Меню Рубрики

Какие методы статистического анализа используют

Эти методы относятся к количественным. Они представляют собой совокупность количественных методов сбора, обработки и анализа массовых исходных данных и широко применяются в социально-экономических, политических науках. Они оперируют большим количеством исходной информации, что и обусловливает необходимость применения математико-статистических методов ее обработки. Что же касается географии населения, то ее изучение целиком и полностью основывается на использовании статистических материалов. Демографическая статистика представляет собой самостоятельную обширную область исследований.

Стаж применения статистических методов в науке уже довольно велик. Еще в XVIII в. в Германии сформировалась школа так называемой камеральной статистики, основная задача которой заключалась в сборе и систематизации справочной информации для нужд управления государством и подготовки чиновников.

В наши дни в зависимости от цели исследования и характера изучаемых объектов применяются как методы социально-экономической статистики, так и методы математической статистики.

Социально-экономическая статистика применяется, прежде всего, при изучении различного рода социальных, экономических и других явлений и процессов, в том числе и в территориальном, региональном разрезе.

Методы математической статистики позволяют оценивать надежность и точность выводов, сделанных на основе ограниченного статистического материала.

Все математико-статистические методы используются для решения следующих задач:

1) количественных параметров изучаемых явлений и процессов;

2) анализа природных и социально-экономических факторов территориальной дифференциации хозяйства и населения;

3) выявления статистических взаимосвязей между социально-экономическими системами;

4) изучения динамики развития территориальных систем на разных этапах их развития;

5) разработки обобщающих (интегральных) показателей функционирования геосистем;

6) разработки методов автоматизации типологии и районирования как основы для прогнозирования развития территориальных систем населения и хозяйства;

7) выявления пространственно-временных закономерностей;

8) научного обоснования устойчивого развития геосистем и использования результатов в управлении народным хозяйством.

При характеристике регионов наиболее распространен метод определения средних величин. Например, определение средней плотности населения (Р – численность населения, S – площадь), транспортной сети и т.д.

Пользование этими величинами позволяет точнее охарактеризовать специфику региона, сделать вывод о насыщенности территории теми или иными объектами. Средние величины рассчитываются при размещении и территориальной организации производства, планировке населенных мест, административно-территориальном устройстве и т.д.

Различают несколько видов средних величин: среднюю арифметическую, среднюю гармоническую, среднюю геометрическую, среднюю квадратическую и т.д.

Регионоведение, как известно, ориентировано, прежде всего, на выявление специфики, различий между территориями. Установление региональных различий осуществляется путем сопоставления природных предпосылок (природно-ресурсного потенциала) и социально-экономических факторов развития. Далеко не всегда можно сравнивать регионы по абсолютным показателям. Например, обеспеченность региона транспортом нельзя оценивать только по протяженности дорог, т.к. в данном случае важное значение имеют технико-экономические характеристики транспортных средств, влияющие на пропускную способность транспортной системы.

Количественные оценки влияния того или иного фактора на формирование и развитие регионального объекта осуществляется при помощи различных методов статистического анализа: дисперсного, корреляционного, регрессионного, корреляционно-регрессионного, ковариационного.

Статистический анализ – это собирательное понятие для ряда математических приемов обработки количественной информации, с помощью которых выявляются основные тенденции распределения показателей и степень корреляции между отдельными показателями.

Дисперсионный анализ используется для выявления влияния одного (однофакторный дисперсный анализ) или нескольких фактор-ных признаков (многофакторный анализ) на результативный признак при небольшом количестве наблюдений.

Корреляционный анализ применяется для выяснения формы и степени взаимосвязи между признаками изучаемого объекта.

Регрессионный анализ необходим для определения степени раздельного и совместного влияния факторов на результирующий признак и количественные оценки этого влияния на основе различных критериев.

Суть корреляционно-регрессионного анализа состоит в том, что из множества факторов выделяют генерирующий, а влияние второстепенных факторов искусственно затушевывается, рассматривается как случайное явление. Взаимосвязь между фактором и объектом прослеживается в виде функциональной зависимости.

Ковариационный анализ включает элементы дисперсионного и регрессионного анализа. Он используется для изучения линейной связи двух или более переменных по отдельным группам данных и оценке значимости различий между линиями регрессий внутри этих групп.

Статистические методы имеют как самостоятельное, так и сопряженное значение. Практически их используют во всех видах региональных прогнозно-аналитических исследований – социально-экономических, политических и т.д.

Моделирование

Это исследование определенных объектов путем воспроизведения их характеристик на другом объекте – модели. Последняя представляет собой аналог того или иного фрагмента действительности (вещного или мыслительного) – оригинала модели. Следовательно, при моделировании изучаемый объект (явление, процесс) заменяется другой вспомогательной или искусственной системой. Закономерности и тенденции, выявленные в процессе моделирования, затем распространяются на реальную действительность.

Существуют различные подходы к классификации и типологии моделей.

По форме представления информации модели делятся на материальные и идеальные.

К материальным относятся пространственно-подобные модели (макеты, муляжи и пр.), физически подобные модели, обладающие различными видами подобия с оригиналом (модели самолетов, судов и пр.) и математически подобные модели (аналоговые и цифровые машины).

Мысленные (идеальные) модели подразделяются на образные (зарисовки, фотографии и пр.), знаковые или символические (математические, кибернетические) и смешанные образно-знаковые модели (карты, чертежи, графики, блок-диаграммы и пр.). Различают модели дескриптивные и нормативные. Первые объясняют наблюдаемые факты или дают вероятный прогноз, вторые предполагают целенаправленную деятельность.

В зависимости от того, включают ли математико-географические модели пространственные факторы и условия или не включают, различают модели пространственные (континуальные) и точечные (дискретные).

Наиболее универсальными принципами моделирования являются подобие (аналогия), системность, выделение в изучаемом объекте главного, наиболее существенного, постоянное соотнесение модели с конкретным объектом.

