Ф.П., Симанков В.С., Казиев В.М., Лийв Э.Х.) сведены в таблице 2.1:
Таблица 2. 1 – ЭТАПЫ СИСТЕМНОГО АНАЛИЗА СОГЛАСНО РАЗЛИЧНЫМ АВТОРАМ
Раскроем подробнее содержание основных этапов системного анализа по В.С.Симанкову [271], которым предложена, по-видимому, наиболее детализированная на данный момент иерархическая структуризация системного анализа в виде IDEF0-диаграмм (рисунок 2.2):
Важным достоинством IDEF0-диаграмм является возможность наглядно графически отобразить не только сами этапы системного анализа в их взаимосвязи, но и показать различные виды ресурсного обеспечения для реализации этих этапов (информационные, кадровые и др.), а также дать развернутую характеристику каждого этапа по его входу и выходу.
Этап исследования системы представляется в виде IDEF0 диаграммы, приведенной на рисунке 2.3.
Этап моделирования представляется в виде IDEF0 диаграммы, приведенной на рисунке 2.4:
Рисунок 2. 4 . Этап СА » Моделирование систем» по В.С.Симанкову [271]
В соответствии с общим алгоритмом системного анализа (рисунок 2.2) этап синтеза системы управления представляется в виде следующей IDEF0 диаграммы (рисунке 2.5):
В соответствии с общим алгоритмом системного анализа (рисунок 2.2) этап синтеза системы, представляется в виде IDEF0-диаграмм, приведенных на рисунках 2.6 – 2.9:
В соответствии с общим алгоритмом системного анализа (рисунок 2.2) этап реализации и развития системы, является завершающим. Он представляется в виде IDEF-диаграммы, приведенной на рисунке 2.10.
Работы по детализации системного анализа вдохновлялись надеждой на то, что более мелкие этапы легче автоматизировать. Отчасти этой надежде суждено было осуществиться. Но парадокс этого пути автоматизации системного анализа, который оправданно было бы назвать путем «максимальной детализации» состоит в том, что на пути «максимальной детализации» сама автоматизация системного анализа велась не системно: т.е. различные мелкие этапы СА автоматизировались различными не связанными друг с другом группами ученых и разработчиков, которые исходили при этом из своих целей, научных интересов и возможностей.
В результате на данный момент сложилась следующая картина:
– не все этапы системного анализа автоматизированы;
– для автоматизации различных этапов системного анализа применяются различные математические модели и теории, с применением различных инструментальных средств и на различных платформах созданы различные программные системы, не связанные друг с другом и не образующие единого инструментального комплекса;
– как правило эти программные системы имеют специализированный характер, т.е. автоматизируют отдельные этапы системного анализа не в универсальной форме, а лишь в одной конкретной предметной области.
Поэтому автор считает, что «максимальная детализация системного анализа» – не самоцель, т.е. бессмысленна «детализация ради детализации». Безусловно данное направление представляет интерес в научном плане, однако, по-видимому, не перспективно как путь автоматизации системного анализа, т.к. будучи изначально предназначено для облегчения процесса его автоматизации на деле оно фактически лишь усложнило решение этой задачи.
Таким образом, из приведенных детализированных схем этапов и процедур системного анализа очевидно, что на всех этапах широко используются когнитивные операции, т.е. операции, связанные с познанием предметной области и объекта управления и с созданием их идеальной модели. Поэтому в данной работе предлагается иной путь автоматизации системного анализа состоящий не в его максимальной детализации, а в интеграции с когнитивными технологиями путем структурирования по когнитивным операциям.
Рассмотрим этапы когнитивного анализа в варианте, предлагаемом ведущими отечественными учеными в этой области В.И.Максимов, Е.К.Корноушенко, Гребенюк Е.А., Григорян А.К. [62, 64] (рисунок 2.11):
В этой связи необходимо также отметить работы Казиева В.М., С.В.Качаева , А.А.Кулинич, А.Н.Райкова, Д.И.Макаренко, С.В.Ковриги, Е.А.Гребенюка, А.К.Григоряна в области когнитивного анализа [62, 64, 94, 171, 172, 175–177, 255–258].
Если проанализировать перечисленные методы системного анализа, то можно сделать основополагающий для данного исследования вывод о том, что все они самым существенным образом так или иначе основаны на процессах познания предметной области.
Поэтому как одно из важных и перспективных направлений автоматизации системного анализа предлагается рассматривать автоматизацию когнитивных операций системного анализа. Чтобы выявить эти операции и определить их место и роль в процессах познания, рассмотрим базовую когнитивную концепцию.
2.1.5. Предлагаемая обобщенная схема системного анализа, ориентированного на интеграцию с когнитивными технологиями
Сопоставительный анализ приведенных в таблице 2.1 схем системного и когнитивного анализа, а также анализ иерархической схемы детализированного системного анализа, предложенной В.С.Симанковым [271], показывает, что они во многом взаимно дополняют друг друга. Это является основанием для их объединения в одной схеме. С учетом этого, а также модели реагирования открытых систем на вызовы среды, предложенной В.Н.Лаптевым [122] (рисунок 2.12), нами предложена схема системного анализа, ориентированного на интеграцию с когнитивными технологиями, представленная на рисунке 2.13.
