Меню Рубрики

Какие анализы гравиметрическом анализе используют

Растворение.Взятую навеску переносят в химический стакан и растворяют, используя в качестве растворителя воду, кислоту или щелочь. Количество растворителя и усло­вия растворения указаны в методиках анализа. Чтобы уско­рить растворение, содержимое стакана подогревают и пере­мешивают стеклянной палочкой. При этом нужно следить, чтобы ни одна капля раствора не была потеряна, — это при­ведет к ошибке в анализе.

Осаждение.Осаждение — это одна из основных опера­ций гравиметрического анализа. Цель ее — перевести опре­деляемую часть анализируемого вещества в химическое соединение, удобное для определения весовым способом. На­пример, барий в хлориде бария определяют в форме сульфа­та бария, который осаждают из водного раствора хлорида бария добавлением серной кислоты. Также необходимо что­бы осаждение происходило количественно, т. е. определяе­мый ион полностью переходил в осадок. Для этого необходи­мо соблюдать вышеуказанные требования к осадку. Исходя из этого подбирают и реактивы для осаждения (как указыва­лось выше). Осаждение ведут, приливая раствор осадителя в стакан с раствором анализируемого вещества при непрерыв­ном перемешивании стеклянной палочкой. Полноту осаждения определяют после отстаивания осадка и образования над ним прозрачного раствора. К нему осторожно добавляют не­сколько капель раствора осадителя — отсутствие помутне­ния указывает на полноту осаждения.

Фильтрование.Цель операции — отделение осадка от рас­твора, из которого он выпал (маточного раствора). Для филь­трования используют беззольные фильтры — бумажные. Эти фильтры при сгорании образуют так мало золы, что ее массой можно пренебречь. В зависимости от характера осадка ис­пользуют беззольные фильтры различных марок. Их различа­ют по цвету ленты на упаковке фильтра. Самые плотные (т. е. с наименьшим размером пор) — с синей лентой, фильтры средней плотности — с белой лентой, наименее плотные, бы­стро фильтрующие — с красной лентой. Бумажный фильтр помещают в стеклянную воронку (рис. 4).

Для этого круглый фильтр складывают пополам по диа­метру, затем снова пополам и вкладывают в сухую воронку (рис. 4).

Затем наполняют фильтр дистиллированной водой и плот­но прижимают к воронке. Воронку помещают в кольцо, укре­пленное на штативе. Под воронку помещают стакан. Филь­трацию ведут, декантируя жидкость: сливают на фильтр по стеклянной палочке отстоявшуюся жидкость, не взмучивая осадок. Когда почти весь раствор слит, добавляют 50 — 70 мл промывной жидкости, перемешивают осадок, дают ему от­стояться и вновь декантируют. Декантацию повторяют 2 — 3 раза и, наконец, сливают на фильтр жидкость вместе с осад­ком. Стакан споласкивают 2 — 3 раза маленькими порциями промывной жидкости и сливают на фильтр. Промывную жид­кость удобно подавать из промывалки (рис. 5). Затем опола­скивают стеклянную палочку, по которой сливали осадок. При этом недопустима потеря частиц осадка — он должен быть пе­ренесен на фильтр количественно. Фильтрацию продолжают до тех пор, пока с носика воронки не перестанут стекать кап­ли жидкости. После этого струей жидкости из промывалки ополаскивают верхний край фильтра, смывая осадок в ниж­нюю часть фильтра.

Основное правило фильтрации и промывки: наливать на фильтр новую порцию только после того, как полностью отфильтровалась предыдущая. По окончании делают пробу на полноту протекания промывки, т. е. на отсутствие в жидкости, стекающей с воронки, отмываемого вещества. Например, для проверки на полноту отмывания сульфат-ионов к нескольким каплям жидкости, стекающей с воронки, добавляют каплю раствора хлорида бария. Отсутствие помутнения указывает на окончание промывки. Далее воронку с осадком накрыва­ют листом фильтрованной бумаги, смоченной дистиллиро­ванной водой, плотно прижимают бумагу к краям воронки и помещают в сушильный шкаф. После подсушивания фильтр c осадком количественно в прокаленный и взвешенный фарфоровый тигель (рис. 6).

Прокаливание осадка.После фильтрации и промывки на фильтре находится чистый осадок. Чтобы узнать его мас­су, в большинстве случаев фильтр сжигают, а осадок подсу­шивают и прокаливают. Прокаливание ведут в фарфоровых тиглях. Тигель предварительно прокаливают до постоянной массы в тех же условиях, в которых будет прокаливаться осадок. Фильтр с подсушенным осадком осторожно отделя­ют от воронки, стеклянным шпателем осторожно загибают края фильтра, так чтобы осадок оказался внутри фильтра, и переносят в тигель. Тигель с осадком помещают в специаль­ный фарфоровый треугольник, положенный на кольцо шта­тива, и газовой горелкой нагревают тигель таким образом, чтобы фильтр постепенно обуглился (рис.7).

Тигель с обугленным фильтром и осадком помещают в му­фельную печь (рис. 8), отрегулированную на заданную тем­пературу, и прокаливают в течение 2 ч. Затем тигельными щипцами вынимают тигель и ставят его в эксикатор (рис. 9), который защищает содержимое тигля от влаги воздуха. В эксикаторе тигель постепенно охлаждается до комнатной температуры. Его взвешивают, затем снова ставят в муфель, прокаливают еще 20 — 30 мин, охлаждают и взвешивают; если масса при двух последовательных взвешиваниях раз­личается не более чем на 0,0002 г, прокаливание закончено. Осадок прокален до постоянной массы.

Рис. 9 Эксикатор (а) и правила его использования (б, в)

Дата добавления: 2014-01-03 ; Просмотров: 3970 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Гравиметрия представляет собой старый «классический», но достаточно точный метод, в основе которого лежит измерение массы вещества. Сущность гравиметрического анализа заключается в том, что навеску исследуемого материала переводят в раствор, определяемый компонент осаждают в виде малорастворимого соединения, полученный осадок отфильтровывают, промывают от примесей, высушивают, прокаливают и взвешивают. Зная массу осадка, рассчитывают массовую долю (%) определяемого компонента в исследуемом веществе. Перечисленные операции относятся к методу осаждения, наиболее часто используемому в гравиметрии. Наряду с ним используют также метод выделения и метод отгонки.

Одним из важных этапов гравиметрического анализа является отбор средней пробы, так как даже самый тщательный анализ неправильно взятой пробы не даст верных результатов. В результате отбора средней пробы получают однородный материал, из которого затем берут навески для анализа. Выбор величины навески анализируемого вещества определяется массой осадка, наиболее удобной в работе. При определениях, не связанных с получением осадка, например, при изучении влажности зерна и других объектов допустимы навески в 1,0 – 2,0 грамма и более.

Так как техника взвешивания на аналитических весах длительна, вначале берут приблизительную навеску исследуемого вещества на технохимических весах, а затем точно взвешивают на аналитических весах. При работе с весами следует помнить, что результаты взвешивания будут верными только тогда, когда взвешиваемый предмет имеет температуру весов. Чтобы взвешиваемый предмет (тигель, бюкс) принял температуру весов, его помещают не менее чем на 15–20 минут в специальный прибор эксикатор, предназначенный для охлаждения бюксов и тиглей, а также для хранения гигроскопичных веществ.

Работа на аналитических весах требует аккуратности и внимательности, так как весы быстро портятся и не дают достаточно точных результатов.

Правила работы с аналитическими весами ВЛР-200:

1. Работа на аналитических весах не допускает резких движений, приводящих к их быстрому изнашиванию.

2. Во время взвешивания не облокачивайтесь на стол, на котором установлены весы.

3. Перед взвешиванием проверьте на весах нулевые отметки.

4. Плавно включите весы и проверьте на экране нулевую точку, при необходимости корректируйте «0» ручкой сверху слева (№1).

5. Поместите взвешиваемый предмет, например, бюкс на левую чашку весов, на правую чашку поместите гирьки, соответствующие целому числу граммов массы бюкса. Верхней ручкой справа (№2) устанавливают первый знак после запятой в значении массы бюкса. (Например, масса бюкса на технохимических весах 8,53г, значит, на чашку весов помещают гирьки, соответствующие 8г, ручкой №2 выставляют в окошке цифру 5). После этого плавно включают весы. На экране должно появиться изображение шкалы. Если его нет, следует орретировать весы (выключить) и в зависимости от появившихся на экране «+» или «–» добавить или убавить соответственно одну десятую грамма верхней ручкой справа (№2). При появлении на экране изображения шкалы устанавливают с помощью ручки №3 (вверху справа) точный вес бюкса.

6. Записывают результаты взвешивания.

7. Весы выключают, снимают бюкс и гирьки и выводят механизмы весов на нулевые отметки.

Важной операцией гравиметрического анализа считается осаждение. При её выполнении следует правильно выбрать осадитель, рассчитать его объем, соблюсти условия осаждения и убедиться в полноте осаждения иона из раствора.

В качестве осаждаемой формы (формы осаждения) в гравиметрическом анализе можно использовать далеко не каждый осадок.

Форма осаждения должна удовлетворять следующим требованиям:

1) осадок должен быть малорастворимым, то есть осаждение должно быть достаточно полным;

2) полученный осадок должен быть чистым и легко отфильтровываться, а также отмываться от примесей;

3) осаждаемая форма при прокаливании должна легко превращаться в гравиметрическую форму.

Ни один из осадков в полной мере этим требованиям не удовлетворяет. Поэтому, основываясь на теоретических представлениях о свойствах растворов и осадков и опираясь на практический опыт аналитической химии, следует создать такие условия осаждения, при которых требования, предъявляемые к осаждаемой форме, будут удовлетворены в максимально возможной степени.

Важное влияние на полноту осаждения и свойства осадка оказывают следующие условия:

3) концентрация посторонних солей.

Для отделения полученного осадка от раствора применяют фильтрование.

Одним из основных источников погрешностей в гравиметрическом анализе является соосаждение – увлечение осадком посторонних веществ из раствора.

Различают четыре основных вида соосаждения:

— соосаждение с образованием химических соединений;

— соосаждение в результате адсорбции примесей осадком.

Загрязнение осадка посторонними примесями приводит к тому, что состав осадка (гравиметрической формы) невозможно представить в виде какой либо определенной химической формулы, а следовательно, точное вычисление содержания того или иного элемента в осадке становится невозможным.

Уменьшить соосаждение можно в результате:

— рационального выбора хода анализа;

— рационального выбора осадителя;

— создания соответствующих условий осаждения (проводить осаждение в условиях, при которых образуются крупнокристаллические осадки);

— применения настаивания (выдерживание кристаллического осадка под маточным раствором в течение определенного времени);

— замены одних ионов другими либо связывания соосаждаемых ионов в какой либо достаточно прочный и менее соосаждающийся комплекс.