С моделью можно экспериментировать, изучая различные варианты, пути воздействия. Это значит, что можно составлять много моделей одного и того же объекта.

Процесс моделирования включает в себя три элемента:

c) модель, опосредующую отношения познающего субъекта и познаваемого объекта.

Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Считается, что модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Модели выполняют разнообразные функции:

· психологическую (возможность изучения тех объектов и явлений, которые трудно исследовать иными способами);

· собирательную (определение необходимой информации, ее сбор и систематизация);

· логическую (выявление и объяснение механизма развития конкретного явления);

· систематизирующую (рассмотрение действительности как совокупности взаимосвязанных систем);

o конструктивную (создание теорий и познание законов);

o познавательную (содействие в распространении знаний).

В настоящее время, пожалуй, нет такой области научного знания, в которой не применялся бы метод моделирования.

Моделирование территориальных систем, а регионы, безусловно, относятся к таковым, – сопряжено со многими сложностями. К последним относятся динамичность пространственных, географичес-ких процессов, изменчивость их параметров и структурных отношений. Вследствие этого они должны постоянно находится под наблюдением, которое призвано обеспечивать устойчивый поток обновляемых данных. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В соответствии с исследуемыми территориальными процессами и содержательной проблематикой можно выделить модели народного хозяйства в целом и его подсистем, отраслей, регионов, комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов и т.д.

Большой интерес для анализа населения и хозяйства представляют диффузные модели. Первым ученым, разработавшим модель пространственной диффузии нововведений был шведский ученый Хагерстранд.

Нововведения возникают в «полюсах роста» (концепция «полюсов роста», теория «центральных мест», с которой она связана генетически, родились на Западе в 1930–1950-х гг. и в разных вариантах были положены в основу многих планов и программ региональной политики зарубежных стран) и в центрах развития, а из них передаются в окружающее их экономическое пространство. Обычно такими полюсами и центрами являются крупные города, где концентрируются квалифицированные научно-исследовательские структуры, высшие учебные заведения.

Хагерстранд в 50-х–60-х гг. XX в. исследовал восприятие различных агротехнических нововведений в Центральной Швеции и показал как они распространяются по территории. Он выделил четыре стадии диффузии: первоначальную, которая характеризуется резким контрастом между источником нововведений и периферийными районами, вторую, когда образуются новые быстро развивающиеся центры в отдаленных районах, стадию компенсации, на которой происходит одинаковое распространение нововведений во всех местах, и стадию насыщения, характеризующуюся медленным подъемом до максимума.

Одним из наиболее перспективных методов моделирования территориальных систем является имитационное моделирование. В основе этого метода теория вычислительных систем, статистика, теория вероятности, математика. Под имитационной моделью понимается модель, которая воспроизводит процесс функционирования систем в пространстве в определенный фиксированный момент времени путем отображения элементарных явлений и процессов с сохранением их логической структуры и последовательности. Это позволяет, используя исходные данные о структуре и главных свойствах территориальных систем, получать сведения о взаимосвязях между их компонентами и выявлять механизм формирования их устойчивого развития.

С 50-х–60-х гг. XX в. моделирование стало широко и активно применяться в политологии.

Проникает он и в науку о международных отношениях. Российским примером может быть работа М.А. Хрусталева «Системное моделирование международных отношений».

Особенно велика роль моделирования в изучении демографических процессов, ибо воспроизводство населения – это многосложный процесс. В демографии практически невозможен эксперимент, а исторические аналогии как средство исследования тоже чаще всего неприменимы.

Многие демографические показатели, используемые в практике демографического анализа, рассчитываются, исходя из демографических моделей. Речь идет о таких показателях, как средняя продолжительность жизни при рождении, нетто- и брутто-коэф-фициенты воспроизводства и т.д.

Демографические модели важны для практических расчетов. К примеру, модель передвижки по возрастам является основой демографического прогноза.

Сегодня в демографии широко используются математические модели населения, с помощью которых на основе фрагментарных и неполных данных, являющихся результатом непосредственного наблюдения, можно получить достаточно полное и достоверное представление о состоянии воспроизводства населения. Причем с помощью математических моделей можно получить более достоверные данные, чем с помощью статистического учета.

Преимущества метода моделирования очевидны:

1. он дает ключ к познанию многих объектов, которые не поддаются непосредственному измерению;

2. моделирование облегчает и упрощает исследование, делает его более наглядным;

1. с моделями можно экспериментировать.

Но у этого метода есть и слабые стороны. Так, в моделировании региональных систем должна находить отражение вся сложность взаимосвязанных процессов и явлений, протекающих в пространстве и времени. Вместе с тем модель должна быть максимально пригодна для практического использования, должна быть понятна тем, кто принимает решение, исходя из тех заключений, выводов, рекомендаций, прогнозов, которые делаются в результате изучения. Поиск оптимального варианта всегда приводит к разумной абстракции, к отвлечению от каких-то сторон реальных явлений и процессов. Но упрощение реальных ситуаций в сложных региональных системах таит в себе опасность получения неверных результатов. Следовательно, существует предел упрощения модели. Кроме того, всегда остаются проблемы, которые не поддаются формализации, и в этом случае математическое моделирование малоэффективно.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9548 — | 7479 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

ФЕДЕРАЛЬНОЕ АНЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ЮГОРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ

ПРОФЕССИОНАЛЬНАЯ ПЕРЕПОДГОТОВКА ПО ПРОГРАММЕ

«ГОСУДАРСТВЕННОЕ И МУНИЦИПАЛЬНОЕ УПРАВЛЕНИЕ»

«Статистические методы исследования»

1. Методы статистического исследования.