В данной схеме отражены следующие этапы реагирования:
– идентификация текущего состояния системы как детерминистского (типового) или бифуркационного (нетипичного, качественно-нового);
– если ситуация типовая, то выработка рекомендаций по управлению стандартным (формализованным) путем, за которым следует переход системы в предусмотренное состояние и уточнение правил принятия решения на основе информации обратной связи о степени успешности управления (адаптация модели);
– если ситуация качественно-новая, то осуществляется неформализованный поиск нового нестандартного решения;
– если нестандартное решение удачно, то, происходит переход системы в качественно-новое состояние, а само решение формализуется и становится типовым (синтез модели), т.е. передается в будущие состояния, в противном случае система гибнет.
Рисунок 2. 13 . Схема системного анализа , ориентированного
на интеграцию с когнитивными технологиями
источник
Системный анализ – это методология теории систем, заключающаяся в исследовании любых объектов, представляемых в качестве систем, проведения их структуризации и последующего анализа. Главная особенность системного анализа заключается в том, что он включает в себя не только метод анализа (от греч. analysis – расчленение объекта на элементы), но и метод синтеза (от греч. synthesis – соединение элементов в единое целое).
Системный анализ принято рассматривать в двух аспектах как:
1. Научную дисциплину, разрабатывающую общие принципы исследования сложных объектов с учетом их системного характера.
2. Методологию исследования (анализ) любого объекта в качестве системы и конструирования (синтез) новой системы в соответствии с определенными целями.
В первом случае системный анализ выступает в качестве универсальной научной теории исследования объектов — систем. Как научная дисциплина системный анализ развивает идею кибернетики, т.е. исследует категории общие для многих дисциплин и относящиеся к понятию «система», которое изучается в любой научной отрасли знаний.
Например, любой экономический объект, и экономику в целом, можно исследовать с системных позиций с трех позиций:
· генетической, т.е. историческое развитие системы;
· организационной, т.е. изучение структуры строения системы;
· функциональной, т.е. изучения процессов ее функционирования.
Во втором случае системный анализ рассматривается в качестве прикладных научных средств исследования и проектирования систем с заданными характеристиками. В этом аспекте системный анализ представляет собой эффективное средство решения сложных, недостаточно четко сформулированных проблем в науке, производстве и других предметных областях.
Главная цель системного анализа — обнаружить и устранить неопределенность при решении сложной проблемы на основе поиска наилучшего решения из существующих альтернатив.
Следовательно, системный анализ — это совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера, вызванных наличием факторов, не поддающихся строгой количественной оценке. Он опирается на системный подход, а также на ряд математических дисциплин, современных методов управления и информационных технологий.
В основе методологии системного анализа лежат операции количественного сравнения и выбора альтернатив в процессе принятия решения, подлежащего реализации. Если требование заданного качества альтернатив выполнено, то могут быть получены их количественные оценки. Для того чтобы количественные оценки позволяли вести сравнение альтернатив, они должны отражать участвующие в сравнении свойства альтернатив (результат, эффективность, стоимость и другие).
В системном анализе решение проблемы определяется как деятельность, которая сохраняет или улучшает характеристики системы, или создает новую систему с заданными качествами. Приемы и методы системного анализа направлены на разработку альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому варианту и сопоставление вариантов по их эффективности (критериям).
Поэтому, системный анализ можно представить в виде совокупности основных логических элементов:
· цель исследования – решение проблемы и получение результата;
· ресурсы – научные средства решения проблемы (методы);
· альтернативы – варианты решений и необходимость выбора одного из нескольких решений;
· критерии – средство (признак) оценки решаемости проблемы;
· модель создания новой системы.
Проблема – это сложный теоретический или практический вопрос, требующий разрешения, изучения, исследования. Проблема – это всегда наличие какого-либо противоречия между реальной системой и требованиями к ней внешней среды.
Например, проблема возникает тогда, когда состояние системы уже не соответствует реальным условиям существования ее в прежнем виде. Разрешение проблемы может осуществляться в процессе принятия решений по ее изменению на основе выявления причинно-следственных связей между ее прежними параметрами и требованиями к ее изменению в новых условиях.
Выявление проблемных ситуаций – это и есть проблема принятия решений. Процесс принятия решений должен завершаться конкретными результатами. Такими результатами становятся решение конкретных задач.
Поэтому проблема принятия решений разбивается на ряд обязательных этапов:
· определение цели исследования или определение системы целей;
· определение критериев их достижения;
· формулировка конкретных задач;
· выбор способов, приемов, методов и научных средств для решения поставленных задач.
