Меню Рубрики

Как сделать анализ статистической таблицы

Анализу статистических таблиц предшествует этап ознакомления – их чтения. Чтение и анализ таблиц должны осуществляться не хаотично, а в определенной последовательности. Чтение предполагает, что исследователь, прочитав слова и числа таблицы, усвоил ее содержание, сформулировал первые суждения об объекте, уяснил назначение таблицы, понял ее содержание в целом, дал оценку явлению или процессу, описанному в таблице.

Анализ таблицы как метод научного исследования путем разбиения предмета изучения на части делится на структурные и содержательный. Структурный анализ предполагает анализ строения таблицы, характеристику представленных в таблице:

— совокупности и единиц наблюдения, формирующих ее;

— признаков и их комбинаций, формирующих подлежащее и сказуемое таблицы;

— признаков: количественных или атрибутивных;

— соотношения признаков подлежащего с показателями сказуемого;

— вида таблицы: простая или сложная, а последняя – групповая или комбинационная;

— решаемых задач – анализ структуры, типов явлений или их взаимосвязей.

Содержательный анализ предполагает изучение внутреннего содержания таблицы: анализ отдельных групп подлежащего по соответствующим признакам сказуемого; выявление соотношения и пропорций между группами явлений по одному и разным признакам; сравнительный анализ и формулировку выводов по отдельным группам и по всей совокупности в целом; установление закономерностей и определение резервов развития изучаемого объекта.

Прежде чем приступать к анализу числовой информации, необходимо проверить ее достоверность и научную обоснованность. Исследователь должен убедиться в достоверности и надежности источника информации данных и критически оценить их цифровые значения. Следует произвести логическую и счетную проверки данных. Логическая проверка состоит в возможности определения конкретных признаков теми или иными числовыми значениями (например, абсурдно, если численность работающих на фирме составила 106,7 человека). Счетная проверка предполагает выборочный расчет отдельных значений признаков по группе, либо итоговых значений строк или граф и т.д.

Анализ данных таблиц производится по каждому признаку в отдельности, затем в логико-экономическом сочетании всей совокупности признаков в целом.

Анализ отдельных признаков и групп необходимо начинать с изучения абсолютных, затем — связанных с ними относительных величин. При анализе данных следует рассматривать динамику каждого признака за весь период, переходя при этом от одного к другому.

Анализ таблиц может быть дополнен расчетными относительными и средними величинами, если этого требуют задачи исследования.

Для получения более полного и наглядного представления об изучаемых явлениях и процессах по данным статистических таблиц строятся графики, диаграммы и т.д.

Анализ групповых и комбинационных таблиц позволяет охарактеризовать типы социально – экономических явлений, структуру совокупности, соотношения и пропорции между отдельными группами и единицами наблюдения; выявить характер и направление взаимосвязей и взаимозависимостей между различными, определенными логикой экономического анализа, сочетаниями признаков и зависимости признаков – следствия от признаков – причин.

Соблюдение правил и последовательности работы со статистическими таблицами помогает исследователю осуществлять научно обоснованный экономико-статистический анализ объектов и процессов.

Таблицы сопряженности

Таблицей сопряженности называется таблица, которая содержит сводную числовую характеристику изучаемой совокупности по двум и более атрибутивным (качественным) признакам или комбинации количественных и атрибутивных признаков.

Таблицы сопряженности получили наибольшее распространение при изучении социальных явлений и процессов: общественного мнения, уровня и образа жизни, общественно-политического строя и т.д.

Наиболее простым видом таблиц сопряженности является таблица частот 2 х 2.

Общая схема таблицы частот 2 х 2

В1 В2 Всего
А1 f11 f12 f10
А2 f21 f22 f20
Всего f01 f02 f00

Построение данной таблицы исходит из предложения, что ответы респондентов или анализируемые атрибутивные признаки будут принимать только два значения А1 и А2, В1 и В2. Внутреннее цифровое наполнение таблицы представляют частоты (fij), обладающие одновременно i-м (i = 1,2) значением одного (Ai) и j-м (j = 1,2) значением (Bj) другого качественного признака.

Итоговая графа и срока содержат информацию о количественном распределении совокупности соответственно по А и В атрибутивным признакам.

Для более полного описание и анализа явлений и процессов, характеризующихся атрибутивными признаками, используются таблицы сопряженности большей разномерности: i x j, где i = 1,2, …, к – число вариантов значений (например, ответов респондентов и т.д.) одного признака (например, признака А); j = 1, 2, …, n – число вариантов значений другого признака (В).

источник

31. Чтение и анализ статистической таблицы.

Анализу статистических таблиц предшествует этап ознакомления — их чтения.

Чтение и анализ таблицы должны осуществляться не хаотично, а в определенной последовательности.

Чтение предполагает, что исследователь, прочитав слова и числа таблицы, усвоил ее содержание, сформулировал первые суждения об объекте, уяснил назначение таблицы, понял ее содержание в целом, дал оценку явлению или процессу, описанному в таблице.

Анализ таблицы как метод научного исследования путем разбиения предмета изучения на части делится на структурный и содержательный.

Структурный анализ предполагает анализ строения таблицы, характеристику представленных в таблице:

— совокупности и единиц наблюдения, формирующих ее

— признаков и их комбинаций, формирующих подлежащее и сказуемое таблицы

— признаков: количественных и атрибутивных

— соотношения признаков подлежащего с показателями сказуемого

— вида таблицы: простая или сложная, а последняя — групповая или комбинационная

— решаемых задач — анализ структуры, типов явлений или их взаимосвязей

Содержательный анализ предполагает изучение внутреннего содержания таблицы: анализ отдельных групп подлежащего по соответствующим признакам сказуемого; выявление соотношения и пропорций между группами явлений по одному и разным признакам; сравнительный анализ и формулировку выводов по отдельным группам и по всей совокупности в целом; установление закономерностей и определение резервов развития изучаемого объекта.

Логическая проверка состоит в возможности определения конкретных признаков теми или иными числовыми значениями (например, абсурдно, если численность работающих на фирме составила 106,7 человека).

Счетная проверка предполагает выборочный расчет отдельных значений признаков по группе, либо итоговых значений строк или граф и т.д.