1.1. Метод статистического наблюдения

1.2. Сводка и группировка материалов статистического наблюдения

1.3. Абсолютные и относительные статистические величины

1.6. Корреляционный и регрессионный анализ

1.8. Статистические индексы

Список использованной литературы

Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Вся информация, имеющая народнохозяйственную значимость, в конечном счете, обрабатывается и анализируется с помощью статистики.

Именно статистические данные позволяют определить объемы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы. Овладение статистической методологией — одно из условий познания конъюнктуры рынка, изучения тенденций и прогнозирования, принятия оптимальных решений на всех уровнях деятельности.

Статистическая наука — это отрасль знаний, изучающая явления общественной жизни с их количественной стороны в неразрывной связи с их качественным содержанием в конкретных условиях места и времени. Статистическая практика — это деятельность по сбору, накоплению, обработке и анализу цифровых данных, характеризующих все явления в жизни общества.

Говоря о статистике следует помнить, что цифры в статистике не абстрактные, а выражают глубокий экономический смысл. Каждый экономист должен уметь пользоваться статистическими цифрами, анализировать их, уметь использовать для обоснования своих выводов.

Читайте также:  Какие анализы сдавать на иммунитет

Статистические законы действуют в пределах времени и места, в которых они обнаружены.

Окружающий мир состоит из массовых явлений. Если отдельный факт зависит от законов случая, то масса явлений подчиняется закономерностям. Для обнаружения этих закономерностей используется закон больших чисел.

Для получения статистической информации органы государственной и ведомственной статистики, а также коммерческие структуры проводят различного рода статистические исследования. Процесс статистического исследования включает три основные стадии: сбор данных, их сводка и группировка, анализ и расчет обобщающих показателей.

От того, как собран первичный статистический материал, как он обработан и сгруппирован в значительной степени зависят результаты и качество всей последующей работы, а в конечном итоге при нарушениях могут привести к абсолютно ошибочным выводам.

Сложной, трудоемкой и ответственной является заключительная, аналитическая стадия исследования. На этой стадии рассчитываются средние показатели и показатели распределения, анализируется структура совокупности, исследуется динамика и взаимосвязь между изучаемыми явлениями и процессами.

На всех стадиях исследования статистика использует различные методы. Методы статистики — это особые примы и способы изучения массовых общественных явлений.

На первой стадии исследования применяются методы массового наблюдения, собирается первичный статистический материал. Основное условие — массовость, т.к. закономерности общественной жизни проявляются в достаточно большом массиве данных в силу действия закона больших чисел, т.е. в сводных статистических характеристиках случайности взаимопогашаются.

На второй стадии исследования, когда собранная информация подвергается статистической обработке, используется метод группировок. Применение метода группировок требует непременного условия — качественной однородности совокупности.

На третьей стадии исследования проводится анализ статистической информации с помощью таких методов как метод обобщающих показателей, табличный и графический методы, методы оценки вариации, балансовый метод, индексный метод.

Аналитическая работа должна содержать элементы предвидения, указывать на возможные последствия складывающихся ситуаций.

Руководство статистикой в стране осуществляет Государственный комитет Российской Федерации по статистике. Как федеральный орган исполнительной власти он осуществляет общее руководство статистикой в стране, предоставляет официальную статистическую информацию Президенту, Правительству, Федеральному Собранию, федеральным органам исполнительной власти, общественным и международным организациям, разрабатывает статистическую методологию, координирует статистическую деятельность федеральных и региональных организаций исполнительной власти, осуществляет анализ экономико-статистической информации, составляет национальные счета и делает балансовые расчеты.

Система органов статистики в РФ образована в соответствии с административно территориальным делением страны. В республиках, входящих в РФ, имеются Республиканские комитеты. В автономных округах, краях, областях, в Москве и Санкт-Петербурге действуют Государственные комитеты по статистике.

В районах (городах) — управления (отделы) государственной статистики. Кроме государственной существует еще ведомственная статистика (на предприятиях, ведомствах, министерствах). Она обеспечивает внутренние потребности в статистической информации.

Между наукой-статистикой и практикой существует тесная взаимосвязь: статистика использует данные практики, обобщает и разрабатывает методы проведения статистических исследований. В свою очередь в практической деятельности применяются теоретические положения статистической науки для решения конкретных управленческих задач. Знание статистики необходимо современному специалисту для принятия решений в условиях стохастики (когда анализируемые явления подвержены влиянию случайностей), для анализа элементов рыночной экономики, в сборе информации, в связи с увеличением числа хозяйственных единиц и их типов, аудите, финансовом менеджменте, прогнозировании.

Для изучения предмета статистики разработаны и применяются специфические приемы, совокупность которых образует методологию статистики (методы массовых наблюдений, группировок, обобщающих показателей, динамических рядов, индексный метод и др.). Применение в статистике конкретных методов предопределяется поставленными задачами и зависит от характера исходной информации. При этом статистика опирается на такие диалектические категории, как количество и качество, необходимость и случайность, причинность, закономерность, единичное и массовое, индивидуальное и общее. Статистические методы используются комплексно (системно). Это обусловлено сложностью процесса экономико-статистического исследования, состоящего из трех основных стадий: • первая — сбор первичной статистической информации; • вторая — статистическая сводка и обработка первичной информации; • третья — обобщение и интерпретация статистической информации.

Общей методологией изучения статистических совокупностей является использование основных принципов которыми руководствуются в любой науке. К этим принципам, как к своего рода началам относятся следующие:

1. объективность изучаемых явлений и процессов;

2. выявление взаимосвязи и системности в которых проявляется содержание изучаемых факторов;

3. целеполагание, т.е. достижение поставленных целей со стороны исследователя, изучающего соответствующие статистические данные.

Это выражается в получении сведений о тенденциях, закономерностях и возможных последствиях развития изучаемых процессов. Знание закономерностей развития социально-экономических процессов, интересующих общество, имеет важное практическое значение.