Основными задачами системного анализа являются:
· задача декомпозиции означает представление системы (проблемы) в виде подсистем (задач), состоящих из более мелких элементов;
· задача анализа состоит в нахождении различного рода свойств системы, элементов и определения границ окружающей среды с целью определения закономерностей ее поведения;
· задача синтеза состоит в том, чтобы на основе знаний о системе, полученных при решении первых двух задач, создать новую модель системы, определить ее структуру, параметры, обеспечивающие эффективное функционирование системы, решение задач и достижение поставленной цели исследования.
Общая структура системного анализа представлена в таблице 3.1.
Таблица 1 — Основные задачи и функции системного анализа
Структура системного анализа | ||
Декомпозиция | Анализ | Синтез |
Определение и декомпозиция общей цели, основной функции | Функционально-структурный анализ | Разработка новой модели системы |
Выделение системы из среды | Морфологический анализ (анализ взаимосвязи компонентов) | Структурный синтез |
Описание воздействующих факторов | Генетический анализ (анализ предыстории, тенденций, прогнозирование) | Параметрический синтез |
Описание тенденций развития, неопределенностей | Анализ аналогов | Оценка новой системы |
Описание как «черного ящика» | Анализ эффективности | |
Функциональная, компонентная и структурная декомпозиция | Формирование требований к создаваемой системе |
В концепции системного анализа процесс решения любой сложной проблемы рассматривается в качестве решения системы взаимосвязанных задач, каждая из которых решается своими предметными методами, а затем производится синтез этих решений, оцениваемый критерием (или критериями) достижения решаемости данной проблемы. Логическая структура процесса принятия решений в рамках системного анализа представлена на рисунке. 1.
В методике системного анализа главное — процесс постановки цели. В экономике не нужна готовая модель объекта или процесса принятия решения (математический метод), нужна методика, позволяющая постепенно формировать модель решения, обосновывая ее адекватность на каждом шаге формирования эффективного решения, с участием лица принимающего решение (ЛПР).
Рисунок 1. Схема процесса решения проблемы
Проблемы (задачи), решение которых ранее были основаны на интуиции (проблема управления разработками организационных структур), теперь не могут решаться без системного анализа, т.к. чаще всего они имеют системный характер. Для принятия «взвешенных» проектных, управленческих, социально-экономических и других решений необходим широкий охват и всесторонний анализ факторов, существенно влияющих на решаемую проблему. Необходимо использовать системный подход при изучении проблемной ситуации и привлекать средства системного анализа для решения этой проблемы. Особенно полезно использовать методологию системного подхода и системного анализа при решении сложных проблем — выдвижении и выборе концепции (гипотезы, идеи) стратегии развития фирмы, разработке качественно новых рынков сбыта продукции, совершенствование и приведение в соответствие с новыми условиями рынка внутренней среды фирмы и т.д.
Системный анализ основывается на множестве принципов, которые определяют его основное содержание и отличие от других видов анализа.
К ним относятся следующие принципы:
· Конечной цели, формулирование цели исследования, определение основных свойств функционирующей системы, ее назначение (целеполагание), показатели качества и критерии оценки достижения цели;
· Измерения, суть этого принципа в сопоставимости ее параметров с параметрами системы высшего уровня, т.е. внешней среды. О качестве функционирования какой-либо системы можно судить только применительно ее результатов к надсистеме, т.е. для определения эффективности функционирования исследуемой системы надо представить ее в качестве части системы высшего уровня и проводить оценку ее результатов относительно целей и задач надсистемы или окружающей среды;
· Эквифинальности – определение формы устойчивого развития системы по отношению к начальным и граничным условиям, т.е. определение ее потенциальных возможностей Система может достигнуть требуемого конечного состояния, независимо от времени и определяемого исключительно собственными характеристиками системы при различных начальных условиях и различными путями;
· Единства – рассмотрение системы как целого и совокупности взаимосвязанных элементов. Принцип ориентирован на «взгляд внутрь» системы, на расчленение ее с сохранением целостных представлений о системе;
· Взаимосвязи – процедуры определения связей, как внутри самой системы (между элементами), так и с внешней средой (с другими системами). В соответствии с этим принципом исследуемую систему, в первую очередь, следует рассматривать как часть (элемент, подсистему) другой системы, называемой надсистемой;
· Модульного построения – выделение функциональных моделей и описание совокупности их входных и выходных параметров, что позволяет избежать излишней детализации для создания абстрактной модели системы. Выделение модулей в системе позволяет рассматривать ее как совокупность модулей;
· Иерархии – определение иерархии функционально-структурных частей системы и их ранжирование, что упрощает разработку новой системы и устанавливает порядок ее рассмотрения (исследования);
· Функциональности – совместное рассмотрение структуры и функций системы. В случае внесения новых функций в систему, следует разрабатывать и новую структуру, а не включать новые функции в старую структуру. Функции связаны с процессами, которые требуют анализа различных потоков (материальных, энергии, информации), что в сою очередь отражается на состоянии элементов системы и самой системы в целом. Структура всегда ограничивает потоки в пространстве и во времени;
· Развития – определение закономерностей ее функционирования и потенциала к развитию (или росту), адаптации к изменениям, расширению, усовершенствованию, встраивание новых модулей на основе единства целей развития;
· Децентрализации – сочетание функций централизации и децентрализации в системе управления;
· Неопределенности – учет факторов неопределенности и случайных факторов воздействия, как в самой системе, так и со стороны внешней среды. Идентификация факторов неопределенности в качестве факторов риска позволяет их анализировать и создавать систему управления рисками.