Наиболее радикальным средством борьбы с загрязнением осадка является переосаждение (повторное осаждение). Для этого осадок отфильтровывают, промывают на фильтре, растворяют в кислоте и снова осаждают. Содержание примесей в полученном осадке резко снижается.

Промывание осадка осуществляют с целью удаления примесей, адсорбированных им из раствора. Чтобы исключить потери осаждаемого вещества, выбор промывной жидкости осуществляют, исходя из свойств промываемого осадка. Только в редких случаях в качестве промывной жидкости используют дистиллированную воду. Обычно используют разбавленный раствор осадителя или раствор электролита-коагулятора.

На заключительной стадии гравиметрического анализа осадок (осаждаемую форму) высушивают или прокаливают, в результате получают гравиметрическую форму – соединение, пригодное для взвешивания.

В зависимости от физико-химических свойств осадка при прокаливании он остается неизменным, как, например, сульфат бария, или претерпевает химические превращения. Последнее характерно для осадков гидроксида алюминия, гидроксида железа (III), оксалата кальция и др.

Еще более сложные превращения могут происходить с осадком оксалата кальция:

Таким образом, в зависимости от температуры прокаливания можно получить:

Если в результате прокаливания получится смесь карбоната кальция и оксида кальция с неизвестным соотношением компонентов, то рассчитать результат анализа по массе осадка будет невозможно.

Чтобы по массе осадка можно было рассчитать содержание определяемого компонента в анализируемой пробе, состав гравиметрической формы должен точно соответствовать определенной химической формуле. Это главное требование к гравиметрической форме.

Кроме того, гравиметрическая форма должна обладать определенной химической устойчивостью при достаточно широком интервале температур (она должна получаться при 400-500 0 С и не изменяться при 700-800 0 до 1000 0 С), быть устойчивой на воздухе при обычной температуре (не поглощать влагу и не взаимодействовать с другими компонентами воздуха). Для точности определения (чтобы погрешности взвешивания менее сказывались на результатах анализа) важно, чтобы у гравиметрической формы была большая молярная масса и содержание определяемого элемента в ней было как можно меньше.

Для вычислений результатов в гравиметрическом анализе нередко применяют фактор пересчета Ф (аналитический фактор), представляющий собой отношение молярной массы определяемого вещества к молярной массе вещества, находящегося в осадке:

(21)

Используя фактор пересчета, можно рассчитать массовую долю (%) элемента (или другой составной части вещества) по готовой формуле:

(22)

Обучающие задачи

Какую навеску карбоната кальция следует взять для определения в нем содержания кальция в виде оксида кальция, считая норму осадка 0,5г?

m (СаО) = 0,5г 1) Найдем количество вещества СаО:

n (CaO) =

m(СаСО3) — ? 2) Найдем количество вещества СаСО3:

n (CaCO3) = n (CaO) = 0,0089 моль

3) Найдем величину навески СаСО3:

Какой объем 0,25М раствора (NH4)2C2O4 потребуется для осаждения иона Са 2+ из раствора, полученного растворением 0,6г СаСО3 в соляной кислоте?

Перед решением такой задачи сделаем следующие пояснения. Необходимый объем осадителя рассчитывают: 1) учитывая содержание осаждаемого иона в растворе, а, следовательно, величину навески анализируемого вещества; 2) исходя из того факта, что абсолютно нерастворимых веществ нет, поэтому, чтобы добиться полного осаждения иона необходимо взять полуторный избыток осадителя.

V ((NH4)2C2O4) — ? Из уравнений реакций 1 и 2 следует, что

n (СаСО3) =

По условию в 1000 мл раствора (NH4)2C2O4 содержится 0,25 моль вещества, составим пропорцию:

0,25 моль – 1000 мл раствора

х =

С учетом полуторного избытка:

Рассчитать объем 2% раствора NH4OH (ρ= 0,988 г/мл) для осаждения иона АI 3+ из навески хлорида алюминия массой 0,3г.

С(NH4OH) = 2% По уравнению реакции

V (NH4OH) — ? n (AICI3) =

n (NH4OH) = 3 · 0,0023 = 0,0069 моль

Переведем % концентрацию раствора NH4OH в молярную:

(См. Приложение III)

0,57 моль – 1000мл раствора

0,0069 моль – х мл раствора

х =

С учетом полуторного избытка:

Вычислить фактор пересчета при определении кальция в виде оксида кальция.

Вычислить фактор пересчета при определении сульфата магния, если гравиметрическая форма Мg2P2O7.

Для определения общего Р2О5 в двойном суперфосфате Са(Н2РО4)2 взяли навеску 2,4835г. Фосфат-ион осадили в виде МgNH4PO4, который при прокаливании превратился в Мg2P2O7, масса которого составила 1,6337г. Найти массовую долю (%) Р2О5 в двойном суперфосфате.

m (Са(Н2РО4)2) = 2,4835г

Задачи для самостоятельного решения

1. Какую навеску сульфата железа FeSO4·7H2O следует взять для определения в нем железа в виде Fe2O3, считая норму осадка равной 0,2г? Ответ:

2. Какую навеску хлорида калия следует взять для определения хлорид-иона в виде АgCI, считая норму осадка

3. Какой объем 0,5н раствора (NH4)2C2O4 потребуется для осаждения иона Са 2+ из раствора, полученного растворением 0,7г СаСО3?

4. Какой объем 0,1М раствора НСI потребуется для осаждения серебра из навески АgNO3 массой 0,6г?

5. Какой объем 1н раствора ВаСI2 потребуется для осаждения иона SO4 2- , если растворено 2г медного купороса СuSO4?5H2O с массовой долей примесей 5%?

6. Какой объем 10% раствора NH4OH (ρ = 0,958 г/мл) потребуется для полного осаждения иона Fe 3+ из навески FeCI3 массой 0,5г?

7. Какой объем 1М раствора серной кислоты потребуется для полного осаждения иона Ва 2+ из навески ВаСI2?2Н2О массой 0,4526г?

8. Для определения магния в известняке была взята навеска 1,2456г. После отделения SiO2, Fe, AI и Ca был осажден магний в виде MgNH4PO4, который при прокаливании превратился в Mg2P2O7, масса которого составила 0,0551г. Найти массовую долю (%) магния в известняке.

9. Для определения кальция в СаСО3 навеску массой 0,4116г растворили в соляной кислоте и осадили Са 2+ действием (NH4)2C2O4. Выпавший осадок отфильтровали, промыли, прокалили и взвесили. Зная, что при прокаливании осадок превратился в СаО и что масса последнего составила 0,2302г, вычислить массовую долю (%) кальция в СаСО3. Написать уравнения всех реакций.

10. После соответствующей обработки 0,9г КАI(SO4)2 получено 0,0967г АI2О3. Найти массовую долю (%) алюминия в исследуемом веществе. Ответ: 5,69%.

11. Для определения лития навеску силикатной породы массой 0,9542г обработали смесью кислот НF и НCI. После извлечения хлорида лития ацетоном раствор выпарили, остаток прокалили и превратили в Li2SO4, масса его составила 0,3416г. Найти массовую долю (%) Li в силикатной породе. Ответ: 4,56%.

12. Вычислите фактор пересчета при определении: а) бария в виде BaSO4; б) алюминия в виде AI2O3; в) оксида натрия в виде NaCI; в) хрома в виде Cr2O3.

Ответ: а) 0,58798; б) 0,5294; в) 0,5299; в) 0,6842.

13. Вычислить фактор пересчета:

Определяемое вещество Гравиметрическая форма
а Са3(РО4)2 СаО
б FeO Fe2O3
в Н3РО4 Мg2Р2О7
г Аg2О АgСI
д MgO Мg2Р2О7
е К К24

Ответ: а) 1,8457; б) 0,9000; в) 0,8829; г) 0,8084; д) 0,3604; е) 0,4483.

Контрольные вопросы

1. Области применения гравиметрического анализа, его преимущества и недостатки.

2. Приведите последовательность операций в гравиметрическом анализе.

3. Какому принципу подчиняется отбор средней пробы? В чем заключается прием квартования?

4. Требования к величинам навески. Каковы рекомендуемые величины навески для кристаллических и аморфных веществ? Чем они определяются?

5. Осаждение. Выбор осадителя. Требования к осадителю. Объем осадителя.

6. Чем следует осаждать ионы Са 2+ — раствором Na2C2O4 или (NH4)2C2O4? Почему ионы Ва 2+ осаждают серной кислотой, а не раствором Na2SO4?

7. Кратко охарактеризуйте условия осаждения кристаллических и аморфных веществ.

8. Что такое осаждаемая и гравиметрическая формы (приведите примеры). Требования к осаждаемой и гравиметрической формам.

9. Соосаждение (определение). Перечислите виды соосаждения и кратко их охарактеризуйте.

10. Почему соосаждение является источником погрешностей в гравиметрическом анализе? За счет каких приемов можно уменьшить соосаждение?

11. Для чего используют промывание? Что применяют в качестве промывной жидкости? Какими свойствами осадков руководствуются при выборе промывной жидкости?

12. Фактор пересчета (определение, практическое значение).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9435 — | 7322 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Гравиметрический (весовой) анализ, или гравиметрия — это один из методов количественного анализа, основанный на определении массы искомого компонента анализируемого образца путем измерения — точного взвешивания — массы устойчивого конечного вещества известного состава, в которое полностью переведен данный определяемый компонент.

Так, при гравиметрическом определении серной кислоты в водном растворе к этому раствору прибавляют водный раствор соли бария (например, хлорида бария ВаСl2). Выпадает малорастворимый в воде белый осадок сульфата бария:

Осаждение проводят в таких условиях, в которых практически весь сульфат-ион переходит в осадок BaSO4 с наибольшей полнотой — количественно, с минимальными потерями (например, вследствие незначительной, но все же имеющейся растворимости сульфата бария в водном растворе). Осадок сульфата бария отделяют от маточного раствора, промывают для удаления растворимых примесей, высушивают, прокаливают для удаления сорбированных летучих примесей и взвешивают в виде чистого безводного сульфата бария на аналитических весах. Зная массу полученного сульфата бария, рассчитывают массу серной кислоты в исходном анализируемом растворе.