К числу особенностей статистического анализа данных следует отнести метод массового наблюдения, научной обоснованности качественного содержания группировок и его результатов, вычисление и анализ обобщенных и обобщающих показателей изучаемых объектов.

Что касается конкретных методов экономической, промышленной или статистики культуры, населения, национального богатства и т.п., то здесь могут быть свои специфические методы сбора, группировки и анализа соответствующих совокупностей (суммы фактов).

В экономической статистике, например, широко применяется балансовый метод как наиболее распространенный метод взаимной увязки отдельных показателей в единой системе экономических связей в общественном производстве. К методам применяемым в экономической статистике также относятся составление группировок, исчисление относительных показателей (процентное соотношение), сравнения, исчисление различных видов средних величин, индексов и т.п.

Метод связующих звеньев состоит в том, что два объемных, т.е. количественных показателя сопоставляются на основе существующего между ними отношения. Например, производительность труда в натуральных показателях и отработанного времени, или объем перевозок в тоннах и средней дальности перевозок в км.

источник

Деятельность людей во множестве случаев предполагает работу с данными, а она в свою очередь может подразумевать не только оперирование ими, но и их изучение, обработку и анализ. Например, когда нужно уплотнить информацию, найти какие-то взаимосвязи или определить структуры. И как раз для аналитики в этом случае очень удобно пользоваться не только разными техниками мышления, но и применять статистические методы.

Особенностью методов статистического анализа является их комплексность, обусловленная многообразием форм статистических закономерностей, а также сложностью процесса статистических исследований. Однако мы хотим поговорить именно о таких методах, которые может применять каждый, причем делать это эффективно и с удовольствием.

Статистическое исследование может проводиться посредством следующих методик:

  • Статистическое наблюдение;
  • Сводка и группировка материалов статистического наблюдения;
  • Абсолютные и относительные статистические величины;
  • Вариационные ряды;
  • Выборка;
  • Корреляционный и регрессионный анализ;
  • Ряды динамики.

Далее мы рассмотрим каждый из них более подробно. Но отметим, что представим лишь основные характеристики без подробного описания алгоритмов действий. Впрочем, понять их не составит никакого труда.

Статистическое наблюдение является планомерным, организованным и в большинстве случаев систематическим сбором информации, направленным, главным образом, на явления социальной жизни. Реализуется данный метод через регистрацию предварительно определенных наиболее ярких признаков, цель которой состоит в последующем получении характеристик изучаемых явлений.

Статистическое наблюдение должно выполняться с учетом некоторых важных требований:

  • Оно должно полностью охватывать изучаемые явления;
  • Получаемые данные должны быть точными и достоверными;
  • Получаемые данные должны быть однообразными и легкосопоставимыми.

Также статистическое наблюдение может иметь две формы:

  • Отчетность – это такая форма статистического наблюдения, где информация поступает в конкретные статистические подразделения организаций, учреждений или предприятий. В этом случае данные вносятся в специальные отчеты.
  • Специально организованное наблюдение – наблюдение, которое организуется с определенной целью, чтобы получить сведения, которых не имеется в отчетах, или же для уточнения и установления достоверности информации отчетов. К этой форме относятся опросы (например, опросы мнений людей), перепись населения и т.п.

Кроме того, статистическое наблюдение может быть категоризировано на основе двух признаков: либо на основе характера регистрации данных, либо на основе охвата единиц наблюдения. К первой категории относятся опросы, документирование и прямое наблюдение, а ко второй – наблюдение сплошное и несплошное, т.е. выборочное.

Для получения данных при помощи статистического наблюдения можно применять такие способы как анкетирование, корреспондентская деятельность, самоисчисление (когда наблюдаемые, например, сами заполняют соответствующие документы), экспедиции и составление отчетов.

Говоря о втором методе, в первую очередь следует сказать о сводке. Сводка представляет собой процесс обработки определенных единичных фактов, которые образуют общую совокупность данных, собранных при наблюдении. Если сводка проводится грамотно, огромное количество единичных данных об отдельных объектах наблюдения может превратиться в целый комплекс статистических таблиц и результатов. Также такое исследование способствует определению общих черт и закономерностей исследуемых явлений.

С учетом показателей точности и глубины изучения можно выделить простую и сложную сводку, но любая из них должна основываться на конкретных этапах:

  • Выбирается группировочный признак;
  • Определяется порядок формирования групп;
  • Разрабатывается система показателей, позволяющих охарактеризовать группу и объект или явление в целом;
  • Разрабатываются макеты таблиц, где будут представлены результаты сводки.

Важно заметить, что есть и разные формы сводки:

  • Централизованная сводка, требующая передачи полученного первичного материала в вышестоящий центр для последующей обработки;
  • Децентрализованная сводка, где изучение данных происходит на нескольких ступенях по восходящей.

Выполняться же сводка может при помощи специализированного оборудования, например, с использованием компьютерного ПО или вручную.

Что же касается группировки, то этот процесс отличается разделением исследуемых данных на группы по признакам. Особенности поставленных статистическим анализом задач влияют на то, какой именно будет группировка: типологической, структурной или аналитической. Именно поэтому для сводки и группировки либо прибегают к услугам узкопрофильных специалистов, либо применяют конкретные техники мышления.

Абсолютные величина считаются самой первой формой представления статистических данных. С ее помощью удается придать явлениям размерные характеристики, например, по времени, по протяженности, по объему, по площади, по массе и т.д.

Если требуется узнать об индивидуальных абсолютных статистических величинах, можно прибегнуть к замерам, оценке, подсчету или взвешиванию. А если нужно получить итоговые объемные показатели, следует использовать сводку и группировку. Нужно иметь в виду, что абсолютные статистические величины отличаются наличием единиц измерения. К таким единицам относят стоимостные, трудовые и натуральные.