Принцип конечной цели определяет абсолютный приоритет конечной (глобальной) цели в процессе проведения системного анализа.
Этот принцип диктует следующие правила:
· в первую очередь, сформулировать цели исследования;
· анализ следует вести на базе первоочередного уяснения основной цели (функции основного назначения) системы, что позволит определить ее основные существенные свойства, показатели качества и критерии оценки;
· при синтезе решений любая попытка изменения должна оцениваться относительно того, помогает или мешает оно достижению конечной цели;
· цель функционирования искусственной системы задается, как правило, надсистемой, в которой исследуемая система является составной частью.
Понять, что ситуация требует исследования, есть первый шаг исследователя.Этот этап творчества непосредственно связан с фундаментальным философским понятием «цель», т.е. мысленным предвосхищением результата деятельности.
Цель регулирует и направляет человеческую деятельность, которая состоит из следующих основных элементов:
Из всех этих элементов (задач) определение цели стоит на первом месте. Сформулировать цель значительно труднее, чем следовать принятой цели. Цель конкретизируется и трансформируется применительно к исполнителям и условиям. Цель более высокого порядка всегда содержит исходную неопределенность, которую необходимо учитывать. Несмотря на это, цель должна быть определенной и однозначной. Ее постановка должна допускать инициативу исполнителей. «Гораздо важнее выбрать «правильную» цель, чем «правильную» систему», — указал Холл, автор книги по системотехнике; выбрать не ту цель — значит решить не ту задачу; а выбрать не ту систему — значит просто выбрать неоптимальную систему.
Следовательно, формулировка цели исследования играет определяющую роль в системном анализе, т.к. предопределяет его эффективность проведения, а, следовательно, и качество результата. Процесс формулирования цели должен состоять не только в определении желаемого результата, но и определения тех средств (ресурсов) с помощью которых она может быть достигнута. Необходимо помнить, что если ресурсов не достаточно для достижения сформулированной цели, то можно получить результат, но он будет не желаемого качества. Ресурсы (средства достижения цели), в данном случае, могут стать мерилом эффективности достигаемой цели, т.е. заданного качества результата.
Цель — это желаемое состояние системы или конечный результат деятельности. Первая и одна из важнейших задач специалиста по системному анализу состоит в раскрытии целей лицу, принимающему решение (ЛПР). Процесс раскрытия целей в системном анализе осуществляется методом итерации и выполняется совместно специалистом по системному анализу и ЛПР.
Определение целей — есть зеркальное отражение формулирования проблемы, поскольку проблема – это несоответствие между необходимым (желаемым) и фактическим положением дел. Правильная постановка целей может быть равносильна «половине» решения проблемы. Все усилия подчиненных, отличная организация работ и самая современная техника не приведут к успеху, если цель системного анализа выбрана ошибочно.
Цели тесно связаны с проблемами: с одной стороны, поставленная цель порождает проблему ее достижения, а с другой для решения проблемы ставится цель как путь ее решения. При этом проблемы могут иметь объективный или субъективный характер, а цели могут носить характер желания или направления деятельности.
Например, руководитель фирмы с целью совершенствования системы управления желает создать современную информационную систему. Данная цель порождает ряд проблем: недостаточность финансовых средств, отсутствие требуемых помещений, отсутствие соответствующих квалифицированных кадров для ее внедрения и эксплуатации и, наконец, проблема выбора технических и программных средств. Для конкретизации цели руководство должно определиться не только с потенциальными ресурсами для ее реализации, но и уточнить какую именно информационную систему нужно создать, для каких целей.
В ряде случаев подобное исследование приводит к выводу, что проблема таковой не является, либо была первоначально сформулирована неверно и требует уточнений.
Например, нельзя одновременно стремиться увеличить общий объем продукции, улучшить ее качество и уменьшить эксплуатационные расходы, поскольку данные цели несовместимы, они носят противоречивый характер. Увеличение объема продукции требуют дополнительных затрат. Поэтому было бы целесообразно установить некоторые пределы росту продукции путем определения его как «наивысшего роста продукции при плановом объеме затрат». Возможно, что если бы «уменьшению эксплуатационных расходов» придавался смысл «уменьшение эксплуатационных расходов, согласованное с приемлемым качеством, существующим оборудованием, инструментом и персоналом», то эта цель была бы достижимой.
Основные методы системного анализа представляют совокупность количественных и качественных методов, которые можно представить в виде таблицы 2.