Другой пример — гравиметрическое определение хинина гидрохлорида в лекарственном препарате. Точную навеску препарата хинина гидрохлорида (около 0,5 г) растворяют в воде, добавляют раствор щелочи NaOH. Гидрохлорид хинина переходит в хинин. Образовавшийся хинин экстрагируют хлороформом. Отделяют хлороформный слой, содержащий хинин, хлороформ отгоняют. Остаток, состоящий из чистого хинина, высушивают, взвешивают и рассчитывают содержание хинина в исходном образце хинина гидрохлорида.

Читайте также:  Медкнижка какие анализы сдавать 2017

Гравиметрия — классический метод количественного химического анализа, один из первых, основательно разработанных количественных методов химии. Как уже отмечалось в главе 1, гравиметрические методы обладают простотой выполнения, хорошей воспроизводимостью, высокой точностью, хотя нередко они трудоемки и продолжительны. Гравиметрия — фармакопейный метод анализа. Разработаны многочисленные способы и методики гравиметрического определения химических элементов и их соединений.

Согласно распространенной классификации гравиметрических методов, по способу отделения определяемого компонента различают: методы осаждения, отгонки, выделения, термогравиметрические методы (термогравиметрия). Последнюю группу методов иногда относят к инструментальным.

Методы осаждения. Сущность их состоит в следующем. Определяемый компонент раствора вступает в химическую реакцию с прибавляемым реагентом — осадителем, образуя малорастворимый продукт — осадок, который отделяют, промывают, высушивают (при необходимости прокаливают) и взвешивают на аналитических весах. Примерами могут служить определение сульфат-ионов или катионов бария в форме сульфата бария BaSO4 определение массовой доли железа в растворимых солях железа, основанное на осаждении железа(Ш) в форме гидроксида Fe(OH)3хН2О с последующим его отделением и прокаливанием до оксида Fе2О3; определение кальция путем осаждения его в форме оксалата кальция CaC2O4 • Н2О и либо с последующим взвешиванием CaC2O4 • Н2О или безводного CaC2O4, либо переводом в карбонат СаСО3, оксид СаО, сульфат CaSO4; определение никеля в форме бисдиметилглиоксима никеля(II) NiL2 где L — однократно депротонированный остаток диметилглиоксима (CН3СNOH)2 —и т.д.

Методы отгонки. Определяемый компонент выделяют из анализируемой пробы в виде газообразного вещества и измеряют либо массу отогнанного вещества (прямой метод), либо массу остатка (косвенный метод).

Так, при определении содержания CO2 в карбонате кальция СаСО3 методом отгонки анализируемый образец (навеску) карбоната кальция растворяют в кислоте:

Выделяющийся диоксид углерода количественно поглощают и измеряют его массу по увеличению общей массы поглотителя.

Прямой метод отгонки применяют для определения содержания воды в анализируемых образцах, например в лечебных препаратах (фармакопейный метод). Для этого в стеклянную колбу вместимостью 250—500 мл, соединенную с обратным холодильником и градуированным приемником для сбора жидкого конденсата, вносят навеску анализируемой пробы массой 10—20 г, прибавляют 100 мл толуола или ксилола и кипятят содержимое колбы. Вода, присутствующая в анализируемой пробе, медленно испаряется при кипячении смеси и затем конденсируется в обратном холодильнике, стекая по каплям в приемник. После окончания отгонки воды и охлаждения приемника до комнатной температуры измеряют объем собранной в приемнике воды и, учитывая ее плотность, рассчитывают массу отогнанной воды. Зная массу воды и массу исходной пробы, рассчитывают содержание воды в анализируемом образце.

Косвенные методы отгонки широко применяют для определения содержания летучих веществ (включая слабосвязанную воду) в лекарственных препаратах, измеряя потерю массы анализируемого образца при его высушивании в термостате (в сушильном шкафу) при фиксированной температуре. Конкретные условия (температура, продолжительность высушивания и т. д.) определяются природой анализируемого объекта и указываются в методике анализа.

В типичном эксперименте для проведения анализа навеску (около 0,5—1,0 г) анализируемого образца, взвешенную на аналитических весах с точностью ±0,0002 г, помещают в сухой (предварительно взвешенный) бюкс или тигель, вносят в термостат (сушильный шкаф) и выдерживают в течение примерно двух часов при заданной температуре (часто около 100—110 °С), при которой удаляются пары слабосвязанной воды и летучих веществ. Затем бюкс (тигель) быстро переносят в эксикатор с осушителем, охлаждают, выдерживая 30—50 мин при комнатной температуре, после чего бюкс (тигель) взвешивают вместе с содержимым на аналитических весах.

Описанную операцию повторяют, помещая снова образец в термостат (сушильный шкаф) уже на менее продолжительное время — около часа. Повторные операции проводят до достижения постоянной массы бюкса (тигля) с образцом. Анализ обычно заканчивают тогда, когда разность между двумя последними взвешиваниями не превышает погрешности взвешивания на аналитических весах, т. е. ±0,0002 г.

В ряде случаев высушивание проводят в вакууме, иногда при комнатной температуре в эксикаторе (или в вакуум-эксикаторе) над осушителем.

Описанный способ определения потери массы при высушивании является одним из наиболее распространенных методов контроля качества химических веществ. Он прост по выполнению, универсален и систематически используется (в разных вариантах) при анализе многих десятков и сотен лекарственных препаратов в контрольно-аналитических лабораториях.

источник

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное учреждение высшего профессионального образования

«ПОВОЛЖСКАЯ ГОСУДАРСТВЕННАЯ СОЦИАЛЬНО-ГУМАНИТАРНАЯ АКАДЕМИЯ»

кафедра химии и методики ее преподавания

на тему: «Гравиметрический анализ»

студент 3 курса отделения

кандидат педагогических наук

Глава I. Сущность гравиметрического анализа

1.2 Механизм реакции осаждения

1.3 Осаждаемая и гравиметрическая формы

1.6 Получение осаждаемой формы

1.7 Фильтрование и промывание осадка

1.8 Получение гравиметрической формы

1.9 Применение гравиметрического метода анализа

Глава II. Весовые определения

2.2 Определение кристаллизационной воды в кристаллическом хлориде бария

2.3 Определение содержания серной кислоты в растворе

2.4 Определение содержания железа в растворе хлорида железа (III)

Глава III. Вопросы и задачи

Аналитической химией называется наука, занимающаяся изучением методов и приемов определения состава веществ и их смесей. Свое название аналитическая химия получила потому, что основным путем ее исследований является анализ, т. е. разложение сложных веществ на составляющие их элементы, точнее, ионы.

Аналитическая химия объединяет теорию химического анализа, качественный анализ и количественный анализ.

Аналитическая химия в целом относится к прикладным наукам, т. е. к наукам, имеющим прикладное практическое значение. Практическое значение аналитической химии весьма разнообразно.

Определение количественного состава исследуемого вещества, т. е. содержания отдельных составных частей его, является задачей количественного анализа. Гравиметрический анализ является одним из методов количественного анализа.

В гравиметрии определяемое вещество осаждают в виде малорастворимого соединения определенной стехиометрии. После выделения и высушивания осадок взвешивают на аналитических весах и по его массе и известной стехиометрии находят количество определяемого компонента.

Гравиметрические методы чрезвычайно точны, потому что на аналитических весах можно взвесить вещества с высокой степенью точности. Массу можно определить до пятой цифры после запятой.

Глава I. Сущность гравиметрического анализа

Гравиметрическим анализом называют метод количественного химического анализа, основанный на точном измерении массы определяемого вещества или его составных частей, выделяемых в виде соединений точно известного постоянного состава. Гравиметрические определения можно разделить на три группы: методы осаждения, отгонки и выделения.

Методы осаждения основаны на осаждении определяемого компонента в виде малорастворимого химического соединения, фильтровании, прокаливании до постоянной массы и последующем определении массы полученного вещества. При этом различают осаждаемую форму – форму, в виде которой определяемое вещество осаждают, и гравиметрическую форму – форму, в виде которой определяемое вещество взвешивают.

Методы отгонки основаны на отгонке определяемого компонента в виде летучего соединения с последующим определением массы отогнанного вещества (прямое определение) или массы остатка (косвенное определение).

Методы выделения основаны на количественном выделении определяемого компонента из анализируемого раствора путем химической реакции с последующим определением массы выделенного вещества. Этот принцип положен в основу электрогравиметрического метода анализа, в котором определяемый компонент выделяется из раствора в результате электрохимических реакций, протекающих на электродах.

Среди гравиметрических методов анализа наиболее широко применяют метод осаждения.

Задача количественного анализа – определение количественного содержания химических элементов в соединениях.

Количественный анализ – основное средство определения качества материалов, которое зависит от количества основных компонентов, примесей и т. д.

Методами количественного анализа проверяют правильность технологических процессов, решают многие вопросы исследовательско-прикладного характера: оценивают содержание ценных веществ в рудах, биологических объектах, присутствие токсических веществ в продуктах питания, медицинских препаратах, окружающей среде и т. д.

Весовой анализ основан на том, что из определенного взвешенного количества вещества (навески) посредством соответствующих химических реакций выделяют определенную составную часть в виде нерастворимого осадка. Этот осадок отфильтровывают, промывают и после прокаливания или высушивания взвешивают на аналитических весах. Затем по массе осадка вычисляют количество этой составной части.

Весовой анализ включает несколько этапов:

1. Отбор средней пробы и подготовка вещества к анализу.

5. Определение полноты осаждения (проба на полноту осаждения).

6. Фильтрование и промывание осадка.

7. Определение полноты промывания.

8. Высушивание или прокаливание осадка.

9. Вычисление результатов анализа.

1.2 Механизм реакции осаждения

В процессе образования осадка различают три основных параллельно протекающих процесса: 1) образование зародышей кристаллов; 2) рост кристаллов; 3) объединение хаотично ориентированных мелких кристаллов.

В начальный момент смешивания реагирующих компонентов раствор, содержащий эти компоненты, пересыщается и образуются мельчайшие частицы осадка – зародыши. Зародыш кристалла – наименьший агрегат атомов, молекул или ионов, который образуется в виде твердой фазы при осаждении и способен к самопроизвольному росту. Образование зародышей в пересыщенном растворе может происходить как самопроизвольно, так и при введении в раствор твердых частиц осадка, которые могут служить центром образования зародышей. Нерастворимые частицы, содержащиеся в реактивах и растворителе, также являются центром образования зародышей. Время с момента смешивания растворов реагирующих веществ до появления зародышей называют индукционным периодом, продолжительность его зависит от концентрации реагирующих веществ, а также от природы осадка. Так, при осаждении творожистого осадка AgCl индукционный период незначителен, а при осаждении кристаллических осадков – достаточно велик.