А относительные величины выражают количественные соотношения, касающиеся явлений социальной жизни. Чтобы их получить, одни величины всегда делятся на другие. Показатель, с которым сравнивают (это знаменатель), называют основанием сравнения, а показатель, которой сравнивают (это числитель), называют отчетной величиной.

Относительные величины могут быть разными, что зависит от их содержательной части. Например, существуют величины сравнения, величины уровня развития, величины интенсивности конкретного процесса, величины координации, структуры, динамики и т.д. и т.п.

Чтобы изучить какую-то совокупность по дифференцирующимся признакам, в статистическом анализе применяются средние величины – обобщающие качественные характеристики совокупности однородных явлений по какому-либо дифференцирующемуся признаку.

Крайне важным свойством средних величин является то, что они говорят о значениях конкретных признаков во всем их комплексе единым числом. Невзирая на то, что у отдельных единиц может наблюдаться количественная разница, средние величины выражают общие значения, свойственные всем единицам исследуемого комплекса. Получается, что при помощи характеристики чего-то одного можно получить характеристику целого.

Следует иметь в виду, что одним из самых важных условий применения средних величин, если проводится статистический анализ социальных явлений, считается однородность их комплекса, для которого и нужно узнать среднюю величину. А от такого, как именно будут представлены начальные данные для исчисления средней величины, будет зависеть и формула ее определения.

В некоторых случаях данных о средних показателях тех или иных изучаемых величин может быть недостаточно, чтобы провести обработку, оценку и глубокий анализ какого-то явления или процесса. Тогда во внимание следует брать вариацию или разброс показателей отдельных единиц, который тоже представляет собой важную характеристику исследуемой совокупности.

На индивидуальные значения величин могут воздействовать многие факторы, а сами изучаемые явления или процессы могут быть очень многообразны, т.е. обладать вариацией (это многообразие и есть вариационные ряды), причины которой следует искать в сущности того, что изучается.

Вышеназванные абсолютные величины находятся в непосредственной зависимости от единиц измерения признаков, а значит, делают процесс изучения, оценки и сравнения двух и более вариационных рядов более сложным. А относительные показатели нужно вычислять в качестве соотношения абсолютных и средних показателей.

Смысл выборочного метода (или проще – выборки) состоит в том, что по свойствам одной части определяются численные характеристики целого (это называется генеральной совокупностью). Основной выборочного метода является внутренняя связь, объединяющая части и целое, единичное и общее.

Метод выборки отличается рядом существенных преимуществ перед остальными, т.к. благодаря уменьшению количества наблюдений позволяет сократить объемы работы, затрачиваемые средства и усилия, а также успешно получать данные о таких процессах и явлениях, где либо нецелесообразно, либо просто невозможно исследовать их полностью.

Читайте также:  Географический язык какие анализы сдать

Соответствие характеристик выборки характеристикам изучаемого явления или процесса будет зависеть от комплекса условий, и в первую очередь от того, как вообще будет реализовываться выборочный метод на практике. Это может быть как планомерный отбор, идущий по подготовленной схеме, так и непланомерный, когда выборка производится из генеральной совокупности.

Но во всех случаях выборочный метод должен быть типичным и соответствовать критериям объективности. Данные требования нужно выполнять всегда, т.к. именно от них будет зависеть соответствие характеристик метода и характеристик того, что подвергается статистическому анализу.

Таким образом, перед обработкой выборочного материала необходимо провести его тщательную проверку, избавившись тем самым от всего ненужного и второстепенного. Одновременно с этим, составляя выборку, в обязательном порядке нужно обходить стороной любую самодеятельность. Это означает, что ни в коем случае не следует делать выборку только из вариантов, кажущихся типичными, а все другие – отбрасывать.

Эффективная и качественная выборка должна составляться объективно, т.е. производить ее нужно так, чтобы были исключены любые субъективные влияния и предвзятые побуждения. И чтобы это условие было соблюдено должным образом, требуется прибегнуть к принципу рандомизации или, проще говоря, к принципу случайного отбора вариантов из всей их генеральной совокупности.

Представленный принцип служит основой теории выборочного метода, и следовать ему нужно всегда, когда требуется создать эффективную выборочную совокупность, причем случаи планомерного отбора исключением здесь не являются.

Корреляционный анализ и регрессионный анализ – это два высокоэффективных метода, позволяющие проводить анализ больших объемов данных для изучения возможной взаимосвязи двух или большего количества показателей.

В случае с корреляционным анализом задачами являются:

  • Измерить тесноту имеющейся связи дифференцирующихся признаков;
  • Определить неизвестные причинные связи;
  • Оценить факторы, в наибольшей степени воздействующие на окончательный признак.

А в случае с регрессионным анализом задачи следующие:

  • Определить форму связи;
  • Установить степень воздействия независимых показателей на зависимый;
  • Определить расчетные значения зависимого показателя.

Чтобы решить все вышеназванные задачи, практически всегда нужно применять и корреляционный и регрессионный анализ в комплексе.

Посредством этого метода статистического анализа очень удобно определять интенсивность или скорость, с которой развиваются явления, находить тенденцию их развития, выделять колебания, сравнивать динамику развития, находить взаимосвязь развивающихся во времени явлений.

Ряд динамики – это такой ряд, в котором во времени последовательно расположены статистические показатели, изменения которых характеризуют процесс развития исследуемого объекта или явления.

Ряд динамики включает в себя два компонента:

  • Период или момент времени, связанный с имеющимися данными;
  • Уровень или статистический показатель.

В совокупности эти компоненты представляют собой два члена ряда динамики, где первый член (временной период) обозначается буквой «t», а второй (уровень) – буквой «y».

Исходя из длительности временных промежутков, с которыми взаимосвязаны уровни, ряды динамики могут быть моментными и интервальными. Интервальные ряды позволяют складывать уровни для получения общей величины периодов, следующих один за другим, а в моментных такой возможности нет, но этого там и не требуется.