Таблица 2 – Методы системного анализа
МФПС | МАИС |
Аналитические методы оптимизации | Философские методы (диалектической логики) |
Статистические методы | Методы «мозговой атаки» и выбора коллективных решений |
Теоретико-множественные методы | Методы «сценариев» |
Логические методы (математическая логика) | Методы «Дельфи» |
Лингвистические методы (математическая лингвистика) | Методы «дерево целей» |
Семиотические методы | Морфологические методы |
Графические методы | Экспертные методы |
Не нашли то, что искали? Воспользуйтесь поиском:
источник
Мы начинаем рассматривать объект как систему, когда нам нужно познать, иследовать, описать его свойства, характеристики, функции. Именно тогда мы начинаем сначала мысленно разделять объект на составные части (анализировать), а потом смотреть, как эти части соединены в объекте (синтезировать).
Анализ и синтез — две дополняющие друг друга мыслительные операции, позволяющие человеку исследовать окружающий мир.
При исследовании объекта как системы на первом шаге — этапе анализа системы — осуществляется разбиение системы на подсистемы, то есть осуществляется декомпозиция системы в соответствии с той целью, которую поставил перед собой исследователь. Каждая из подсистем рассматривается затем как система. Для неё определяются входы, выходы, назначение, параметры. На втором этапе — этапе синтеза — устанавливаются отношения между подсистемами, связывающие входы и выходы каждой подсистемы со входами и выходами других подсистем.
Пример Если для починки будильника его распилить, то снова собрать из полученных «кубиков» работающий будильник вряд ли удасться. Как вы понимаете, операция распиливания будильника на части не является операцией анализа.
Проанализируем некоторые объекты с позиций системного подхода.
Пример. Сердечно-сосудистая система:
элементы — сердце, артерии, вены, капилляры и так далее;
структура — взаимосвязь элементов в процессе движения крови;
входы — кроветворные органы и органы, обеспечивающие эластичность и другие показатели кровеносных сосудов;
выходы — органы, с помощью которых кровеносная система воздействует на организм, обеспечивая его жизнедеятельность;
целостность — определяется теми функциями, которые система выполняет в организме; это, в частности, доставка тканям питательных веществ и кислорода, удаление продуктов распада, обеспечение теплорегуляции и пр.
Пример. Абстрактная система — теория:
элементы — понятийный аппарат, исходные положения (аксиомы), выявленные закономерности, вытекающие из них следствия;
структура — правила вывода новых положений из уже известных;
входы — постановка исследовательской задачи; выходы — решение задачи;
целостность — определяется той методикой исследования, которой придерживается исследователь.
Пример. Электронно-вычислительная система:
элементы — устройства компьютера (аппаратное обеспечение), программы (программное обеспечение), данные;
структура — взаимосвязь устройств, определяющая архитектуру компьютера; взаимосвязь устройств и программ, а также программ между собой, обеспечиваемая операционной системой;
входы — устройства и программы, обеспечивающие ввод информации в систему;
выходы — устройства и программы, обеспечивающие вывод информации;
целостность — обуславливается функциями, выполняемыми системой по автоматизации информационных процессов.
Таким образом, целенаправленное изучение системы будет эффективным в том случае, если каждая из подсистем, полученная в результате анализа, будет существенно проще для рассмотрения, чем исходная система, а число взаимосвязей между подсистемами получится минимальным и обозримым.
В научную терминологию прочно вошло понятие «системный подход»,с позиций которого в различных областях науки ведется исследование самых разнообразных объектов и явлений. Наиболее полно суть системного подхода сформулирована В. Г. Афанасьевым, выделившим следующие аспекты этого подхода:
• системно-элементный — получение ответа на вопрос, из чего (каких компонентов) образована система;
• системно-структурный — раскрытие внутренней организации системы, способа взаимодействия образующих ееэлементов;
• системно-функциональный — определение функций, выполняемых системой и образующими ее компонентами;
• системно-комуникационный — раскрытие взаимосвязи данной системы с другими, как по горизонтали, так и по вертикали, иными словами, выявление входов и выходов системы;
• системно-интегративный — определение механизмов, факторов сохранения, совершенствования и развития системы;
• системно-исторический — получение ответа, как возникла система, какие этапы в своем развитии проходила, каковы ее перспективы.
Каждый из этих аспектов определяет один из видов анализа системы.
Пример.Рассмотрим электронные таблицы (ЭТ) как систему. Нас интересует в данном случае не то, что изображено на экране дисплея, когда вы производите расчеты с помощью электронных таблиц, а ЭТ как программное средство. В рамках системно-элементного анализа мы можем выделить основные элементы системы. Для ЭТ основными элементами являются отдельные программные модули. Системообразующий элемент — головной модуль (для электронных таблиц Excel, например, это excel.exe), который на время работы размещается в оперативной памяти и организует вызов других модулей по мере их необходимости.
В рамках системно-структурного анализа мы можем выделить взаимосвязи между модулями ЭТ. Поскольку отдельные программные модули представляют собой процедуры, написанные на каком-либо языке программирования, то связи между модулями задаются формальными параметрами, определенными в заголовках процедур, глобальными переменными и ссылками на другие процедуры.