Рост кристаллов происходит за счет диффузии ионов к поверхности растущего кристалла и осаждения этих ионов на его поверхности и определяется не только диффузионными процессами, но и структурой растущих кристаллов, дефектами кристаллической решетки, внедрением в нее различных ионов и т. д.

Число и размер частиц осадка зависят от соотношения скорости образования зародышей кристаллов и скорости роста кристаллов. Если скорость образования зародышей кристаллов мала по сравнению со скоростью роста кристаллов, образуется небольшое число крупных частиц – осадок крупнокристаллический, при обратном соотношении скоростей получается мелкодисперсный осадок, состоящий из большого числа мелких частиц. Скорости обоих процессов зависят от относительного пересыщения раствора, которое определяется выражением:

где C – концентрация осаждаемого вещества в растворе, получаемая в момент внесения осадителя; S – растворимость.

1.3 Осаждаемая и гравиметрическая формы

При осаждении форма осадка может быть различной в зависимости от условий, в которых оно проводится. Важно подобрать такие условия, при которых не происходит потери вещества. Поэтому осаждение считают важнейшей операцией гравиметрического анализа. При его выполнении необходимо правильно выбрать осадитель, рассчитать его количество, соблюсти определенные условия осаждения, убедиться в полноте осаждения иона из раствора.

Осадок в процессе анализа приходится доводить до постоянной массы. Поэтому в гравиметрическом анализе различают две формы: осаждаемую и гравиметрическую.

Осаждаемая форма – тот осадок, который получается в результате химической реакции между осаждаемым ионом и осадителем.

Например: Ba 2+ + SO4 2– → BaSO4

К осаждаемой форме предъявляются следующие требования:

· малая величина растворимости, около 1•10 –6 моль/л,

· осадок должен быть крупнокристаллическим,

· осаждаемая форма должна легко и полно превращаться в гравиметрическую форму.

Гравиметрическая форма – то вещество, которое получается после прокаливания осаждаемой формы.

В некоторых случаях осаждаемая и гравиметрическая формы одинаковы (например, BaSO4 ). В других случаях их состав отличается друг от друга:

Требования, предъявляемые к гравиметрической форме:

1. Состав гравиметрической формы должен точно соответствовать определенной стехиометрической формуле.

2. Она не должна менять своей массы на воздухе из-за поглощения паров H2 O и CO2 или частичного разложения.

3. Содержание определяемого элемента в гравиметрической форме должно быть как можно меньше, т. к. в таком случае погрешности взвешивания в меньшей степени сказываются на результате.

источник

Одним из самых доступных методов исследования веществ в аналитической химии является гравиметрия. Главное, на чем основан гравиметрический метод анализа, это точное измерение массы определяемого соединения, выделенного как вещество с известным составом или же в элементарном виде. Для этого используют испарение, отгонку, сублимацию или осаждение.

Гравиметрия имеет важное значение для количественного анализа. Гравиметрический метод заключается в определении массы некоторого компонента в образце, подвергаемом анализу. Для этого производят точное взвешивание вещества в устойчивой конечной форме, в которую переведен измеряемый компонент. Его должно быть можно легко отделить и взвесить.

Чаще всего используют в качестве растворителя в гравиметрическом методе анализа воду. И для того чтобы выделить максимальное количество определяемого соединения, полученный осадок должен обладать минимальной растворимостью в ней. Поскольку растворимость соли связана с константой равновесия процесса, то снизить ее можно добавлением в раствор стехиометрического избытка осаждающего реагента.

Гравиметрический метод анализа, как и все другие методы исследования веществ, имеет свои плюсы и минусы. Отличает его в первую очередь высокая точность определения массы вещества в анализируемой пробе. Кроме того, для проведения исследования не требуется сложное оборудование, и оно может быть проведено практически в каждой лаборатории. Также немаловажным является тот факт, что для анализа не нужно проводить калибровку приборов и готовить серию стандартных растворов.

Основным минусом гравиметрии является длительность проведения анализа. Дополняет его необходимость проверки качества весовой формы. Так, она не должна содержать примесей, и ее состав должен быть известен достоверно.

Все эти преимущества и недостатки гравиметрического метода анализа обуславливают тот факт, что применяют его сравнительно редко, в крайней необходимости. Например, его применяют для контроля результатов в сомнительных случаях.

Гравиметрический анализ базируется на трех фундаментальных законах химии. К ним относятся:

  1. Закон сохранения массы: масса реагентов равна массе продуктов реакции.
  2. Закон постоянства состава: количественный состав химически чистых веществ не зависит от способа их получения.
  3. Закон эквивалентов: объемы растворов двух разных веществ, реагирующих друг с другом без остатка, обратно пропорциональны нормальностям этих растворов, или V1/V2н2н1, или V1·Сн1=V2·Сн2, где Сн1 и Сн2 — нормальности первого и второго растворов; V1 и V2 — объемы первого и второго растворов.

Несмотря на то что гравиметрический метод количественного анализа применяется не так уж и часто, он является незаменимым в ряде случаев:

  • для нахождения атомных масс;
  • при определении гигроскопической влаги и кристаллизационной воды;
  • для нахождения количественного содержания в образцах сульфат-ионов, SiO2, щелочных и щелочноземельных металлов;
  • для установления химического состава синтезированных веществ.

Поскольку в ходе гравиметрического метода анализа происходит неоднократное измерение массы, весовые определения принято делить на три типа. К первому относят те, в ходе которых определяемую часть количественно выделяют из анализируемого образца и взвешивают. Например, определение содержания золы в каменном угле (зольности).

Второй тип требует удаления определяемой составной части и взвешивания остатка. Таким способом измеряется влажность материалов гравиметрическим методом анализа. Сущность метода состоит во взвешивании образца до и после прокаливания (или высушивания).

Третий тип наиболее сложен, поскольку требует количественного связывания измеряемого компонента в химическое вещество, которое можно выделить и взвесить. В этом случае анализируемое соединение существует в двух формах:

  • гравиметрической — соединения, в виде которого исследуемую часть взвешивают;
  • осаждаемой — соединения, в виде которого исследуемая часть осаждается.

Характеристику гравиметрическому методу анализа можно давать по различным признакам. Так, по типу лежащей в его основе химической реакции могут идти процессы разложения, замещения, обмена или образования комплексов.

По способу получения осадка и его отделения гравиметрические методы делят на:

  • Методы осаждения. Изучаемый компонент раствора вступает в реакцию с осадителем и образует малорастворимый продукт, который отделяют, промывают, высушивают и взвешивают.
  • Методы отгонки. Изучаемый компонент отделяют от анализируемой пробы, переведя его в газообразное состояние, и измеряют массу вещества после отгонки или массу остатка.
  • Термогравиметрические методы. Сущность этого метода гравиметрического анализа заключается в измерении массы определяемого вещества при нагревании. Он требует специального прибора — дериватографа, который способен непрерывно записывать изменение массы вещества в процессе нагрева.
  • Методы выделения. Изучаемый компонент выделяют из раствора, например, электролизом на электроде, который взвешивают до и после проведения погружения в раствор.

Первой из основных операций гравиметрического метода анализа является взятие навески. Погрешность аналитических весов, которые используются для данной процедуры, должна быть не менее 0,0001 г. Для того чтобы взять точную навеску, нужно воспользоваться одним из двух методов.

  1. Взвесить на аналитических весах чистый сухой бюкс (или другую подходящую химическую посуду), а затем, поместив ее на технические весы, насыпать в него анализируемое вещество с точностью 0,01 г. После этого наполненный бюкс повторно взвесить на аналитических весах. Разница в весовых значениях пустого и полного бюкса даст массу навески. Чтобы перенести исследуемое вещество в стакан, сначала его осторожно высыпают, а затем смывают из промывалки растворителем частицы, оставшиеся на стенках бюкса.
  2. Пустой и наполненный анализируемым веществом бюкс взвешивают на технических весах. Затем наполненный бюкс взвешивают на аналитических весах. После этого пересыпают вещество в химический стакан или колбу и взвешивают пустой бюкс на аналитических весах. Массу навески находят по разности двух взвешиваний на аналитических весах.

Выбор растворителя является одним из важных этапов гравиметрического метода анализа. Вода в данном случае не является единственно верным решением. Основным условием здесь следует назвать максимально возможное растворение, а для этого необходимо основываться на химическом составе исследуемой пробы. Нередко для этих целей применяют неорганические кислоты или их смеси, а также растворы щелочей. Так, металлы и их сплавы, оксиды, сульфиды и другие соли чаще всего растворяют в концентрированных или разбавленных кислотах.

Сам процесс растворения навески ведут в химическом стакане подходящего объема. Важно не допустить потерь вещества, которые могут происходить при разбрызгивании раствора из-за чрезмерно активной реакции или выделения пузырьков газа. Растворитель следует добавлять постепенно, малыми порциями, вливая его по внутренней стенке стакана. Порой для ускорения процесса растворения содержимое стакана нагревают.

В некоторых случаях вещества невозможно перевести в раствор с использованием жидких реагентов. Тогда прибегают к использованию плавней, с которыми исследуемый образец сплавляют перед растворением.

Эта стадия является отражением сущности метода гравиметрического анализа. Кратко метод осаждения можно описать как химическую реакцию, сопровождающуюся образованием нерастворимого вещества. В качестве осадителей применяют как неорганические, так и органические соединения. Для правильного проведения осаждения необходимо:

  • свести к минимуму потери, связанные с растворением выпавшего осадка;
  • избежать появления примесей в осадке, которые могут возникнуть в результате их адсорбции, окклюзии или же соосаждения;
  • получить достаточно крупные частицы, которые не смогут пройти через поры фильтра.

Осаждение осуществляют в химических стаканах, чаще всего из разбавленных горячих растворов медленным прибавлением осадителя с непрерывным перемешиванием раствора. Осадитель помещают в бюретку, закрепленную на штативе (реже добавляют пипеткой). Анализируемый раствор доводят до нужного объема и нагревают, стараясь не доводить до кипения. Опускают в стакан стеклянную палочку с резиновым наконечником и ставят его под бюретку таким образом, чтобы носик бюретки находился внутри стакана. А затем по каплям прибавляют осадитель при непрерывном помешивании. Далее убеждаются в полноте осаждения, позволив осадку осесть и добавив к просветленному раствору еще несколько капель осадителя. Если в местах падения капель не появляется мути, то осаждение прошло в полном объеме.