Анализ групповых и комбинационных таблиц охарактеризовать типы социально-экономических явлений, структуру совокупности, соотношения и пропорции между отдельными группами и единицами наблюдения.

32. Статистический график. Его элементы и правила построения.

Статистический график — это чертеж, на котором статистические совокупности, характеризуемые определенными показателями, описываются с помощью условных геометрических образов или знаков. Представление данных таблицы в виде графика производит более сильное впечатление, чем цифры, позволяет лучше осмыслить результаты статистического наблюдения, правильно их истолковать, значительно облегчает понимание статистического материала, делает его наглядным и доступным. Это, однако, вовсе не означает, что графики имеют лишь иллюстрированное значение. Они дают новое знание о предмете исследования, являясь методом обобщения исходной информации.

При построении графического изображения следует соблюдать ряд требований. Прежде всего график должен быть достаточно наглядным, так как весь смысл графического изображения в том и состоит, чтобы наглядно изобразить статистические показатели. Кроме того, график должен быть выразительным, доходчивым и понятным. Для выполнения вышеперечисленных требований каждый график должен включать ряд основных элементов: графический образ; поле графика; пространственные ориентиры; масштабные ориентиры; экспликацию графика.

Графический образ — это геометрические знаки, т.е. совокупность точек, линий, фигур, с помощью которых изображаются статистические показатели.

Поле графика — это часть плоскости, где расположены графические образы. Поле графика имеет определенные размеры, которые зависят от его назначения.

Пространственные ориентиры графика задаются в виде системы координатных сеток. Система координат необходима для размещения геометрических знаков в поле графика.

Масштабные ориентиры статистического графика определяются масштабом и системой масштабных шкал. Масштаб статистического графика — это мера перевода числовой величины в графическую.

Масштабной шкалой называется линия, отдельные точки которой могут быть прочитаны как определенные числа. Шкала имеет большое значение в графике и включает три элемента: линию (или носитель шкалы), определенное число помеченных черточками точек, которые расположены на носителе шкалы в определенном порядке, цифровое обозначение чисел, соответствующих отдельным помеченным точкам.

33. Классификация видов графиков.

Существует множество видов графических изображений. Их классификация основана на ряде признаков: а) способ построения графического образа; б) геометрические знаки, изображающие статистические показатели; в) задачи, решаемые с помощью графического изображения.

По способу построения статистические графики делятся на диаграммы и статистические карты.

Диаграммы — наиболее распространенный способ графических изображений. Это графики количественных отношений. Виды и способы их построения разнообразны. Диаграммы применяются для наглядного сопоставления в различных аспектах (пространственном, временном и др.) независимых друг от друга величин: территорий, населения и т.д. При этом сравнение совокупностей производится по какому-либо существенному варьирующему признаку.

Статистические карты — графики количественного распределения по поверхности. По своей основной цели они близко примыкают к диаграммам и специфичны лишь в том отношении, что представляют собой условные изображения статистических данных на контурной географической карте, т.е. показывают пространственное размещение или пространственную распространенность статистических данных. Геометрические знаки — либо точки, либо линии или плоскости, либо геометрические тела.

36. Средняя величина как категория статистики.

Средние величины являются одними из наиболее распространенных обобщающих статистических показателей. Они имеют своей целью одним числом охарактеризовать статистическую совокупность состоящую из меньшинства единиц. Средние величины тесно связаны с законом больших чисел. Сущность этой зависимости заключается в том, что при большом числе наблюдений случайные отклонения от общей статистики взаимопогашаются и в среднем более отчетливо проявляется статистическая закономерность.

С помощью метода средних решаются следующие основные задачи:

1. Характеристика уровня развития явлений.

2. Сравнение двух или нескольких уровней.

3. Изучение взаимосвязей социально-экономических явлений.

Анализ размещения социально-экономических явлений в пространстве.

Для решения этих задач статистическая методология разработала различные виды средних.

Средняя гармоническая является первообразной формой средней арифметической. Она рассчитывается в тех случаях, когда веса fi не заданы непосредственно, а входят как сомножитель в один из имеющихся показателей. Также как и арифметическая, средняя гармоническая может быть простой и взвешанной.

Средняя гармоническая простая:

Средняя гармоническая смешанная:

Wi — произведение вариантов на частоты

При расчете средних величин необходимо помнить о том, что всякие промежуточные вычисления должны приводить как в числителе, так и в знаменателе и имеющим экономический смысл показателям.

38. Средняя арифметическая и ее свойства.

Для выяснения методики расчета средней арифметической используем следующие обозначения:

X — арифметический признак

X (X1, X2, . X3) — варианты определенного признака

n — число единиц совокупности

— средняя величина признака

В зависимости от исходных данных средняя арифметическая может быть рассчитана двумя способами:

1. Если данные статистического наблюдения на сгруппированы, или сгруппированные варианты имеют одинаковые частоты, то рассчитывается средняя арифметическая простая:

2. Если частоты сгруппированы в данных разные, то рассчитывается среднее арифметическое взвешанное:

— численность (частоты) вариантов

Среднее арифметическое рассчитывается по разному в дискретных и интервальных вариационных рядах.

В дискретных рядах варианты признака умножаются на частоты, эти произведения суммируются и полученная сумма произведений делится на сумму частот.

В интервальных рядах значение признака задано, как известно, в виде интервалов, поэтому, прежде чем рассчитывать среднюю арифметическую, нужно перейти от интервального ряда к дискретному.

В качестве вариантов Xi используется середина соответствующих интервалов. Они определяются как полусумма нижней и верхней границ.

Если у интервала отсутствует нижняя граница, то его середина определяется как разность между верхней границей и половиной величины следующих интервалов. При отсутствии верхних границ, середина интервала определяется как сумма нижней границы и половины величины предыдущего интервала. После перехода к дискретному ряду дальнейшие вычисления происходят по методике рассмотренной выше.

Если веса fi заданы не в абсолютных показателях, а в относительных, то формула расчета средней арифметической будет следующей:

pi — относительные величины структуры, показывающие, какой процент составляют частоты вариантов в сумме всех частот.

Если относительные величины структуры заданы не в процентах, а в долях, то среднее арифметическое будет рассчитываться по формуле:

источник

Статистические таблицы, как средство наглядного и компактного представления цифровой информации, должны быть статистически правильно оформлены.