Ряды динамики также существуют с равными и разными интервалами. Суть же интервалов в моментных и интервальных рядах всегда разная. В первом случае интервалом является временной промежуток между датами, к которым привязаны данные для анализа (удобно использовать такой ряд, например, для определения количества действий за месяц, год и т.д.). А во втором случае – временной промежуток, к которому привязана совокупность обобщенных данных (такой ряд можно использовать для определения качества тех же самых действий за месяц, год и т.п.). Интервалы могут быть равными и разными, независимо от типа ряда.

Естественно, чтобы научиться грамотно применять каждый из методов статистического анализа, недостаточно просто знать о них, ведь, по сути, статистика – это целая наука, требующая еще и определенных навыков и умений. Но чтобы она давалась проще, можно и нужно тренировать свое мышление и улучшать когнитивные способности.

В остальном же исследование, оценка, обработка и анализ информации – очень интересные процессы. И даже в тех случаях, когда это не приводит к какому-то конкретному результату, за время исследования можно узнать множество интересных вещей. Статистический анализ нашел свое применение в огромном количестве сфер деятельности человека, а вы можете использовать его в учебе, работе, бизнесе и других областях, включая развитие детей и самообразование.

источник

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Прикладная статистика — это наука о том, как обрабатывать данные произвольной природы. Математической основой прикладной статистики и статистических методов анализа является теория вероятностей и математическая статистика.

Описание вида данных и механизма их порождения — начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.

Мы не считаем возможным противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.

В простейшей ситуации статистические данные — это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.

При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат — числа, а часть — качественные (категоризованные) данные, то говорим о векторе разнотипных данных.

Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, — электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.

Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы — образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т. д.

Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных — числовые и нечисловые. Соответственно прикладная статистика разбивается на две части — числовую статистику и нечисловую статистику.

Числовые статистические данные — это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки — это (классические) законы больших чисел и центральные предельные теоремы.

Нечисловые статистические данные — это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т. д. (см. [2]).

В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т. н. цензурированные данные, состоящие из набора чисел — продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.

Обычно отдельно рассматривают статистические методы анализа данных первых трех типов. Это ограничение вызвано тем отмеченным выше обстоятельством, что математический аппарат для анализа данных нечисловой природы — существенно иной, чем для данных в виде чисел, векторов и функций.

При применении статистических методов в конкретных областях знаний и отраслях народного хозяйства получаем научно-практические дисциплины типа «статистические методы в промышленности», «статистические методы в медицине» и др. С этой точки зрения эконометрика — это «статистические методы в экономике». Эти дисциплины группы б) обычно опираются на вероятностно-статистические модели, построенные в соответствии с особенностями области применения. Весьма поучительно сопоставить вероятностно-статистические модели, применяемые в различных областях, обнаружить их близость и вместе с тем констатировать некоторые различия. Так, видна близость постановок задач и применяемых для их решения статистических методов в таких областях, как научные медицинские исследования, конкретные социологические исследования и маркетинговые исследования, или, короче, в медицине, социологии и маркетинге. Они часто объединяются вместе под названием «выборочные исследования».

Отличие выборочных исследований от экспертных проявляется, прежде всего, в числе обследованных объектов или субъектов — в выборочных исследованиях речь обычно идет о сотнях, а в экспертных — о десятках. Зато технологии экспертных исследований гораздо изощреннее. Еще более выражена специфика в демографических или логистических моделях, при обработке нарративной (текстовой, летописной) информации или при изучении взаимовлияния факторов.

Вопросы надежности и безопасности технических устройств и технологий, теории массового обслуживания подробно рассмотрены, в большом количестве научных работ.

Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.

Например, результаты опроса потребителей растворимого кофе естественно отнести к маркетингу (что и делают, читая лекции по маркетинговым исследованиям). Исследование динамики роста цен с помощью индексов инфляции, рассчитанных по независимо собранной информации, представляет интерес прежде всего с точки зрения экономики и управления народным хозяйством (как на макроуровне, так и на уровне отдельных организаций).

Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая — как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

Актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.

2. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. — М.: Мир, 1975. — 500 с.

3. Крамер Г. Математические методы статистики. — М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). — 648 с.

4. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).

5. Смирнов Н. В., Дунин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений. Изд. 3-е, стереотипное. — М.: Наука, 1969. — 512 с.

6. Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика», 2007. — С. 912. — ISBN 0-471-17082-8

Читайте также:  Какие анализы сдать при кровотечение

Wikimedia Foundation . 2010 .

СТАТИСТИЧЕСКИЕ МЕТОДЫ — СТАТИСТИЧЕСКИЕ МЕТОДЫ научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово “статистика” (от игал. stato государство) имеет общий корень со словом “государство”. Первоначально оно… … Философская энциклопедия

СТАТИСТИЧЕСКИЕ МЕТОДЫ – — научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово «статистика» (от итал. stato – государство) имеет общий корень со словом «государство». Первоначально оно относилось к науке управления и … Философская энциклопедия

Статистические методы — (в экологии и биоценологии) методы вариационной статистики, позволяющие исследовать целое (напр., фитоценоз, популяцию, продуктивность) по его частным совокупностям (напр., по данным, полученным на учетных площадках) и оценить степень точности… … Экологический словарь

статистические методы — (в психологии) (от лат. status состояние) нек рые методы прикладной математической статистики, используемые в психологии в основном для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Большая психологическая энциклопедия

Статистические методы — 20.2. Статистические методы Конкретные статистические методы, используемые для организации, регулирования и проверки деятельности, включают, но не ограничиваются следующими: а) планированием экспериментов и факторный анализ; b) анализ дисперсии и … Словарь-справочник терминов нормативно-технической документации