Читайте также:  Как делать анализ на английском

Правильное протекание этого процесса существенно влияет на результаты гравиметрического метода анализа. Кратко его суть можно описать несколькими стадиями:

  • Сначала образуются мельчайшие зародышевые кристаллы, не способные пока еще выпасть в осадок ввиду малого веса. Их число зависит от концентрации раствора и растворимости вещества. Чем меньше растворимость, тем большее число зародышей возникает. Также на их число влияет скорость смешивания растворов. Так, при быстром сливании концентрированных растворов будут образовываться многочисленные зародышевые кристаллы, а осадок выпадет мелкокристаллический. Если же растворы будут разбавленными и скорость их смешивания низкой, то центров кристаллизации будет немного, зато получаемые кристаллы вырастут довольно крупными.
  • Происходит укрупнение зародышевых кристаллов, которое может идти с образованием либо кристаллических, либо аморфных осадков. Если вещество выделяется на поверхности зародышевых кристаллов, что сопровождается их постепенным ростом, то образуется кристаллический осадок. Если зародышевые кристаллы объединяются между собой в более крупные частицы, то получается аморфный осадок. Аморфные агрегаты могут перерастать в кристаллические.
  • Оседание на дно химической посуды укрупненных кристаллических или аморфных структур.

Этот процесс проводят путем фильтрования раствора. Делают это либо после его созревания, либо после осаждения. В качестве оборудования и материалов применяют фильтрующие тигли и беззольные бумажные фильтры.

Используют два типа фильтрующих тиглей: фарфоровые и стеклянные. Дно первых неглазурированное и пористое, причем в зависимости от диаметра пор они различаются по номерам. Дно стеклянных фильтров является пористой стеклянной пластинкой с различным размером пор. Обычно промывание тиглей и фильтрование через них осадков проводят с отделением жидкости под вакуумом.

Чаще в гравиметрическом методе анализа применяют особые бумажные фильтры. В связи с тем, что бумага имеет высокую гигроскопичность, взвешивание осадка с фильтром является ошибочным. Поэтому фильтр и находящийся на нем осадок помещают в тигель и сжигают. Поскольку после этого золы от фильтров остается крайне мало (около 0,1 г), их и называют беззольными. Однако стоит своевременно внести поправку на их использование с учетом известной массы золы. Такие фильтры могут быть различной плотности и размеров пор. Это маркируется цветом ленты на пачке фильтров.

Самые плотные фильтры с синей лентой применяют для мелкокристаллических осадков. Фильтры средней плотности с белой полосой — для среднекристаллических. Наименее плотные фильтры с черной или красной лентой пригодны для отфильтровывания крупнокристаллических и аморфных осадков. Размер фильтра следует выбирать по объему осадка так, чтобы он занимал не более половины сложенного конусом фильтра.

В ходе фильтрования сначала пропускают через фильтровальную бумагу прозрачный раствор. Крупнокристаллические осадки, которые легко фильтруются, можно промывать прямо на фильтре. Аморфные студенистые осадки перед переносом на фильтр промывают декантацией, путем слива прозрачной промывной жидкости над осадком через фильтр и взмучиванием осадка промывной жидкостью и повторным сливом. На фильтре отделенный осадок также промывают малыми порциями промывной жидкости. Чтобы перенести на фильтр ту часть осадка, которая пристала к стакану или стеклянной палочке, осторожно споласкивают над стаканом, содержащим оставшийся осадок, палочку и стакан из промывалки. Затем маленьким кусочком беззольного фильтра следует протереть палочку, стараясь снять частицы осадка, и добавляют его к осадку на фильтре.

Осадок, находящийся на фильтре, промывают 3-4 раза, с интервалом времени, достаточным для полного стекания жидкости. Далее подходящим реагентом проверяют полноту промывания осадка. После полного стекания промывной жидкости осадок с фильтром немного просушивают в сушильном шкафу прямо на воронке при 100-150 °С. Фильтр после этого должен оставаться немного влажным. Его края отделяют от воронки шпателем, закрывая ими осадок полностью. После этого фильтр с осадком вынимают из воронки и помещают в тигель, который был предварительно взвешен.

После того как тигель, содержащий осадок и фильтр, довели до постоянной массы, его выставляют в фарфоровый треугольник, размещенный на кольце штатива в муфельной печи. Нагревание ведут медленно. В случае быстрого нагрева может случиться выброс частиц осадка с испаряющейся влагой. После полного удаления жидкости нагрев увеличивают для постепенного обугливания фильтра. Важно подобрать такую температуру, при которой бумага обуглится, но не воспламенится, чтобы не увлечь частицы вещества из тигля. После прокаливания и удаления фильтра тигель помещают в эксикатор и охлаждают до комнатной температуры. После этого взвешивают и повторяют прокаливание. Делают это столько раз, сколько необходимо для получения постоянной массы.

Не менее важной частью гравиметрического метода анализа являются расчеты. Поскольку процесс этот многостадийный, да и реактивов обычно используется несколько, необходимо математическое обоснование приемлемых масс и объемов. Для проведения исследования необходимо рассчитать:

  • размер навески;
  • количество осадителя либо растворителя в зависимости от методики анализа;
  • количество промывной жидкости;
  • результаты исследования.

Методики и формулы подробно расписаны Шапиро в учебнике по аналитической химии и гравиметрическому методу анализа. Точность каждого их этих пунктов несколько отличается. Первые три рассчитывают приближенно, а результаты анализа вычисляют до десятичных долей граммов.

В зависимости от выбранной методики и целей исследования гравиметрический метод анализа позволяет определить количество одного или нескольких компонентов в исследуемом образце, а также провести элементный анализ соединения. Нередко полученные данные готовы послужить для установления формулы того или иного соединения. Результаты определений чаще всего выражают в процентном соотношении. Например, при анализе сплавов результат описывают перечнем химических элементов (% Fe, % Mn и т. д.). Исследование горных пород выражают в форме составляющих их оксидов (% SiO2 , % Fe2O3 и т. д.).

Тогда, когда определяемая часть образца выделена в той же форме, что и в пробе, то ее содержание х находят по формуле: x=(m·100)/mн, где m — масса выделенной части; mн — навеска.

Массовую долю определяемого компонента в образце ω рассчитывают по формуле: ω=(mграв.ф·F·100)/mн.

Если целью гравиметрического метода анализа соединения является вывод формулы, то полученные данные по элементам вносят в соотношение:

где a, b и с — массовые доли химических элементов А, В и С, а Ма, Мb и Мс — их молярные массы. Получаемую дробную пропорцию приводят к целочисленной.

источник

Гравиметрический метод анализа является одним из важнейших методов количественного химического анализа. Название «гравиметрический» происходит от латинского слова «gravitas» (вес), поэтому метод называют также весовым анализом.

Основоположником гравиметрического анализа является шведский ученый У.Т. Бергман. В 1780 г. он опубликовал четыре книги, в которых были впервые систематизированы основы качественного и количественного анализа и заложены основы гравиметрического анализа в растворах.

В истории химии гравиметрический анализ (г.а.) сыграл выдающуюся роль. С его помощью были установлены все основные химические законы и состав химических соединений.

Основным достоинством г.а., как уже отмечалось в разделе 2.1, является его высокая точность (до 0,2 %). Это намного превышает точность титриметрических (см. раздел 2.1) и инструментальных (см. раздел 8) методов анализа. Однако, превосходя эти методы по точности, г.а. сильно уступает им по длительности процедур анализа. Из-за большой продолжительности гравиметрические определения не могут использоваться для экспрессного (быстрого) определения каких-либо показателей качества сырья или готовой продукции, а также параметров технологического процесса ее получения. В то же время г.а. незаменим при арбитражных (спорных) анализах и широко применяется при выполнении научно-исследовательских работ для сравнения аналитических данных, полученных разными методами.

В технохимическом контроле в пищевой промышленности гравиметрические определения находят такое же ограниченное применение, как и во всей современной аналитической практике. В основном с помощью г.а. устанавливают содержание влаги и золы в пищевых продуктах, а также в сырье. Эти показатели называются соответственно «массовая доля влаги» и «массовая доля золы (зольность)» и являются одними из основных физико-химических показателей, определяющих качество сырья и готовых продуктов питания. Например, по количеству золы, получаемой при сжигании муки, муку стандартизуют по сортам. Так, массовая доля золы пшеничной муки высшего сорта равна 0,55 %, I сорта — 0,75 %, II сорта — 1,25 %, пшеничной обойной — 1,9 %. Еще одной областью применения г.а. в аналитической химии пищевых продуктов можно считать апробирование и установление критериев точности новых методов и новых методик анализа сырья и готовой продукции пищевой промышленности.

3.1. Сущность гравиметрического анализа

Напомним (см. раздел 2.1), что гравиметрический анализ — это метод количественного химического анализа, основанный на точном измерении массы определяемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений точно известного постоянного состава.

Таким образом, при гравиметрическом анализе из навески вещества или образца получают осадок или остаток, который взвешивают.

Метрологические характеристики г.а. приведены в разделе 2.1.

Предел обнаружения г.а. ограничивается растворимостью осадка и чувствительностью аналитических весов.

3.2. Классификация методов гравиметрического анализа

Все многочисленные гравиметрические определения можно разделить на три большие группы:

В методах выделения определяемый компонент выделяют в свободном состоянии из анализируемого образца и взвешивают на аналитических весах. Так, например, определяют массовую долю золы в пищевых продуктах (в частности, уже упоминавшуюся выше зольность муки) или массовую долю сухих веществ (сухого остатка).

В методах отгонки г.а. определяемый компонент количественно отгоняют в виде летучего соединения путем нагревания анализируемого образца или действием соответствующих реагентов.

Методы отгонки бывают прямыми и косвенными.

В прямых методах отгонки определяемый летучий компонент поглощают специфическим поглотителем и по увеличению его массы вычисляют содержание определяемого компонента, или определяемое вещество отгоняют из смеси и образовавшийся отгон взвешивают.

В косвенных методах отгонки определяемое вещество отгоняют из точной навески анализируемого образца. После окончания отгонки образец снова взвешивают. Массу определяемого вещества находят по разности масс образца до и после отгона О.В. В пищевой промышленности таким образцом определяют массовую долю влаги в различных видах сырья и готовых изделиях. Например, в хлебопекарной промышленности анализируют на этот показатель муку, практически все дополнительное сырье (сухое коровье молоко, сгущенное молоко с сахаром, сливочное масло, маргарин, яичный порошок и т.д.), а также готовые хлебобулочные изделия.

Наиболее разнообразное применение из гравиметрических методов получили методы осаждения. Напомним (см. раздел 2.1), что они основаны на том, что определяемый компонент количественно осаждают химическими способами (т.е. при взаимодействии с подходящим реактивом-осадителем) в виде малорастворимого соединения, ПР которого не превышает . Выделившийся осадок отделяют, промывают, высушивают, прокаливают (если нужно) и взвешивают.

В настоящем пособии подробно рассмотрены теоретические основы и особенности только методов осаждения.