Основными приемами, определяющими технику формирования статистических таблиц, являются следующие:

1. Таблица должна быть компактной и содержать только те данные, которые не­посредственно отражают исследуемое явление в статике и динамике и необходимы для познания его сущности. Цифровой материал необходимо излагать таким образом, что­бы при анализе таблицы сущность явления раскрывалась чтением строк слева направо и сверху вниз;

2. Заголовок таблицы и названия граф и строк должны быть четкими, краткими, лаконичными, представлять собой законченное целое, органично вписывающееся в со­держание текста. В названии таблицы должны найти отражение объект, признак, время и место совершения события. Например: «Курс доллара США на торгах ММВБ на 01.01.2004 г.» Названия таблицы, граф и строк пишутся полностью, без сокращений.

3. Информация, располагаемая в столбцах (графах) таблицы, завершается итоговой строкой. Существуют различные способы соединения слагаемых граф с их итогом:

• строка «Итого» или «Всего» завершает статистическую таблицу;

• итоговая строка располагается первой строкой таблицы и соединяется с совокупно­стью ее слагаемых словами «В том числе».

4. Если названия отдельных граф повторяются между собой, содержат повторяю­щиеся термины или несут единую смысловую нагрузку, то необходимо им присвоить объ­единяющий заголовок.

5. Графы и строки полезно нумеровать. Графы слева, заполненные названием строк, принято обозначать заглавными буквами алфавита (А), (В) и так далее, а все после­дующие графы — номерами в порядке возрастания.

6. Взаимосвязанные данные, характеризующие одну из сторон анализируемого яв­ления (например, число коммерческих банков и удельный вес коммерческих банков (в % к итогу) и т.д.), целесообразно располагать в соседних друг с другом графах.

7. Графы и строки должны содержать единицы измерения, соответствующие по­ставленным в подлежащем и сказуемом показателям. При этом используются общеприня­тые сокращения единиц измерения (чел., руб., кВт/ч и так далее).

8. Числа целесообразно, по возможности, округлять. Округление чисел в пределах одной и той же графы или строки следует проводить с одинаковой степенью точности (до целого знака или до десятого и так далее).

Если все числа одной и той же графы или строки даны с одним десятичным знаком, а одно из чисел имеет точно два знака после запятой, то числа с одним знаком после запя­той следует, дополнять нулем, тем самым подчеркнув их одинаковую точность.

Читайте также:  Психология анализ продуктов деятельности как анализ

9. Отсутствие данных об анализируемом социально-экономическом явлении может быть обусловлено различными причинами и это по-разному отмечается:

а) если данная позиция (на пересечении соответствующих графы и строки) вообще не подлежит заполнению, то ставится знак «X»;

б) если по какой-либо причине отсутствуют сведения, то ставится многоточие «. » или «нет свед.»;

в) если явление отсутствует полностью, то клетка заполняется тире (-)

г) для отображения очень малых чисел используют обозначения (0,0) или (0,00).

10. В случае необходимости дополнительной информации — разъяснений к таблице, могут даваться примечания.

Соблюдение приведенных правил построения и оформления статистических таблиц делает их основным средством представления, обработки и обобщения статистической ин­формации о состоянии и развитии анализируемых социально-экономических явлений.

Анализу статистических таблиц предшествует этап ознакомления — чтения их.

«Чтение» предполагает, что исследователь, прочитав слова и числа таблицы, ус­воил ее содержание в целом, сформулировал первые суждения об объекте, уяснил назна­чение таблицы, дал оценку явлению или процессу, описанному в таблице.

Анализ предполагает реализацию двух его направлений — структурного и содержа­тельного.

Структурный анализ предполагает анализ строения таблицы и характеристику представленных в ней:

• совокупности и единиц наблюдения, формирующих ее;

• признаков и их комбинации, формирующих подлежащее и сказуемое таблицы;

• признаков — количественные или атрибутивные;

• соотношение признаков подлежащего с показателями сказуемого;

• вида таблицы — простая или сложная, а последняя — групповая или комбинацион­ная;

• решаемых задач — анализ структуры, типов явлений или их взаимосвязей. Содержательный анализ предполагает изучение внутреннего содержания таблицы:

анализ отдельных групп подлежащего по соответствующим признакам сказуемого; выяв­ление соотношений и пропорций между группами явлений по одному и разным призна­кам; сравнительный анализ и формулировка выводов по отдельным группам и по всей совокупности в целом, установление закономерностей и определение резервов развита изучаемого объекта.

Прежде чем приступить к анализу числовой информации, необходимо проверить достоверность и научную обоснованность, источники ее получения. Должна быть произведена проверка данных: логическая (например, абсурдно, если численность работающих на фирме составила 115,1 чел.) и счетная — выборочный расчет отдельных значений признаков по группе, либо итоговых значений.

Анализ отдельных признаков и групп необходимо начинать с изучения абсолютных величин, затем — связанных с ними относительных величин.

Анализ таблиц может быть дополнен расчетными средними величинами, график ми, диаграммами и т.д., если этого требуют задачи исследования.

Анализ данных таблиц производится по каждому признаку в отдельности, а затем логико-экономическом сочетании признаков.

Соблюдение правил и последовательности работы со статистическими таблицам позволит исследователю осуществить научно-обоснованный экономико-статистический анализ объектов и процессов.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Анализу статистических таблиц предшествует этап ознакомления — чтения их.

«Чтение» предполагает, что исследователь, прочитав слова и числа таблицы, усвоил ее содержание в целом, сформулировал первые суждения об объекте, уяснил назначение таблицы, дал оценку явлению или процессу, описанному в таблице.

Анализ предполагает реализацию двух его направлений — структурного и содержательного.

Структурный анализ предполагает анализ строения таблицы и характеристику представленных в ней:

· совокупности и единиц наблюдения, формирующих ее;

· признаков и их комбинации, формирующих подлежащее и сказуемое таблицы;

· признаков — количественные или атрибутивные;

· соотношение признаков подлежащего с показателями сказуемого;

· вида таблицы — простая или сложная, а последняя — групповая или комбинационная;

· решаемых задач — анализ структуры, типов явлений или их взаимосвязей.