В рамках системно-функционального анализа мы можем определить назначение и функции ЭТ, их возможности. К основным функциям большинства ЭТ относятся: вычисления по формулам, автозаполнение, форматирование, графическое представление данных, сортировка и фильтрация данных, подбор параметров и многое другое. В рамках системно-коммуникационного анализа необходимо выделить связи с внешней средой, каковой выступают операционная система и другие программные средства, с одной стороны, пользователь — с другой. Связь с пользователем определяется теми возможностями, которые заложены в пользовательском интерфейсе. Например, при работе с Excel пользователь может внести данные и формулы в ячейки таблицы, задать команды с помощью панели инструментов, команд меню или «горячих клавиш». Связь с операционной системой осуществляется путем передачи управления тем процедурам ОС, которые необходимы для выполнения команд пользователя. Связь с другими программными средствами осуществляется, например, через буфер обмена данными (при использовании технологии динамического обмена данными), позволяющий переносить данные из текстового редактора или базы данных в ЭТ и обратно. Системно-интегративный анализ позволяет определить те модули, которые наиболее часто используются или не используются никем, а также модули, которые было бы желательно добавить, чтобы обеспечить пользователей необходимыми дополнительными возможностями.
Системно-исторический анализ позволяет проследить, как совершенствовались электронные таблицы. Появившись в 1983 году, уже к концу 80-х годов они вошли в число наиболее распространенных программных средств. В настоящее время они входят как важный компонент во все офисные пакеты, установлены практически на всех ПК.
При рассмотрении объекта как системы необходимо:
1) сформулировать цель исследования;
2) выделить основные (системообразующие) элементы и подсистемы;
3) определить, как они взаимосвязаны между собой;
4) выявить основные функции каждой подсистемы и системы в целом;
5) определить входы и выходы системы и способы реагирования на внешние воздействия, то есть определить, каким образом объект взаимодействует с окружающей средой;
6) выявить системообразующие факторы, обуславливающие сохранение и/или развитие объекта как единого целого;
7) определить системоразрушающие факторы;
8) проанализировать этапы развития системы, ее перспективы.
Одним из методов системного анализа является моделирование, в частности, информационное моделирование. Одна и та же система может быть рассмотрена и описана с разных точек зрения (исходя из разных целей), что выражается в выделении разных параметров, характеризующих эту систему. Иными словами, система может быть описана множеством моделей.
ПримерСистема «водитель-автомобиль» может быть представлена моделями, отражающими:
• статическое состояние компонентов системы (внутреннее устройство двигателя, состав и расположение приборов на панели управления);
• энергетические процессы (термодинамический цикл в процессе сгорания топлива);
• процесс управления (правила для водителя по управлению автомобилем).
ПримерСистема «человек-компьютер» может быть рассмотрена с точки зрения возможностей по обработке информации, предоставляемых человеку. Параметрами модели системы с этой точки зрения будут производительность центрального процессора, объем оперативной памяти, состав периферийных устройств, состав и функции программного обеспечения и др. Эта же система может быть опи-
сана с точки зрения взаимодействия ее основных подсистем — параметрами в этом случае будут выступать тип пользовательского интерфейса, его «дружественность», опыт и квалификация человека, перечень задач, которые он решает с помощью компьютера и др. Эта же система может быть описана с точки зрения ее взаимодействия с окружающей средой, в частности, ее места и роли в глобальной компьютерной сети. Параметрами в этом случае являются: характер взаимодействия с сетью — возможно только обращение к ресурсам сети или предоставление ресурсов, размещенных на собственном сайте; наиболее часто используемые услуги сети (электронная почта, чат, поисковые системы и пр.); среднее время, проводимое в сети, и пр.
Основными объектами изучения современной науки все чаще выступают большие исложные системы, то есть системы, состоящие из большого числа элементов, с разнообразными связями между ними, выполняющими многочис-леные функции. Их всестороннее изучение требует объединения усилий исследователей разных специальностей, интеграции знаний, накопленных в различных областях науки и техники.
Пример.Сложной системой является отдельный человек, если рассматривать совокупность его духовных, нравственных, психических, интеллектуальных, эстетических, физических, физиологических качеств.
Пример.Сложными являются практически все социальные системы — нации, государства, партии, производственные и учебные коллективы.
Пример.К классу сложных систем относятся социотехнические (человеко-машинные) системы — производственные предприятия, система дорожного движения, система информатизации общества.
Пример.Отдельный компьютер (как совокупность аппаратного и программного обеспечения) и компьютерные (телекоммуникационные) сети также относятся к классу сложных систем.
Изучение систем необходимо для того, чтобы:
• понимать закономерности их развития и не выступать (вольно или невольно) разрушающим, дестабилизирующим фактором;
• знать процессы, происходящие в системе для целенаправленного управления развитием системы и предотвращения нежелательных последствий;
• уметь планировать и осуществлять управляющие воздействия на систему, с тем, чтобы значения ее параметров были оптимальными с точки зрения выполнения присущих ей функций в рамках всеобщих систем, таких как общество, государство, биосфера, ноосфера, Вселенная, мироздание.