3.3. Основные операции гравиметрического анализа.

Осаждаемая и гравиметрическая формы осадка

Г.а. методом осаждения проводят в следующей последовательности:

1) отбирают среднюю пробу анализируемого образца;

2) взвешивают навеску для анализа;

4) осаждают определяемый компонент;

5) отделяют осадок фильтрованием;

10) вычисляют результат анализа.

Заметим, что прокаливание осадков в некоторых случаях невозможно (см. раздел 3.5.9), и тогда эта стадия исключается.

Поскольку многие осадки при прокаливании изменяют свой состав, то различают осаждаемую и гравиметрическую (весовую) формы осадка.

Осаждаемая форма осадка (форма осаждения) — соединение, которое осаждается из раствора при взаимодействии определяемого компонента с соответствующим реагентом (или соединение, в виде которого осаждают анализируемое вещество).

Гравиметрическая (весовая) форма — соединение, которое взвешивают для получения окончательного результата анализа (или соединение, в виде которого взвешивают определяемый компонент).

Наиболее часто составы осаждаемой и гравиметрической форм не совпадают. Реже их состав одинаков. Например, хлорид- и Ag + -ионы определяют г.а., осаждая их в виде AgCl.

Осаждаемая и гравиметрическая формы в этом случае имеют одинаковый состав AgCl.

3.4. Требования к осаждаемой и гравиметрической формам осадка

Для получения точных результатов в гравиметрических методах осаждаемая и гравиметрическая формы осадка должны соответствовать определенным требованиям.

Требования к осаждаемой форме:

1. Осадок должен быть практически нерастворим.

Это означает, что в растворе после осаждения и промывания осадка, определяемого компонента должно оставаться меньше, чем можно взвесить на аналитических весах. Опыт показывает, что для бинарных электролитов (т.е. соединений, каждая молекула которых образует при диссоциации два иона, например, AgI, PbSO4 и т.д.) практически полное осаждение может быть достигнуто лишь тогда, когда ПР осадка имеет значение, не превышающее . (Если же соединение тринарное, тетрарное и более сложного состава, то ПР будет другим, но всегда растворимость осадка не должна превышать 10 -6 г/л).

2. Желательно, чтобы структура осадка давала возможность с достаточной скоростью выполнить операции фильтрования и промывания осадка.

В этом отношении очень удобны крупнокристаллические осадки, т.к.они почти не забивают поры фильтра, мало загрязняются посторонними примесями из анализируемого раствора и легко отмываются от них.

Аморфные осадки типа Al(OH)3 и Fe(OH)3, имея сильно развитую поверхность, являясь рыхлыми и объемными, значительно адсорбируют примеси из анализируемого раствора, трудно отмываются от них, а также медленно фильтруются. Однако, если соединений, обладающих более подходящими для анализа свойствами, не известно, то работают и с такими осадками. Стремятся только обеспечить все условия, способствующие наибольшему устранению или уменьшению недостатков аморфных осадков (эти условия представлены в разделе 3.5.5).

3. Необходимо, чтобы осаждаемая форма достаточно легко и полностью превращалась в гравиметрическую форму.

Требования к гравиметрической форме:

1. Состав гравиметрической формы должен соответствовать определенной химической формуле.

На практике многие осадки не удовлетворяют этому требованию. Например, осадок гидроксида железа не соответствует формуле Fe(OH)3, более правильно принято писать . Количество воды в этом соединении непостоянно и зависит от условий осаждения. Но после прокаливания гидроксид железа переходит в стабильную гравиметрическую форму, строго соответствующую формуле Fe2O3.

2. Гравиметрическая форма должна обладать достаточной химической устойчивостью.

Иначе нарушится соответствие ее состава определенной химической формуле. Если установлено, что гравиметрическая форма может легко изменять свой состав вследствие, например, поглощения водяных паров или СО2 из воздуха, окисления (восстановления), разложения или других подобных реакций, то ее превращают в более удобную форму, обрабатывая соответствующими ре-агентами. Например, осадок СаО, легко поглощающий Н2О и СО2 из воздуха (что затрудняет его точное взвешивание), иногда превращают в CaSO4, обработав серной кислотой.

3. Гравиметрическая форма, получаемая путем прокаливания, должна обладать устойчивостью при высоких температурах (термоустойчивостью).

Некоторые гравиметрические формы могут разлагаться при высоких (порядка 1200-1300 о С и выше) температурах.

;

,

поэтому осадки прокаливают при температуре не выше 1100 о С.

4. Молекулярная масса гравиметрической формы должна быть по возможности большей.

Иными словами, содержание определяемого элемента в гравиметрической форме должно быть как можно меньшим. Благодаря этому, относительная погрешность определения в меньшей мере влияет на результат анализа.

3.5. Техника гравиметрического анализа. Выбор оптимальных условий выполнения гравиметрического определения

3.5.1. Отбор средней пробы анализируемого образца

Понятие «средняя проба» и правила ее отбора для анализа представлены в разделе 1.7.5. Кроме средней, известно еще несколько видов проб. Описание основных из них приведено в «Аналитической химии» [16].

Обычно, отобрав представительную первичную пробу анализируемого продукта, ее измельчают (в случае твердых и сыпучих материалов), перемешивают и сокращают до размеров лабораторной (паспортной) пробы. Из нее отбирают аналитические пробы для проведения отдельных анализов.

3.5.2. Взятие навески для анализа

Навеску анализируемого образца рассчитывают с учетом массы гравиметрической формы. Опытным путем установлено, что оптимальная масса гравиметрической формы для кристаллических осадков составляет около 0,5 г, для аморфных — 0,1 г.

Расчет исходной навески для анализа ведут, исходя из уравнений реакций, протекающих при гравиметрическом определении. Причем, если анализируемое вещество содержит значительное количество примесей, то навеска должна соответствовать только содержанию определяемого компонента в исследуемом образце.

Например, если анализируют на содержание Fe 3+ -ионов, то навеску (mи.с.) вычисляют, исходя из следующей схемы.

В общем виде расчет mи.с. осуществляют по формулам:

а) при осаждении кристаллических осадков:

; (40)

б) при осаждении аморфных осадков:

, (41)

где а — стехиометрический коэффициент в уравнении реакции перед определяемым веществом;

в — стехиометрический коэффициент в уравнении реакции перед соединением весовой формы.

Рассчитанную навеску сначала взвешивают ориентировочно на технических весах, а затем — на аналитических весах.

Для взятия навесок твердых веществ обычно применяют часовые стекла, бюксы (допускается калька), а для жидких веществ — капельницы, колбы емкостью 1-2 см 3 и т.д. Многолетней практикой созданы наиболее рациональные способы перенесения навески анализируемого вещества в стакан. Они подробно рассмотрены, например, в «Основах аналитической химии» [8].

В качестве растворителей в гравиметрии применяют:

— растворы кислот или их смеси, например, «царскую водку» (смесь 1-го объема концентрированной HNO3 с тремя объемами концентрированной HCl);

Выбор подходящего из перечисленных растворителя делают до гравиметрического определения путем качественных проб.

а) характер реакции, происходящей при действии реактива-растворителя;

б) растворимость образующихся в результате соединений;

в) дальнейший ход анализа исследуемого образца.

Например, для растворения CaCO3 удобнее использовать HCl, а не H2SO4, т. к. CaSO4 малорастворим в воде. При анализе природных сернистых руд целесообразно применять окислители, переводящие серу в -анион и т.д.

Чаще всего в гравиметрии в качестве растворителей применяют дистиллированную воду, холодную или нагретую до определенной температуры.

Растворение навески ведут в фарфоровых стаканах или колбах, реже — в фарфоровых чашках. Растворение в кислотах (разбавленных или концентрированных) выполняют в вытяжном шкафу.

Если анализируемый образец имеет очень сложный состав (т.е. состоит из большого числа компонентов), то подобрать подходящий растворитель трудно. В таких случаях для разложения вещества и перевода определяемой составной части в раствор прибегают к сплавлению (или «спеканию») вещества с теми или иными «плавнями» (например, K2S2O7, KHSO4 и др.). Подробнее об этом представлено в работе В.Н. Алексеева [1].

3.5.4. Осаждение. Выбор и количество осадителя

Эта стадия является одной из наиболее важных в г.а. От качества, формы, структуры и степени чистоты получаемых осадков в значительной степени зависят точность и надежность результатов анализа. В свою очередь, структура и свойства образующихся осадков зависят от множества факторов: их растворимости, концентрации осаждаемого вещества, осадителя, скорости осаждения, рН-среды и т.д. Важное значение имеет также правильный выбор осадителя-ре-агента. Его делают, исходя из требований к осаждаемой и гравиметрической формам осадка (см. раздел 3.4) с учетом следующих соображений:

1. Осадитель должен быть таким, чтобы ПР образующегося осадка не превышало и при этом было как можно меньшим.

Например, ионы Ва 2+ образуют осадки с (NH4)2C2O4 ( ); (NH4)2CO3 ( ); K2CrO4 ( ); и с H2SO4 ( ).

Очевидно, что при гравиметрическом определении ионов Ва 2+ в качестве осадителя наиболее целесообразно взять H2SO4 или K2CrO4.

В гравиметрии в качестве осадителей часто применяют реактивы, позволяющие получать гидроксиды, карбонаты, сульфаты, сульфиды, оксалаты, фосфаты металлов.

2. Желательно, чтобы осадитель был летучим веществом.

Опыт показывает, что при выделении осадка из раствора он всегда увлекает растворенные посторонние вещества или ионы, в том числе и ионы осадителя. От этих примесей осадок приходится отмывать, и это не всегда удается сделать полностью. Но, благодаря летучести, оставшаяся при промывании часть осадителя легко удалится при прокаливании и не станет причиной ошибки анализа, поэтому часто для осаждения применяют соединения аммония: гидроксид, карбонат, оксалат и т.д.

3. Осадитель должен быть специфическим, т.е. осаждать только определяемый ион.

Это важно, т.к. при выполнении большинства анализов определяемый ион приходится осаждать в присутствии ряда других ионов.

Читайте также:  Географический язык какие анализы сдать

Заметим, что специфический осадитель удается найти не всегда, поэтому проводят маскировку мешающих определению ионов, т.е. связывают их в достаточно прочные комплексы, не осаждаемые выбранным реактивом-осади-телем. Известны и другие способы удаления мешающих ионов из раствора [1].