Содержательный анализ предполагает изучение внутреннего содержания таблицы: анализ отдельных групп подлежащего по соответствующим признакам сказуемого; выявление соотношений и пропорций между группами явлений по одному и разным признакам; сравнительный анализ и формулировка выводов по отдельным группам и по всей совокупности в целом, установление закономерностей и определение резервов развития изучаемого объекта.

Прежде чем приступить к анализу числовой информации, необходимо проверить ее достоверность и научную обоснованность, источники ее получения. Должна быть произведена проверка данных: логическая и счетная — выборочный расчет отдельных значений признаков по группе, либо итоговых значений.

Анализ отдельных признаков и групп необходимо начинать с изучения абсолютных величин, затем — связанных с ними относительных величин.

Анализ таблиц может быть дополнен расчетными относительными и средними величинами, графиками, диаграммами и т.д., если этого требуют задачи исследования.

Анализ данных таблиц производится по каждому признаку в отдельности, а затем в логико-экономическом сочетании признаков.

Соблюдение правил и последовательности работы со статистическими таблицами позволит исследователю осуществить научно-обоснованный экономико-статистический анализ объектов и процессов.

Глава 3. Теория статистических показателей

Абсолютные показатели

Статистический показатель представляет собой количественную характеристику социально-экономических явлений и процессов в условиях качественной определенности. Качественная определенность показателя заключается в том, что он непосредственно связан с внутренним содержанием изучаемого явления или процесса, его сущностью. Расчет и интерпретация получаемых в ходе исследования статистических показателей – важнейшая часть статистической работы.

Исходной, первичной формой выражения статистических показателей являются показатели в абсолютном выражении или абсолютные величины. Статистические показатели в форме абсолютных величин характеризуют абсолютные размеры изучаемых статистикой процессов и явлений.

Индивидуальные абсолютные показатели, как правило, получают непосредственно в процессе статистического наблюдения как результат замера, взвешивания, подсчета и оценки интересующего количественного признака. В ряде случаев индивидуальные абсолютные показатели имеют разностный характер.

Сводные абсолютные показатели, характеризующие объем признака или объем совокупности как в целом по изучаемому объекту, так и по какой-либо его части, получают в результате сводки и группировки индивидуальных значений.

Абсолютные статистические показатели всегда являются именованными числами. В зависимости от социально-экономической сущности исследуемых явлений, их физических свойств они выражаются в натуральных, стоимостных или трудовых единицах измерения.

В международной практике используются такие натуральные единицы измерения как тонны, килограммы, квадратные, кубические и простые метры, мили, километры, галлоны, литры, штуки и т.д.

В группу натуральных также входят условно-натуральные измерители, используемые в тех случаях, когда какой-либо продукт имеет несколько разновидностей и общий объем можно определить только исходя из общего для всех разновидностей потребительского свойства.

Перевод в условные единицы измерения осуществляется на основе специальных коэффициентов, рассчитываемых как отношение потребительских свойств отдельных разновидностей продукта к эталонному значению.

В условиях рыночной экономики наибольшее значение и применение имеют стоимостные единицы измерения, позволяющие получить денежную оценку социально-экономических явлений и процессов.

К трудовым единицам измерения, позволяющим учитывать как общие затраты труда на предприятии, так и трудоемкость отдельных операций технологического процесса, относятся человеко-дни и человеко-часы.

Относительные показатели

Относительный показатель представляет собой результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических процессов и явлений. Поэтому, по отношению к абсолютным показателям, относительные показатели или показатели в форме относительных величин являются производными, вторичными. Без относительных показателей невозможно измерить интенсивность развития изучаемого явления во времени, оценить уровень развития одного явления на фоне других взаимосвязанных с ним явлений, осуществить пространственно-территориальные сравнения, в том числе и на международном уровне.

При расчете относительного показателя абсолютный показатель, находящийся в числителе получаемого отношения, называется текущим или сравниваемым. Показатель же, с которым производится сравнение и который находится в знаменателе, называется основанием или базой сравнения. Таким образом, рассчитываемая относительная величина показывает, во сколько раз сравниваемый абсолютный показатель больше базисного, или какую составляет от него долю, или сколько единиц первого приходится на 1, 100, 1000 и т. д. единиц второго.

Относительный показатель, полученный в результате соотнесения разноименных абсолютных показателей, является величиной именованной. Его наименование представляет собой сочетание наименований сравниваемого и базисного показателей.

Все используемые на практике относительные статистические показатели можно подразделить на следующие виды:

6) интенсивности и уровня экономического развития;

Относительный показатель динамики (ОПД) представляет собой отношение уровня исследуемого процесса или явления за данный период времени (по состоянию на данный момент времени) к уровню этого же процесса или явления в прошлом:

Рассчитанная таким образом величина показывает, во сколько раз текущий уровень превышает предшествующий (базисный) или какую долю от последнего составляет. Данный показатель может быть выражен кратным отношением или переведен в проценты.

Различают относительные показатели динамики с постоянной и переменной базой сравнения. Если сравнение осуществляется с одним и тем же базисным уровнем, например, первым годом рассматриваемого периода, получают относительные показатели динамики с постоянной базой (базисные). При расчете относительных показателей динамики с переменной базой (цепных) сравнение осуществляется с предшествующим уровнем, т.е. основание относительной величины последовательно меняется.

Относительные показатели динамики с переменной и постоянной базой сравнения взаимосвязаны между собой следующим образом: произведение всех относительных показателей с переменной базой равно относительному показателю с постоянной базой за исследуемый период.

Относительные показатели плана и реализации плана. Все субъекты финансово-хозяйственной деятельности, от небольших индивидуальных частных предприятий и до крупных корпораций, в той или иной степени осуществляют как оперативное, так и стратегическое планирование, а также сравнивают реально достигнутые результаты с ранее намеченными. Для этой цели используются относительные показатели плана (ОПП) и реализации плана (ОПРП):

Первый из этих показателей характеризует относительную высоту планового уровня, т.е. во сколько раз намечаемый объемный показатель превысит достигнутый уровень или сколько процентов от этого уровня составит. Второй показатель отражает фактический объем производства или реализации в процентах или коэффициентах по сравнению с плановым уровнем.

Между относительными показателями плана, реализации плана и динамики существует следующая взаимосвязь:

Относительный показатель структуры представляет собой соотношение структурных частей изучаемого объекта и их целого:

Выражается относительный показатель структуры в долях единицы или в процентах. Рассчитанные величины, соответственно называемые долями или удельными весами, показывают, какой долей обладает или какой удельный вес имеет та или иная часть в общем итоге.