СТАТИСТИЧЕСКИЕ МЕТОДЫ — методы исследования количеств. стороны массовых обществ. явлений и процессов. С. м. дают возможность в цифровом выражении характеризовать происходящие изменения в обществ. процессах, изучать разл. формы социально экономич. закономерностей, смену… … Сельско-хозяйственный энциклопедический словарь

СТАТИСТИЧЕСКИЕ МЕТОДЫ — некоторые методы прикладной математической статистики, используемые для обработки экспериментальных результатов. Ряд статистических методов был разработан специально для проверки качества психологических тестов, для применения в профессиональном… … Профессиональное образование. Словарь

СТАТИСТИЧЕСКИЕ МЕТОДЫ — (в инженерной психологии) (от лат. status состояние) некоторые методы прикладной статистики, используемые в инженерной психологии для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Энциклопедический словарь по психологии и педагогике

Статистические методы анализа — группа методов и способов сбора и обработки данных, используемых для описания и анализа информации. По английски: Statistical methods of analysis См. также: Статистические методы анализа Методы анализа Статистические данные Финансовый словарь… … Финансовый словарь

СТАТИСТИЧЕСКИЕ МЕТОДЫ В ДЕМОГРАФИИ — СТАТИСТИЧЕСКИЕ МЕТОДЫ В ДЕМОГРАФИИ, совокупность основанных на принципах статистики приёмов наблюдения, описания и количеств. анализа демографич. процессов и явлений. Исторически нас. было одним из первых объектов статистич. учёта, а процессы… … Демографический энциклопедический словарь

источник

Достаточно часто возникают явления, которые можно проанализировать исключительно при помощи статистических методов. В этой связи для каждого субъекта, стремящегося глубоко изучить проблему, проникнуть в суть темы, важно иметь представление о них. В статье разберемся, что такое статистический анализ данных, каковы его особенности, а также какие методы применяют при его проведении.

Статистику рассматривают в качестве специфичной науки, системы госорганов, а также как набор цифр. Между тем далеко не все цифры можно считать статистикой. Разберемся в этом вопросе.

Для начала следует вспомнить, что слово «статистика» имеет латинские корни и происходит от понятия status. В буквальном переводе термин означает «определенное положение предметов, вещей». Следовательно, статистическими признаются только такие данные, с помощью которых фиксируются относительно устойчивые явления. Анализ, собственно, и выявляет эту устойчивость. Его используют, к примеру, при изучении социально-экономических, политических явлений.

Применение статистического анализа позволяет отображать количественные показатели в неразрывной связи с качественными. В результате исследователь может увидеть взаимодействие фактов, установить закономерности, выявить типичные признаки ситуаций, сценарии развития, обосновать прогноз.

Статистический анализ – это один из ключевых инструментов СМИ. Чаще всего его используют в деловых изданиях, таких как, например, «Ведомости», «Коммерсант», «Эксперт-профи» и пр. В них всегда публикуются «аналитические рассуждения» о валютном курсе, котировке акций, учетных ставках, инвестициях, рынке, экономике в целом.

Разумеется, чтобы результаты анализа были достоверными, постоянно проводится сбор данных.

Сбор данных может осуществляться по-разному. Главное, чтобы способы не нарушали закон и не ущемляли интересы других лиц. Если говорить о СМИ, то для них ключевыми источниками информации выступают государственные статистические органы. Эти структуры должны:

  1. Собирать отчетные сведения в соответствии с утвержденными программами.
  2. Группировать информацию по тем или иным критериям, наиболее значимым для исследуемого явления, формировать сводки.
  3. Проводить собственный статистический анализ.

В задачи уполномоченных госорганов входит также предоставление полученных ими данных в отчетах, тематических подборках или пресс-релизах. В последнее время статистика публикуется на официальных сайтах госструктур.

Кроме указанных органов, информацию можно получить в Едином госреестре предприятий, учреждений, объединений и организаций. Цель его создания состоит в формировании единой информационной базы.

Для проведения анализа можно использовать информацию, полученную от межправительственных организаций. Существуют специальные базы данных экономической статистики стран.

Часто информация поступает от частных лиц, общественных организаций. Эти субъекты обычно ведут свою статистику. Так, к примеру, Союз охраны птиц в России регулярно устраивает так называемые соловьиные вечера. В конце мая через СМИ организация приглашает всех желающих поучаствовать в подсчете соловьев на территории Москвы. Полученные сведения обрабатываются группой экспертов. После этого сведения переносятся в специальную карту.

Многие журналисты обращаются за информацией к представителям других авторитетных СМИ, пользующихся у аудитории популярностью. Распространенным способом получения данных является опрос. При этом опрашиваемыми могут стать как рядовые граждане, так и эксперты в какой-либо области.

Перечень показателей, необходимых для проведения анализа, зависит от специфики исследуемого явления. К примеру, если изучается уровень благосостояния населения, приоритетными считаются данные о качестве жизни граждан, прожиточном минимуме на данной территории, размере МРОТ, пенсии, стипендии, потребительской корзины. При исследовании демографической ситуации важны показатели смертности и рождаемости, число мигрантов. Если изучается сфера промышленного производства, важные сведения для статистического анализа – это количество предприятий, их виды, объем продукции, уровень производительности труда и т. д.

Как правило, при описании тех или иных явлений используются средние арифметические величины. Для их получения числа складывают друг с другом, а полученный результат делят на их количество.

Средние величины используются в качестве обобщающих показателей. Однако они не позволяют описать конкретные моменты. К примеру, в ходе анализа установлено, что средняя зарплата по России составляет 30 тыс. р. Этот показатель не говорит о том, что все работающие граждане страны получают именно эту сумму. Более того, у кого-то зарплата может быть и выше, а у кого-то – ниже этой цифры.

Их находят в результате сравнительного анализа. В статистике, кроме средних, используются абсолютные величины. При их сопоставлении как раз и определяются относительные показатели.