Количество осадителя. Для уменьшения потерь от растворимости осадка в гравиметрии к анализируемому раствору добавляют избыток осадителя. Обычно осадителя берут в 1,5 раза больше, чем рассчитано по уравнению реакции осаждения. Иногда, если это необходимо, прибавляют значительно боль-шее (в 2-3 раза) количество осадителя. Однако слишком большой избыток осадителя вреден, т.к. он вызывает не понижение, а наоборот — повышение растворимости осадка. Причиной этого может быть образование растворимых комплексных соединений или кислых солей, амфотерность осаждаемого соединения (гидроксида), «солевой эффект» (вследствие возрастания ионной силы раствора) и т.д.

Необходимый объем осадителя рассчитывают по формуле:

, (42)

где ос.в. — осаждаемое вещество;

Этот расчет ориентировочный, поэтому полученное значение объема округляют до одной-двух значащих цифр. Рассчитанный объем раствора осадителя отмеривают с точностью до 0,1-0,2 см 3 .

3.5.5. Осаждение. Оптимальные условия осаждения кристаллических и аморфных осадков

В зависимости от индивидуальных свойств анализируемых веществ и условий осаждения процесс образования осадка может идти двумя путями, которые приводят к образованию либо кристаллического, либо аморфного осадка. В разделе 3.4 было отмечено, что в гравиметрии отдают предпочтение крупнокристаллическим осадкам. Прежде, чем указать условия, при которых они получаются, необходимо хотя бы в общих чертах рассмотреть, как протекает процесс образования осадка (твердой фазы) в растворе.

Механизм образования кристаллических и аморфных осадков. Процесс образования осадка (твердой фазы) в растворе очень сложен. Сначала почти всегда наблюдается так называемый индукционный период, который длится от момента смешения растворов анализируемого вещества и осадителя до появления видимого осадка.

Индукционный период может быть очень большим (например, при осаждении BaSO4) или совсем непродолжительным (при образовании AgCl). Наличие этого периода объясняется тем, что образование осадка проходит ряд стадий. По мере прибавления в анализируемый раствор реактива-осадителя наступает момент, когда произведение концентраций ионов осаждаемого соединения превысит ПР осадка и образуется осадок малорастворимого соединения сначала в виде зародышевых, или первичных кристаллов. Для образования таких кристаллов:

а) в растворе должно столкнуться в определенном соотношении и при определенном расположении довольно большое число реагирующих ионов;

б) гидратная (сольватная) оболочка ионов должна быть разрушена.

На стадии образования первичных кристаллов не наблюдается еще видимого выделения вещества в осадок, т. к. сами эти кристаллы, а также их агрегаты (агрегация — процесс соединения зародышевых кристаллов в более крупные, состоящие из десятков, сотен молекул) имеют очень малый размер, поэтому эта стадия формирования осадка соответствует существованию коллоидных систем. Затем первичные кристаллы или их агрегаты образуют более крупные частицы и выпадают в осадок. Этот процесс в зависимости от индивидуальных свойств анализируемых веществ может идти двумя путями, определяющими форму осадка, т.е. его образование в виде кристаллов или в аморфном состоянии.

1. Если растворимость осадка не слишком мала, то образуется кристаллический осадок. При медленном прибавлении в раствор новых порций осадителя не появляются новые центры кристаллизации (первичные кристаллы) или новые агрегаты. Раствор некоторое время остается в пересыщенном состоянии. Выделение вещества из этого пересыщенного раствора происходит преимущественно на поверхности ранее образовавшихся зародышевых кристаллов, которые постепенно растут. Кроме того, первичный осадок непрерывно растворяется и по достижении границы пересыщения вновь выпадает. Это ведет к растворению мелких и росту крупных кристаллов. В конечном итоге получается кристаллический осадок, состоящий из сравнительно небольшого числа относительно крупных кристаллов.

2. Если растворимость осадка мала, то образуется аморфный осадок. Прибавление каждой новой порции осадителя вызывает быстрое возникновение в растворе огромного количества мельчайших зародышевых кристаллов, которые растут уже не вследствие отложения на их поверхности соответствующего вещества, а в результате их соединения в более крупные агрегаты, оседающие под влиянием силы тяжести на дно сосуда. Происходит коагуляция первоначально образующегося коллоидного раствора, образуется аморфный осадок.

Относительное пересыщение. Выпадению осадка предшествует пересыщение раствора. В пересыщенном растворе образуются зародышевые кристаллы осаждаемого вещества. Скорость образования этих центров кристаллизации и их число зависят от степени пересыщения раствора.

Для характеристики пересыщения часто применяют формулу:

, (43)

где Q = С/2, С — молярная концентрация каждого из реагентов;

S — растворимость малорастворимого вещества.

Формула является эмпирической и справедливой только при одинаковой концентрации реагирующих веществ.

Отношение называют относительным пересыщением. Им пользуются для определения оптимальных условий осаждения кристаллических и аморфных осадков.

Оптимальные условия получения кристаллических осадков. Из формулы (43) следует, что, если относительное пересыщение мало (значение Q мало, а S велико), то меньшее число первичных кристаллов будет возникать, и крупнее они будут. Следовательно, для получения крупнокристаллических осадков необходимо в процессе осаждения повышать растворимость осадка и понижать концентрации осаждаемого и осаждающих ионов.

Для повышения растворимости (S) осадков в процессе осаждения:

а) обычно повышают температуру: ведут осаждение из горячего анализируемого раствора, иногда нагревают и раствор осадителя; но осадок отфильтровывают только после охлаждения раствора;

б) добавляют в раствор вещества, повышающие растворимость осадков.

Заметим, что после того, как осадок сформируется, растворимость понижают, иначе осаждение будет неполным. Например, при осаждении сульфата бария прибавляют HCl, которая повышает его растворимость вследствие образования -ионов. К концу осаждения эту повышенную растворимость BaSO4 снова понижают, прибавляя небольшой избыток осадителя.

Для понижения концентрации реагирующих ионов при формировании осадка: а) ведут осаждение из разбавленного анализируемого раствора разбавленным раствором осадителя; б) раствор с осадком непрерывно перемешивают;

Перемешивание способствует снижению высоких местных (локальных) концентраций осадителя и увеличению скорости растворения первичного осадка. Число зародышевых кристаллов при этом уменьшается, и создаются условия для роста крупных кристаллов.

в) осадитель добавляют очень медленно, по каплям (особенно в начале осаждения);

При медленном осаждении (наряду с одновременным тщательным перемешиванием анализируемого раствора) обеспечивается равномерное распределение и малая концентрация осадителя во всем объеме раствора. Вследствие этого степень пересыщения невелика и первичных центров кристаллизации появляется сравнительно немного. Образующиеся первичные кристаллы успевают правильно ориентироваться по отношению друг к другу (ориентация — расположение частиц осадка в процессе агрегации в строго определенном порядке). Дальнейшее прибавление новых порций осадителя приводит не столько к возникновению новых центров кристаллизации, сколько к увеличению размеров уже образовавшихся центров и к получению крупнокристаллических осадков. Чем больше скорость образования осадка, тем быстрее нарушается правильная ориентация при кристаллизации. При быстром осаждении сразу появляется много зародышевых, а затем мелких кристаллов.

г) иногда связывают осаждаемый ион в комплексное соединение средней прочности;

Достаточно низкая концентрация осаждаемого иона в растворе создается за счет частичной диссоциации комплексного соединения. При добавлении оса-дителя концентрация осаждаемого иона понижается из-за образования осадка, а, следовательно, будет смещаться равновесие ионизации комплекса. В раствор переходят новые ионы о.в., но их концентрация все время будет оставаться низкой.

д) применяют возникающие реагенты.

В раствор добавляют не осадитель, а вещество, которое, вступая в какую-либо реакцию, образует этот осадитель. Необходимым условием является медленное протекание такой реакции, в результате чего ион осадителя постепенно, очень маленькими порциями «возникает» (образуется) в исследуемом растворе. Его концентрация всегда остается низкой, что способствует понижению относительного пересыщения раствора. Например, существуют реагенты, которые претерпевают в растворе медленный гидролиз с выделением собственно осадителя. К таким реагентам относятся некоторые сложные эфиры: триэтилфосфат, диметилфосфат, метилоксалат, этилоксалат и т.д. Один из них, диметилсульфат, применяют для гравиметрического определения ионов Ва 2+ . Ионы Ва 2+ осаждаются H2SO4, образующейся в результате медленного гидролиза диметилсульфата.

Такой метод называется методом возникающих реагентов. Процесс осаждения с помощью возникающих реагентов называют также процессом осаждения из гомогенного раствора.

Оптимальные условия получения аморфных осадков. Из формулы (43) видно, что если вещество малорастворимо (величина S мала) и выделяется из сравнительно концентрированных растворов (Q велико), то относительное пересыщение велико. Это будет способствовать быстрому образованию в раст-воре огромного количества зародышевых кристаллов, их быстрой агрегации и выделению аморфного осадка, поэтому первым условием при получении аморфных осадков является следующее: их необходимо осаждать из концентрированных растворов концентрированным раствором осадителя. Таким способом, они получаются гораздо более плотными, с меньшей поверхностью, быстрее оседают и легче отмываются от примесей.

Другие условия получения аморфных осадков обусловлены особенностями их образования. Ранее уже было отмечено, что в результате соединения первичных кристаллов в более крупные агрегаты происходит коагуляция коллоидного раствора, выпадает аморфный осадок. Очевидно, что при получении такого осадка наиболее важно создать условия, способствующие быстрому про-теканию именно этого процесса. Они определяются необходимостью устранить влияние двух основных факторов, препятствующих коагуляции коллоидных частиц и укрупнению частиц коллоидных осадков.

Первым фактором, мешающим сцеплению коллоидных частиц друг с другом, является наличие у них одноименных электрических зарядов, между которыми действуют силы электростатического отталкивания (эти заряды возникают в результате адсорбции коллоидными частицами ионов из раствора) (см. раздел 3.5.7). Для того, чтобы устранить его негативное влияние, осаждение аморфных осадков ведут в присутствии подходящего электролита-коагу-лянта. Заряд иона этого электролита всегда противоположен знаку заряда частиц, поэтому ионы электролита-коагулянта, адсорбируясь на поверхности коллоидных частиц, нейтрализуют их заряд и дают им возможность соединяться в агрегаты. В качестве электролитов-коагулянтов в гравиметрии обычно применяют различные соли аммония или кислоты.

Другим фактором, препятствующим сцеплению коллоидных частиц, является адсорбция ими молекул растворителя — сольватация коллоидных частиц (если растворителем является вода, то говорят о гидратации коллоидных частиц). Сольватные оболочки мешают коллоидным частицам достаточно близко подойти друг к другу и объединиться в более крупные агрегаты.

Разрушение сольватных оболочек достигается двумя путями:

а) прибавлением раствора электролита-коагулянта высокой концентрации;

б) повышением температуры раствора, из которого ведут осаждение.