Относительный показатель координации представляет собой отношение одной части совокупности к другой части этой же совокупности:

При этом в качестве базы сравнения выбирается та часть, которая имеет наибольший удельный вес или является приоритетной с экономической, социальной или какой-либо другой точки зрения. В результате получают, во сколько раз данная часть больше базисной или сколько процентов от нее составляет, или сколько единиц данной структурной части приходится на 1 единицу (иногда — на 100, 1000 и т.д. единиц) базисной структурной части.

Относительный показатель интенсивности характеризует степень распространения изучаемого процесса или явления и представляет собой отношение исследуемого показателя к размеру присущей ему среды:

Данный показатель получают сопоставлением уровней двух взаимосвязанных в своем развитии явлений. Поэтому, наиболее часто он представляет собой именованную величину, но может быть выражен и в процентах, промилле, продецимилле.

Разновидностью относительных показателей интенсивности являются относительные показатели уровня экономического развития, характеризующие производство продукции в расчете на душу населения и играющие важную роль в оценке развития экономики государства или региона.

Относительный показатель сравнения представляет собой соотношение одноименных абсолютных показателей, характеризующих разные объекты (предприятия, фирмы, районы, области, страны и т.п.):

Для выражения данного показателя могут использоваться как коэффициенты, так и проценты.

Средние показатели

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени. Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Типичность средней непосредственным образом связана с однородностью статистической совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности.

На практике определить среднюю во многих случаях можно через исходное соотношение средней (ИСС) или ее логическую формулу:

Для каждого показателя, используемого в экономическом анализе, можно составить только одно истинное исходное соотношение для расчета средней.

Однако от того, в каком виде представлены исходные данные для расчета средней, зависит, каким именно образом будет реализовано ее исходное соотношение. В каждом конкретном случае для реализации исходного соотношения потребуется одна из следующих форм средней величины:

· средняя квадратическая, кубическая и т.д.

Перечисленные средние объединяются в общей формуле средней степенной (при различной величине k):

i=

где х i — i-ый вариант осредняемого признака (i= )

Кроме степенных средних в экономической практике также используются средние структурные, среди которых наиболее распространены мода и медиана.

Наиболее распространенным видом средних величин является средняя арифметическая, которая, как и все средние, в зависимости от характера имеющихся данных может быть простой или взвешенной.

Средняя арифметическая простая используется в тех случаях, когда расчет осуществляется по несгруппированным данным, и имеет вид:

(3.1)

Средняя арифметическая взвешенная. При расчете средних величин отдельные значения осредняемого признака могут повторяться, встречаться в совокупности несколько раз. В подобных случаях расчет средней производится по сгруппированным данным, то есть данным представленным в виде дискретных или интервальных вариационных рядов распределения.

Средняя арифметическая взвешенная определяется по формуле:

(3.2)

В отдельных случаях веса могут быть представлены не абсолютными величинами, а относительными (в процентах или долях единицы):

. (3.3)

Таким образом, среднюю арифметическую невзвешенную можно использовать в том случае, когда точно установлено отсутствие весов или их равенство.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам путем определения средней арифметической простой между нижней и верхней границами каждого интервала.

Читайте также:  Птг анализ при беременности как сдавать

Свойства средней арифметической. Средняя арифметическая обладает некоторыми математическими свойствами, более полно раскрывающими ее сущность и в ряде случаев используемыми при ее расчете. Рассмотрим эти свойства:

1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты:

(3.4)

2. Сумма отклонений индивидуальных значений признака от средней арифметической равна нулю:

(3.5)

3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произвольной величины С.

4. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на ту же величину:

(3.6)

5. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно увеличится или уменьшится в А раз:

(3.7)

6. Если все веса уменьшить или увеличить в А раз, то средняя арифметическая от этого не изменится:

(3.8)

Исходя из данного свойства, можно заключить, что если все веса равны между собой, то расчеты по средней арифметической взвешенной и средней арифметической невзвешенной приведут к одному и тому же результату.

Средняя гармоническая взвешенная используется, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель, определяется по формуле:

, где wi=xifi (3.9)

Данная формула используется для расчета средних показателей не только в статике, но и в динамике, когда известны индивидуальные значения признака и веса W за ряд временных интервалов.

Средняя гармоническая невзвешенная. Эта форма средней, используемая значительно реже, имеет следующий вид:

(3.10)

— невзвешенная (3.11)

— взвешенная

Наиболее широкое применение этот вид средней получил в анализе динамики для определения среднего темпа роста, что будет рассмотрено в соответствующей главе.

— невзвешенная (3.12)

— взвешенная

Наиболее широко этот вид средней используется при расчете показателей вариации.

Структурные средние

К структурным средним величинам в статистике относят моду, медиану и квартили, квинтили, децили, перцентили.

Медиана – это значение признака, находящийся в середине ранжированной (упорядоченной по возрастанию или убыванию) совокупности. Медиана делит изучаемую совокупность на две равные части – у половины единиц совокупности значение признака меньше медианы, а у другой половины единиц совокупности значение признака больше медианы.

Медиана является центром распределения. Основное свойство медианы заключается в том, что сумма абсолютных отклонений фактических значений от медианы меньше, чем от любой другой величины:

,

где — i-тый вариант признака,

— значение медианы.

Медиана может быть определена для количественных и порядковых признаков. Расчет медианы для альтернативных и атрибутивных признаков невозможен, так как эти признаки нельзя ранжировать.

1. расположить данные в порядке возрастания (или убывания) значений признака;

2 определить номер медианной единицы

, (3.13)

где — номер медианной единицы,

n –число единиц совокупности;

3. определить медиану, т.е. значение признака соответствующее номеру медианной единицы.

Расчет медианы зависит от:

— характера исходных данных, а именно, от четного или нечетного числа единиц совокупности;

— от вида признака (количественный или порядковый);

— формы представления исходных данных (не сгруппированные данные, дискретный ряд распределения, интервальный ряд распределения).

Медиана количественного признака для интервального ряда распределения определяется по формуле:

, (3.14)

где — нижняя граница медианного интервала;

— накопленная частота интервала, предшествующего медианному;

— частота медианного интервала;

— число единиц совокупности.