Системный подход является закономерным результатом развития методов научного познания. Системные представления существовали в науке задолго до того, как этот термин стал широко использоваться. Уже древние космогонические мировоззренческие модели рассматривали окружающий нас мир как нечто единое, взаимосвязанное. В истории развития таких наук, как астрономия, химия, физика, биология, география, обществоведение можно проследить, как исследователи постепенно стали все прочнее опираться на системный подход.
В современных научных иследованиях системный подход является одним из основных, наряду с такими подходами, как синергетический и информационный. В настоящее время он используется не только для получения новых знаний о закономерностях природы и общества, но в большей степени с целью применения научного знания для построения искусственных систем, создаваемых трудом и гением человека.
Особенно наглядно это проявляется в технике, где проектирование и создание сложных систем требует согласованной работы сотен тысяч элементов.
Системная методология— совокупность методов изучения свойств различных классов системных задач, то есть задач, касающихся отношений в системе или отношений системы с внешним окружением.
Системный подход— метод исследования какого-либо объекта как системы.
Анализ— выделение составных частей исследуемого объекта; переход от общего описания исследуемого объекта к выявлению его внутреннего строения, состава, определению свойств его отдельных элементов, отношений между элементами и пр.
Синтез— составление целостного представления об объекте, конструирование новых объектов.
Успешное проведение анализа и синтеза часто позволяет обнаружить не известные ранее свойства объекта.
Целенаправленное изучение системы будет эффективным в том случае, если каждая из подсистем, полученная в результате анализа, будет существенно проще для рассмотрения, чем исходная система, а число взаимосвязей между подсистемами получится минимальным и обозримым.
Виды системного анализа:
• системно-элементный — получение ответа на вопрос, из чего (каких компонентов) образована система;
• системно-структурный — раскрытие внутренней организации системы, способа взаимодействия образующих ее элементов, построение структурной схемы;
• системно-функциональный — определение функций, выполняемых системой и образующиим ее компонентами;
• системно-комуникационный — раскрытие взаимосвязи данной системы с другими, как по горизонтали, так и по вертикали с точки зрения обмена информацией;
• системно-интегративный — определение механизмов, факторов сохранения, совершенствования и развития системы;
• системно-исторический — получение ответа на вопрос, как возникла система, какие этапы в своем развитии проходила, каковы ее перспективы.
Основные этапы системного анализа:
1)определение цели исследования объекта;
2) выделение основных (системообразующих с точки зрения выбранной цели) элементов и подсистем;
3) определение и моделирование стуктуры системы, то есть способов взаимосвязи элементов и подсистем между собой;
4) выявление функций основных подсистем и системы в целом;
5) определение входов и выходов системы, а также способов взаимодействия системы с окружающей средой, моделирование процесса функционирования системы;
6) выявление системообразующих факторов, обуславливающие сохранение и/или развитие объекта как единого целого;
7) определение системоразрушающих факторов и условий их нейтрализации;
8) анализ этапов развития системы и ее перспектив.
В системном анализе широко используется моделирование, в том числе информационное моделирование. Изучение систем необходимо для того, чтобы:
• понимать закономерности их развития и не выступать
(вольно или невольно) разрушающим, дестабилизирую
щим фактором;
• знать процессы, происходящие в системе для целенаправ
ленного управления развитием системы и предотвраще
ния нежелательных последствий;
• уметь планировать и осуществлять такие управляющие
воздействия на систему, чтобы значения ее параметров
были оптимальными с точки зрения выполнения прису
щих ей функций в рамках таких всеобщих систем, как
Ноосфера, Вселенная, Мироздание.
Определите, в каких случаях осуществляется анализ или синтез, а в каких нет:
а) исследуется назначение каждого из пунктов меню графиче
ского редактора, а затем с помощью этого редактора создается
изображение;
б) при реставрации книга разделяется на отдельные листы, а за
тем вновь переплетается;
в) при переводе с иностранного языка каждое слово предложе
ния переводится на родной язык, а затем формулируется перевод
всего предложения;
г) фраза разбивается на отдельные слова и словосочетания, а за
тем с помощью их перестановки получают новое предложение
(например, «Казнить нельзя, помиловать» и «Нельзя помило
вать, казнить»).
Современные историки и литературные критики с позиций системного подхода подходят к изучению исторических событий и литературных произведений. Проведите системно-элементный анализ следующих объектов:
а) сказка Аксакова «Аленький цветочек»;
в) роман И. С. Тургенева «Отцы и дети»;
е) становление российской государственности.
Проведите системно-структурный анализ следующих объектов (выделите системообразующие элементы и связи):
г) произведение, которое вы изучаете на уроках литературы;
д) город, в котором вы живёте.
Проведите системно-функциональный анализ приведенных ниже систем. Определите, зависят ли функции системы (объекта анализа) от функций ее составных элементов.
в) водитель за рулем автомобиля;
д) программное обеспечение ПК.