В первом случае ионы электролита-коагулянта «отнимают» молекулы растворителя у коллоидных частиц (при этом сами сольватируются) и одновременно нейтрализуют их заряд. Во втором случае нагревание раствора не только способствует разрушению сольватных оболочек коллоидных частиц, но одновременно уменьшает адсорбцию загрязняющих осадок ионов (см. раздел 3.5.7), поэтому аморфные осадки получают из горячего раствора.

Обобщая изложенное об условиях получения аморфных осадков, отметим, что выбор оптимальных из них определяется тем, что необходимо:

а) сделать быстрым и полным процесс коагуляции первоначально образующегося коллоидного раствора;

б) предупредить явление адсорбции осадков загрязняющими ионами из раствора.

Оптимальные условия осаждения аморфных осадков суммированы в табл. 3 (см. стр. 53).

Старение (созревание) осадков. Под старением (созреванием) осадка понимают все необратимые структурные изменения, происходящие в осадке при его выдерживании в течение различного времени под маточным раствором. Маточный раствор — раствор над осадком после завершения стадии осаждения.

Для кристаллических осадков старение — очень важная стадия, длящаяся несколько часов (обычно до следующего дня). Когда осадок находится под маточным раствором, происходит ряд процессов, приводящих к укрупнению и совершенствованию кристаллов, получению их в чистой, практически свободной от примесей форме. Причиной укрупнения кристаллов является более высокая растворимость очень мелких кристаллов вещества по сравнению с растворимостью более крупных кристаллов. Подобное увеличение растворимости с умень-шением размеров кристаллов объясняется поверхностным натяжением, стремящимся возможно сильнее уменьшить поверхность соприкосновения раствора с осадком. В результате мелкие кристаллы растворяются, затем растворенное вещество отлагается на поверхности крупных кристаллов, и последние посте-пенно растут.

Этот процесс ускоряется: а) при повышении температуры раствора; б) пе-ремешивании раствора.

При старении кристаллического осадка происходит также совершенствование формы кристаллов. Причиной этого является то, что при выдерживании осадка под маточным раствором между ними устанавливается динамическое равновесие. Одни ионы переходят в раствор с поверхности осадка, другие — осаждаются на поверхности кристаллов осадка. Ионы кристаллической решетки, находящиеся на «несовершенных» местах поверхности осадка, переходят в раствор и затем осаждаются в узлах более «совершенного» кристалла. Происходит перекристаллизация осадка. Совершенствование формы кристаллов способствует повышению чистоты осадка.

Аморфные осадки не выдерживают под маточным раствором (не оставляют для созревания). Оставлять аморфные осадки в соприкосновении с раствором вредно, т.к. они:

а) даже при длительном выдерживании сохраняют студенистый вид и очень большую поверхность, и поэтому сильно загрязняются ионами, адсорбированными из раствора;

б) нередко при старении переходят в другие, менее растворимые модификации.

Аморфные осадки после осаждения сразу же! подвергают дальнейшим операциям: переносят на фильтр и промывают.

Техника осаждения. Обычно осаждение ведут в том же сосуде (химическом стакане), в котором проводилось растворение пробы. Осаждение кристаллических и аморфных осадков проводят с учетом условий, перечисленных в табл. 3. Осадки получают при нагревании растворов одного или обоих реагирующих веществ. При этом не следует нагревать до кипения, так как может произойти потеря вещества вследствие разбрызгивания. Осадитель обычно добавляют из бюретки или пипетки, а также из химического стакана с помощью стеклянной палочки. (Заметим, что на одном конце стеклянной палочки должно быть узкое резиновое кольцо, плотно прилегающее к ней. Во время осаждения палочку опускают в стакан именно этим концом.)

При добавлении осадителя всегда стремятся к тому, чтобы его раствор стекал по внутренней стенке стакана или по стеклянной палочке, а не падал каплями в середину стакана, что может привести к разбрызгиванию. Для осаждения кристаллических осадков пользуются разбавленными растворами осадителя, поэтому отмеренный объем (или отвешенное количество) осадителя разбавляют водой примерно до 50 см 3 . Для осаждения аморфных осадков пользуются концентрированными растворами осадителя, поэтому отмеренный объем осадителя разбавляют водой только до 5 см 3 . Во время осаждения раствор перемешивают стеклянной палочкой, следя за тем, чтобы палочка касалась дна и стенок стакана, но не царапала стекло. Каждый раз, когда палочку вынимают из стакана, ее следует промывать дистиллированной водой над стаканом.

После добавления рассчитанного количества осадителя всегда проверяют полноту осаждения. Для этого дают осадку собраться на дне стакана, и, когда жидкость над стаканом посветлеет, добавляют несколько (обычно 2-3) капель раствора осадителя. Отсутствие помутнения в месте падения капель указывает на полноту осаждения.

Осажденный кристаллический осадок оставляют на некоторое время (1-6 часов, иногда до следующего дня) для созревания.

Когда заканчивается осаждение аморфного осадка, в стакан прибавляют 100-150 см 3 горячей дистиллированной воды и быстро фильтруют, а затем промывают.

Оптимальные условия осаждения

Кристаллических осадков Аморфных осадков
Осаждение проводят:
1) из достаточно разбавленных анализируемых растворов разбавленным раствором осадителя; 1) из концентрированных анализируемых растворов концентрированным раствором осадителя;
2) из горячего раствора (иногда нагревают и раствор осадителя).
Добавляют осадитель:
3) очень медленно, по каплям (особенно в начале осаждения); 3) быстро!
4) непрерывно перемешивая раствор стеклянной палочкой во избежание сильных местных пересыщений при добавлении осадителя;
5) в присутствии электролита,
повышающего растворимость осадка; коагулянта.
После окончания осаждения:
6) осадок оставляют для созревания (старение осадка); 6) сразу же по окончании осаждения к раствору с осадком приливают большой объем (

100-150 см 3 ) горячей дистиллированной воды и смесь перемешивают; 7) осадок не оставляют для созревания, а немедленно переносят на фильтр и промывают.

После переведения определяемого компонента в осадок, последний отделяют от маточного раствора фильтрованием. Перед фильтрованием раствор с осадком охлаждают для уменьшения растворимости осадка.

а) через стеклянные фильтры (фильтры Шотта, стеклянные фильтрующие тигли); они представляют собой небольшие стеклянные сосуды с впаянной внутри пористой стеклянной пластинкой; применяются для отфильтровывания крупнокристаллических осадков;

б) тигли Гуча (в них фильтром является слой волокнистого асбеста, помещаемый на сетчатое дно тигля);

в) фарфоровые тигли с пористым дном (в отличие от стеклянных тиглей они выдерживают нагревание до очень высокой температуры);

г) бумажные беззольные фильтры (эти фильтры применяют при фильтровании мелкокристаллических и аморфных осадков).

Бумажные фильтры являются беззольными, т.к. они сгорают почти полностью. Масса остающейся при этом золы составляет г (т.е. за пределом точности взвешивания на аналитических весах). Если же масса золы превышает 0,0002 г, то ее значение вычитают из массы осадка.

Беззольные фильтры различаются по диаметру (6, 7, 9 и 11 см) и по плотности (пористости) фильтровальной бумаги. Различие по плотности определяется по цвету бумажной ленты, которой оклеивают упаковку готовых фильтров. Приняты следующие условные обозначения:

красная (или черная) лента — быстрофильтрующие фильтры (диаметр пор

белая лента — бумага средней проницаемости (диаметр пор

м);

синяя лента — «баритовые», плотные фильтры (диаметр пор

м);

желтая лента — обезжиренные фильтры.

Аморфные осадки фильтруют через фильтры малой плотности (красная или черная лента), кристаллические — средней и большой плотности (белая или синяя лента).

При выполнении процесса фильтрования учитывают следующие правила:

1. Выбирая размер фильтра, руководствуются не объемом фильтруемой жидкости, а количеством осадка. Осадок не должен занимать больше 1/3-1/2 фильт-тра, иначе его будет невозможно хорошо промыть. Не следует брать и фильт-ры слишком больших размеров.

2. Размер воронки подбирают так, чтобы края фильтра были на 5-15 мм ниже края воронки.

3. До фильтрования фильтр смачивают дистиллированной водой и осторожно! прижимают (прилаживают, подгоняют) к воронке так, чтобы между ними не было пузырьков воздуха.

4. Воронку с фильтром помещают в кольцо штатива, подставив под нее стакан для слива так, чтобы скошенный конец трубки воронки касался стенки стакана (рис.4). Этим предотвращают разбрызгивание жидкости при фильтровании.

5. До начала фильтрования носик стакана с осадком полезно слегка потереть пальцем с наружной стороны. Благодаря этому простому приему, он не будет смачиваться водой, и капли фильтруемой жидкости не будут стекать по внешней стенке стакана.

6. Фильтрование проводят следующим способом.

Стеклянную палочку, которой перемешивали раствор в процессе осаждения, вынимают из стакана и держат левой рукой в вертикальном положении над воронкой. Нижний конец палочки (с резиновым наконечником) должен подходить к фильтру, не касаясь бумаги, близко от той части фильтра, где он сложен втрое. Затем правой рукой берут стакан с осадком, прикладывают носик стакана к палочке и осторожно сливают жидкость на фильтр (рис. 4). По мере наполнения фильтра палочку поднимают так, чтобы она не касалась жидкости. Фильтр нельзя наполнять жидкостью до краев, только на 2/3 (т.е. уровень жидкости должен быть не меньше, чем на 5 мм ниже края фильтра). Налив жидкость на фильтр, медленно приводят стакан в вертикальное положение, ведя его носик по стеклянной палочке кверху (этим предотвращается стекание последней капли жидкости по внешней стенке стакана). При фильтровании стеклянная палочка должна находиться либо над фильтром, либо в стакане. Класть палочку на стол нельзя!, т.к. при этом будут потеряны оставшиеся на ней частицы осадка.

7. Фильтрование продолжают до тех пор, пока еще можно сливать жидкость с осадка, затем, убедившись в прозрачности фильтрата, осадок промывают.

Промывание осадков необходимо для удаления адсорбированных на поверхности осадка примесей, а также маточного раствора, пропитывающего осадок. Кроме того, при промывании удаляются такие соли, которые не улетучиваются при прокаливании.

Адсорбция — одна из причин загрязнения осадков. Адсорбция — это поглощение примесей (ионов или молекул) из раствора поверхностью частиц осадка.

1. Бюкс 2. Тигли:

Дата добавления: 2016-11-23 ; просмотров: 10450 | Нарушение авторских прав

источник