Медианным является интервал, первая накопленная частота которого превышает половину объема совокупности.

Мода – значение признака, наиболее часто встречающееся в совокупности.

Расчет моды для несгруппированных данных состоит в определении наиболее часто встречающегося значения. Если два и более варианта признака встречаются чаще остальных, то будет соответственно несколько модальных значений.

Расчет моды для дискретного ряда распределения состоит в определении признака имеющего наибольшую частоту.

Моду для интервального ряда распределения определяют по формуле:

, (3.15)

где — нижняя граница модального интервала;

i –величина модального интервала;

— частота модального интервала;

— частота интервала, предшествующего модальному;

— частота интервала, следующего за модальным.

Модальным называется интервал с наибольшей частотой.

Расчет моды для порядковых и атрибутивных признаков не представляет сложности с математической точки зрения и состоит в определении значения признака, которое встречается чаще остальных.

Средняя, медиана и мода характеризуют типичное значение признака в изучаемой совокупности. Вместе с тем каждый из перечисленных показателей имеет свою экономическую интерпретацию и особенности применения. Использование перечисленных показателей зависит от вида признака и характера распределения.

В анализе распределений порядковых признаков используют медиану и моду. Порядковые данные не имеют среднего значения. Типичное значение порядкового признака может быть выражено с помощью медианы и моды. При этом медиана отражает значение признака наиболее близкого ко всем единицам совокупности, а мода, характеризует наиболее распространение значение признака.

В анализе распределений количественных признаков для однородной совокупности обычно рассчитывают все три показателя. При этом соотношение значений средней, медианы и моды позволяют судить о характере распределения. Если данные

Рис. 3.1.Симметричное распределение

распределены симметрично, то значения средней медианы и моды совпадают (рис. 3.1.) Если распределение характеризуется ассиметрией, то значения средней и медианы отличаются. В распределениях с левосторонней ассиметрией значение средней меньше значений медианы и моды. В распределениях с правосторонней ассиметрией значение средней больше значений медианы и моды (рис. 3.2)

Рис. 3.2. Правосторонняя ассиметрия

Аномальные значения (значения существенно отличающиеся от других) не влияют на расчет медианы, но могут оказать существенное влияние на среднее значение признака. Поэтому, медиана является наиболее предпочтительной, по сравнению со средней величиной, характеристикой типичного уровня признака неоднородных совокупностей.

Квартили – это значения признака в упорядоченной совокупности, которые делят совокупность на четыре равные части. Первая или нижняя квартиль ( ) характеризует значение признака, меньше которого расположено 25% единиц совокупности, а больше – 75%. Вторая квартиль соответствует медиане ( ), т.е. у 50% единиц совокупности значение признака меньше второй квартили, а у 50% — больше. Третья или верхняя квартиль ( ) характеризует значение признака, меньше которого расположено 75% единиц совокупности, а больше – 25%.

Квинтили – это значения признака в упорядоченной по возрастанию совокупности, которые делят совокупность на пять равных частей. Первая или нижняя квинтиль ( ) характеризует значение признака, меньше которого расположено 20% единиц совокупности, а больше – 80%. Четвертая или верхняя квинтиль ( ) характеризует значение признака, меньше которого расположено 80% единиц совокупности, а больше – 20%.

Децили – это значения признака в упорядоченной по возрастанию совокупности, которые делят совокупность на десять равных частей. Первая или нижняя дециль ( ) характеризует значение признака, меньше которого расположено 10% единиц совокупности, а больше – 90%. Девятая или верхняя дециль ( ) характеризует значение признака, меньше которого расположено 90% единиц совокупности, а больше – 10%.

Перцентили – это значения признака в упорядоченной по возрастанию совокупности, которые делят совокупность на сто равных частей.

источник

Статистическая таблица разрабатывается в следующей последовательности. Составление систематической таблицы начинается с разработки его макета, т.е. таблицы, состоящей из строк и граф, которые ещё не заполнены цифрами.

Для этого, предположим, нужно составить макет статистической таблицы для изучения зависимости уровня производительности труда (измеряемого средней выработкой продукции на одного работающего) от величины стоимости продукции предприятия. После выбора заглавия таблицы, прежде всего, необходимо сформулировать подлежащее таблицы. В данном примере, это будет перечень предприятий или их группировка в порядке возрастания стоимости продукции. Если предприятий много, то целесообразнее использовать групповую таблицу. Какое количество групп, и какую величину интервала следует установить при группировке статистического материала, определяется искажение метода группировок. В некоторых случаях может потребоваться комбинационная таблица.

После того, как построено подлежащее, нужно определить сказуемое таблицы. Для рассматриваемого примера в сказуемом могут быть такие показатели: количество предприятий, стоимость произведённой продукции, число работающих в среднем, средняя выработка продукции на 1 работающего. Тем самым уточняется вид таблицы (простая или сложная).

Далее определяется порядок расположения показателей. Здесь тоже следует соблюдать определённые правила. Начинать надо с численности совокупности, затем – абсолютные величины, за ними средние или относительные величины. Тем самым обеспечивается определённая логическая последовательность при анализе таблиц.

После обоснования и определения последовательности расположения показателей в сказуемом с учётом построения подлежащего составляется макет статистической таблицы.

Макет такой статистической таблицы является базой для составления:

А) разработочной таблицы, в которой будут зафиксированы:

1) данные по каждой единице изучаемого явления;

2) итоговые данные по выделенным группам;

Б) аналитической (итоговой) таблицы, в которой будут сведены итоговые данные по группам и в целом по совокупности.

Практикой выработаны следующие основные правила составления и оформления статистических таблиц:

1) Таблица должна быть по возможности небольшой по размерам (облегчается анализ данных). Целесообразно построить несколько небольших взаимосвязанных таблиц, чем одну большую.

2) Таблица должна иметь кратко, ясно и точно сформулированное название, заголовки строк подлежащего и граф сказуемого. В названии необходимо отразить объект изучения, территорию и период времени, к которым относятся приводимые данные.

3) Строки подлежащего и графы сказуемого обычно размещаются по принципу от частного к общему. Если приводятся не все слагаемые, то сначала показывают общие итоги, а затем выделяют наиболее важные их составные части («в том числе», «из них»).