Пусть система состоит из 20 элементов. Предположим, что каждый элемент связан с любым другим только одной связью. Сколько будет всего взаимосвязей?
Каждый из 20 элементов связан с 19 остальными. Тогда всего связей 20 х 19 = 380.
Разобъем систему на 4 подсистемы по пять элементов в каждой. Если рассматривать подсистему как отдельный элемент, то число связей между подсистемами 4 х 3 = 12, число связей внутри каждой подсистемы — 5×4 = 20.В этом случае исследовать необходимо всего 12 + 4 х 20 = 92 связи (вместо 380). Таким образом, исследовать систему, разбив ее на подсистемы, как правило, легче. Проведите подобные расчеты, если:
а) в системе 20 элементов и она допускает разбиение на 5 подсис
тем по 4 элемента в каждой;
б) в системе 100 элементов и она допускает разбиение на 10 под
систем по 10 элементов в каждой.
Если ученый является приверженцем системного подхода и никогда от него не отступает, может ли это обеспечить истинность выводов, к которым он пришел в результате исследования? Иными словами, всегда ли в результате системного подхода мы получаем достоверное знание?
Важность системного подхода была осознана в связи с законами сохранения массы и энергии.
Деятельность человека нуждается во все более возрастающем количестве вещества и энергии. Отсюда возник вопрос: является ли вещество и энергия неисчерпаемыми? Ответом на него были два фундаментальных закона сохранения: закон сохранения вещества и закон сохранения энергии: суммарное количество энергии и вещества в замкнутой системе остаются постоянными.
Пример.По шероховатой поверхности движется тележка с грузом. Известно, что она обладает кинетической энергией. Через некоторое время она остановится. Можно предположить, что энергия исчезла. Однако, пользуясь законом сохранения, применённым к системе «тележка-поверхность», можно утверждать, что существует какой-то вид энергии, который позволяет сохранить неизменным общее количество энергии. Это тепловая энергия. Заметим, что раньше теплоту не считали энергией. Она рассматривалась как некая неразрушимая жидкость — флигостон, которую впитывают материальные тела как губки впитывают воду. Чем больше флигостона впитало тело, тем оно теплее. Однако в XIX веке было показано, что теплота — это один из видов энергии. Таким образом, введение нового вида энергии — тепловой — было сделано исключительно исходя из закона сохранения энергии, то есть исходя из системных соображений.
Пример.Другим примером является история открытия новой элементарной частицы — нейтрино.
В 20-х годах прошлого века физики всего мира интенсивно занимались изучением радиактивного распада тяжелых ядер атомов. При этом оказывалось, что энергия ядра до распада не совпадала с энергией его «осколков». Чтобы обеспечить выполнение закона сохранения энергии 1930 г. физиком В. Паули было сделано предположение, что недостающую энергию уносит неизвестная частица, которая потом и была найдена. Так было открыто нейтрино.
Законы сохранения массы и вещества выполняются во всех известных в настоящее время системах, однако их истинного понимания нет до сих пор. Как иронично заметил один известны ученый, физики считают законы сохранения философским постулатом, а философы — экспериментальным физическим фактом.
Законы сохранения вещества и энергии имеют исключительно важные следствия для науки, политики и интеллектуальной и духовной жизни общества. Например, если цивилизация ставит во главу угла непрерывное, все расширяющееся производство, она нуждается в постоянном притоке вещества и энергии, и, как следует из законов сохранения, в постоянном расширении своих подсистем. В социально-экономическом плане это означает необходимость постоянно экспансии, сопровождающейся войнами, революциями и пр. История показывает, что подобные экспансии характерны для всех промышленно-развитых стран.
Уточним понятие сложной системы,поскольку системный подход применяется чаще всего именно для исследования систем такого рода.
К характерным особенностям сложных системотносят:
• большое число взаимосвязанных разнородных элементов и подсистем;
• многообразие структуры системы, обусловленное как разнообразием структур ее подсистем, так и многообразием способов объединения подсистем в единую систему;
• сложность функций, выполняемых системой и направленных на достижение цели ее функционирования;
• взаимодействие с внешней средой и функционирование в условиях воздействия случайных факторов;
• наличие управления, часто имеющего иерархическую структуру, а также разветвленной информационной сети и интенсивных информационных потоков;
• отсутствие возможности получения полной и достоверной информации о свойствах системы в целом по результатам изучения свойств ее отдельных элементов;
• наличие множества критериев оценки качества и эффективности функционирования системы и ее подсистем. Важнейшими способами исследования сложных систем
• синтез, который состоит в нахождении структуры и определяющих параметров системы цо заданным ее свойствам;
• анализ,при осуществлении которого по известным структуре и параметрам системы изучается ее поведение, исследуются свойства системы и ее характеристики. Эти способы взаимосвязаны и используются совместно.
В частности, более сложные задачи синтеза чаще всего решаются с использованием результатов решения задач анализа. Основным инструментом решения задач анализа исинтеза системы является информационное моделирование системы.
Дата добавления: 2015-11-05 ; просмотров: 864 | Нарушение авторских прав
источник