Например, установлено, что в один госорган приходит 5 тысяч писем ежемесячно, а в другой – 1 000. Выходит, что первая структура получает в 5 раз больше обращений. При сравнении средних показателей относительная величина может быть выражена в процентах. К примеру, средний заработок фармацевта составляет 70 % от ср. з/п инженера.

Они представляют собой систематизацию признаков исследуемого события для выявления динамики его развития. К примеру, установлено, что в 1997 г. речной транспорт всех ведомств и управлений перевез 52,4 млн тонн груза, а в 2007 г. – 101,2 млн т. Чтобы понять изменения характера транспортировок за период с 1997 по 2007 г., можно сгруппировать итоговые показатели по видам объектов, а затем сравнить группы друг с другом. В итоге можно получить более полные сведения о развитии грузооборота.

Их достаточно широко применяют при исследовании динамики событий. Индекс в статистическом анализе – это средний показатель, отражающий изменение явления под воздействием другого события, абсолютные показатели которого признаны неизменными.

К примеру, в демографии в качестве специфического индекса может выступать величина естественной убыли (прироста) населения. Ее определяют при сравнении уровня рождаемости и смертности.

Они используются для отображения динамики развития события. Для этого применяют фигуры, точки, линии, имеющие условные значения. Графики, с помощью которых выражаются количественные соотношения, именуются диаграммами или динамическими кривыми. Благодаря им можно наглядно увидеть динамику развития какого-то явления.

График, показывающий увеличение количества лиц, страдающих остеохондрозом, представляет собой кривую, уходящую вверх. Соответственно, по ней можно наглядно увидеть тенденцию заболеваемости. Люди, даже не прочитав текстовый материал, могут сформулировать выводы о сложившейся динамике и спрогнозировать развитие ситуации в дальнейшем.

Они очень часто используются для отражения данных. С помощью статистических таблиц можно сопоставлять информацию по изменяющимся со временем показателям, различающимся в зависимости от страны и пр. Они представляют собой наглядную статистику, которой зачастую не нужны комментарии.

В основе статистического анализа лежат приемы и способы сбора, обработки и обобщения сведений. В зависимости от природы методы могут быть количественными и категориальными.

При помощи первых получают метрические данные, которые по своей структуре являются непрерывными. Их можно измерить при помощи интервальной шкалы. Она представляет собой систему чисел, равные промежутки между которыми отражают периодичность значений изучаемых показателей. Также используется шкала отношений. В ней, кроме расстояния, определяется также порядок значений.

Неметрические (категориальные) данные представляют собой качественные сведения, количество уникальных категорий и значений которых ограничено. Они могут быть представлены в виде номинальных или порядковых показателей. Первые используют для нумерации объектов. Для вторых предусматривается естественный порядок.

Они применяются в том случае, если для оценки всех элементов выборки используется единый измеритель или если последних несколько для каждого компонента, но переменные исследуются обособленно друг от друга.

Одномерные методы различаются в зависимости от типа данных: метрические или неметрические. Первые измеряют по относительной или интервальной шкале, вторые – по номинальной или порядковой. Кроме этого, деление методов осуществляется на классы в зависимости от количества исследуемых выборок. При этом необходимо учитывать, что это число определяют по тому, как осуществляется работа с информацией для конкретного анализа, а не по способу сбора данных.

Цель статистического анализа может состоять в изучении воздействия одного либо нескольких факторов на конкретный признак объекта. Однофакторный дисперсионный метод применяется тогда, когда у исследователя есть 3 и больше независимые выборки. При этом они должны быть получены из генеральной совокупности посредством изменения независимого фактора, для которого отсутствуют количественные измерения по каким-то причинам. Предполагается, что имеются различные и одинаковые выборочные дисперсии. В этой связи следует определить, оказал ли данный фактор значительное влияние на разброс или он стал следствием случайностей, возникших вследствие небольших объемов выборок.

Он представляет собой упорядоченное распределение единиц генеральной совокупности, как правило, по возрастающим (в редких случаях по убывающим) показателям признака и подсчет их числа с тем или другим значением признака.

Вариация является различием в показателе какого-либо признака у различных единиц конкретной совокупности, возникающим в один и тот же момент либо период. К примеру, сотрудники компании отличаются друг от друга по возрасту, росту, доходам, весу и пр. Возникает вариация вследствие того, что индивидуальные показатели признака формируются под комплексным влиянием разных факторов. В каждом конкретном случае они сочетаются по-разному.

  1. Ранжированным. Он представлен в виде перечня отдельных единиц генеральной совокупности, расположенных в порядке убывания либо возрастания исследуемого признака.
  2. Дискретным. Он представлен в форме таблицы, включающей в себя конкретные показатели изменяющегося признака х и количества единиц совокупности с заданной величиной f признака частот.
  3. Интервальным. В этом случае показатель непрерывного признака задается с помощью интервалов. Они характеризуются частотой t.

Он проводится, если для оценки элементов выборки применяется 2 и более измерителя, и переменные изучаются одновременно. Такая форма статистического анализа отличается от одномерного способа в первую очередь тем, что при ее использовании внимание сосредотачивается на уровне взаимосвязи между явлениями, а не на средних показателях и распределениях (дисперсиях).

Среди основных методов многомерного статистического исследования выделяют:

  1. Кросс-табуляцию. С ее использованием одновременно характеризуют значение двух и более переменных.
  2. Дисперсионный статистический анализ. Этот метод ориентирован на поиск зависимостей среди экспериментальных данных посредством изучения существенности различий в средних показателях.
  3. Ковариационный анализ. Он тесно связан с дисперсионным методом. При ковариационном исследовании зависимая переменная корректируется в соответствии с информацией, связанной с ней. Это обеспечивает возможность устранения изменчивости, вносимой извне, и, соответственно, повысить эффективность исследования.

Также существует дискриминантный анализ. Он применяется, если зависимая переменная является категориальной, а независимые (предикторы) – интервальными.

источник