4) Таблица должна обязательно содержать необходимые итоги (групповые, общие, проверочные); их отсутствие затрудняет анализ и даже обесценивает таблицу.

5) Строки в подлежащем и графы в сказуемом часто нумеруют порядковыми номерами. При этом в сказуемом нумеруются только графы, в которые вписываются цифры. Графы для обозначений подлежащего и единиц его измерения обычно обозначаются буквами («а», «б»… или «А», «Б»…).

6) При заполнении таблицы необходимо строго соблюдать следующие условные обозначения: если данное явление (событие) отсутствует, ставить знак « — » (тире), если отсутствуют сведения, ставится знак « … » (многоточие) или пишут «нет сведений», если сведения имеются, но числовое значение меньше принятой в таблице точности, то ставится « 0,0 ».

7) Округлённые числа приводятся в таблице с одинаковой степенью точности (до 0,1 ; до 0,01 и т.д.) для всей графы однородных показателей. Не следует округлять проценты выполнения плана до целых чисел (округление значений, близких к 100, исказит картину). Когда показатели в процентах выращены большими числами, целесообразно заменить их выражением «во столько – то раз больше или меньше»:

8) [ 2489% «в 24, 9 раза больше»]

9) Если приводятся не только зафиксированные при наблюдении (первичные) данные, но и данные, полученные в результате расчетов, целесообразно об этом сделать оговорку в таблице или в примечании к ней.

10) Таблица может сопровождаться примечаниями, в которых указываются источники данных, более подробное содержание показателей и другие необходимые пояснения (например, методика расчёта).

Работа с таблицами тоже имеет определённые правила. Инженеру – экономисту нужно уметь разбираться в таблице любой сложности, правильно её читать и находить необходимый материал для выводов и обоснований. Прежде чем приступить к анализу данных таблицы, следует ознакомиться с названием таблицы, заголовками строк и граф, установить к какому признаку (атрибутивному или количественному) относятся данные, на какую дату они приводятся или на какой период, обратить внимание на единицы измерения, уяснить, какие процессы характеризуются относительными величинами.

Общее представление о таблице можно получить ознакомившись с итогами. Поэтому анализ таблицы следует начинать с итоговых цифр, затем переходить к анализу отдельных строк и граф. При этом целесообразно выбирать сначала частные итоги и наиболее характерные данные, а затем анализировать все остальные.

Контрольные вопросы по теме 5

1. Что такое статистическая таблица? Какие основные элементы она содержит?

2. Каковы функции статистических таблиц?

3. Какие могут быть выделены виды статистических таблиц?

4. Перечислите основные правила составления статистических таблиц.

5. Приведите примеры известных Вам статистических таблиц, используемых при изучении экономических явлений.

6. Какая последовательность работ должна соблюдаться при анализе статистических таблиц?

Дата добавления: 2015-11-05 ; просмотров: 744 | Нарушение авторских прав

источник

Понятие и основные элементы статистической таблицы. Главные правила их построения, чтение и анализ. Виды таблиц по характеру подлежащего и по разработке сказуемого. Порядок классификации графиков по назначению. Сущность структурных диаграмм, их роль.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В современном обществе статистика стала одним из важнейших инструментов управления народным хозяйством. Она собирает информацию, характеризующую развитие экономики страны, культуры и жизненного уровня народа. С помощью статистической методологии вся полученная информация обобщается, анализируется и в результате дает возможность увидеть стройную систему взаимосвязей в экономике, яркую картину и динамику развития, позволяет делать международные сопоставления.

Выразительность, доходчивость, лаконичность, универсальность, обозримость графических изображений сделали их незаменимыми в исследовательской работе и в международных сравнениях и сопоставления социально-экономических явлений.

Впервые о технике составления статистических графиков упоминается в работе английского экономиста У.Плейфейра “Коммерческий и политический атлас”, опубликованной в 1786 году и положившей начало развитию приемов графического изображения статистических данных.

Значение графического метода в анализе и обобщении данных велико. Графическое изображение прежде всего позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. С помощью графического изображения возможны изучение закономерностей развития явления, установление существующих взаимосвязей. Простое сопоставление данных не всегда дает возможность уловить наличие причинных зависимостей, в то же время их графическое изображение способствует выявлению причинных связей, в особенности в случаях установления первоначальных гипотез, подлежащих затем дальнейшей разработке.

Графики также широко используются для изучения структуры влияний, их изменения во времени и размещения в пространстве.

статистический график диаграмма

1. Статистическая таблица: понятие, виды, чтение и анализ

1.1 Понятие и элементы статистической таблицы

Статистической называется таблица, которая содержит сводную числовую характеристику исследуемой совокупности по одному или нескольким существенным признакам, взаимосвязанным логикой экономического анализа.

Читайте также:  Пцр анализ как его берут у мужчин

Основные элементы статистической таблицы, представлены на «Рисунке 1.1» составляют как бы ее основу.

Наименование граф (верхние заголовки)

Рисунок 1.1 Основ (основа) статистической таблицы

Табличной называется такая форма расположения числовой информации, при которой число располагается на пересечении четко сформулированного заголовка по вертикальному столбцу, называемому графой, и названия по соответствующей горизонтальной полосе — строке

Статистическая таблица содержит три вида заголовков: общий, верхние и боковые. Общий заголовок отражает содержание всей таблицы (к какому месту и времени она относится), располагается над макетом таблицы по центру и является внешним заголовком. Верхние заголовки характеризуют содержание граф (заголовки сказуемого), а боковые (заголовки подлежащего) — строк. Они являются внутренними заголовками.

Остов таблицы, заполненный заголовками, образует макет таблицы; если на пересечении граф и строк записать цифры, то получается полная статистическая таблица. Схематично взаимодействие основных элементов статистической таблицы представлено на «Рисунке 1.2.».

По логическому содержанию таблица представляет собой «статистическое предложение», основными элементами которого являются подлежащее и сказуемое.

Подлежащим статистической таблицы называется объект, который характеризуется цифрами. Это может быть одна или несколько совокупностей, отдельные единицы совокупности в порядке их перечня или сгруппированные по каким-либо признакам, территориальные единицы и так далее.

Сказуемое статистической таблицы образует система показателей, которыми характеризуется объект изучения, то есть подлежащее таблицы. Сказуемое формирует верхние заголовки и составляет содержание граф с логически последовательным расположением показателей слева направо.

1.2 Виды таблиц по характеру подлежащего и по разработке сказуемого

В практике экономико-статистического анализа используются различные виды статистических таблиц, отличающихся различным строением подлежащего и сказуемого, структурой и соотношением признаков, формирующих их.

Рисунок 3 Классификация статистических таблиц по характеру подлежащего

В зависимости от структуры подлежащего, от группировки единиц в нем, различают статистические таблицы простые и сложные, а последние, в свою очередь, подразделяются на групповые и комбинационные.

Общая классификация таблиц по подлежащего представлена на «Рисунке 3».

В простой таблице в подлежащем дается перечень каких-либо объектов или территориальных единиц. Простые таблицы различают монографические и перечневые.

Монографические таблицы характеризуют не всю совокупность единиц изучаемого объекта, а только одну какую-либо группу из нее, выделенную по определенному признаку. Пример-Таблица 1.1.

Таблица 1.1 Характеристика итогов торгов облигаций федерального займа на ММВБ 23.03.98г.

Облигации федерального займа

Простыми перечневыми таблицами называются таблицы, подлежащее которых содержит перечень единиц изучаемого объекта по различному признаку — территориальному, временному и т.д. Пример — Таблица 1.2.

Таблица 1.2 Котировка облигаций государственного сберегательного займа в одной из межбанковских объединений на 05.03.2003 г.

Облигации по номерам серии

Простые таблицы не дают возможности выявить социально-экономические типы изучаемых явлений, их структуру, а также взаимосвязи и взаимозависимости между характеризующими их признаками.Эти задачи более полно решаются с помощью сложных: групповых и особенно комбинационных таблиц.

Групповыми называются статистические таблицы, подлежащее которых содержит группировку единиц совокупности по одному количественному или атрибутивному признаку. Сказуемое в групповых таблицах состоит из числа показателей, необходимых для характеристики подлежащего.

Простейшим видом групповых таблиц являются атрибутивные и вариационные ряды распределения. Групповая таблица может быть более сложной, если в сказуемом приводится не только число единиц в каждой группе, но и ряд других важных показателей, количественно и качественно характеризующих группы подлежащего. Такие таблицы используются в целях сопоставления обобщающих показателей по группам, что позволяет делать определенные практические выводы. Пример — Таблица 1.3.

Таблица 1.3 Распределение несовершеннолетних, совершавших правонарушения и преступления (по возрасту)

Группы несовершеннолетних по возрасту, лет

Состоят в милиции на учете

При статистической сводке материалов сложной группировки применяется комбинационная таблица.

Комбинационными называются статистические таблицы, подлежащее которых содержит группировку единиц совокупности одновременно по двум и более признакам: каждая из групп, построенная по одному признаку, разбивается, в свою очередь, на подгруппы по какому — либо другому признаку и т.д. Пример — Таблица 1.4.

Подлежащим в таблице являются группы предприятий по величине уставного капитала и числу занятых. Из таблицы видно, что между величиной уставного капитала и числом реализованных акций имеется определенная зависимость, которая наиболее часто проявляется в зависимости от числа занятых на этих предприятиях.

Таблица 1.4 Группировка предприятий, выставивших акции на чековые аукционы РФ в 1996 г., по величине уставного капитала и числу занятых (цифры условные)

Группы предприятий по величине уставного капитала, млн руб.

Группы предприятий по числу занятых, человек

Количество проданных акций, шт.

В сказуемом статистической таблицы, как уже говорилось, приводятся показатели, которые являются характеристикой изучаемого объекта. Эту характеристику можно давать небольшим числом показателей или целой системой показателей. По структурному строению сказуемого различают статистические таблицы с простой и сложной его разработкой. Схематично изображено на «Рисунке 1.3.»

При простой разработке сказуемого показатель, определяющий его, не подразделяется на подгруппы, и итоговые значения получаются путем простого суммирования значений по каждому признаку отдельно независимо друг от друга. Примером простой разработки сказуемого может служить «Таблица 1.1. , 1.2., 1.3.»

Рисунок 1.3 Классификация статистических таблиц по разработке сказуемого

Сложная разработка сказуемого предполагает деление признака, формирующего его, на подгруппы. Пример — «Таблица 1.5.»

Таблица 1.5 Распределение акций среди работников приватизированных предприятий промышленности

по цене, определенной Госкомимуществом

привеилегированные типа А

Комбинированная разработка показателей по условиям продажи акций и их видам позволяет углубить экономико — статистический анализ рынка акций и его структуры по приватизированным предприятиям.

Однако сложная разработка сказуемого может привести к безмерному увеличению размерности статистических таблиц, что, в свою очередь, снижает их наглядность, чтение и анализ.

Поэтому исследователь при построении статистических таблиц должен руководствоваться оптимальным соотношением показателей сказуемого и учитывать как положительные, так и отрицательные моменты сложной разработки показателей сказуемого.

1.3 Основные правила построения таблиц, чтение и анализ

Статистические таблицы как средство наглядного и компактного представления цифровой информации должны быть правильно оформлены.

Основные приемы, определяющие технику формирования статистических таблиц, следующие:

Таблица должна быть компактной и содержать только те исходные данные, которые непосредственно отражают исследуемое явление в статике и динамике и необходимы для познания его сущности.

Следует избегать ненужной, второстепенной, бессодержательной по отношению к данному объекту исследования информации. Цифровой материал необходимо излагать таким образом, чтобы при анализе таблицы сущность явления раскрывалась чтением строк слева направо и сверху вниз.

2. Заголовок таблицы и названия граф и строк должны быть четкими, краткими, лаконичными, представлять собой законченное целое, органично вписывающееся в содержание текста.

Необходимо избегать большого количества точек и запятых в названиях таблицы и граф — это затрудняет чтение таблицы. Если название таблицы состоит из двух и более предложений, точка ставится для отделения предложений друг от друга, но не после последнего. В заголовках граф допускаются точки только при необходимых сокращениях.

Заголовки таблицы, граф и строк пишутся полностью без сокращений.

3. Информация, располагаемая в столбцах (графах) таблицы завершается итоговой строкой. Существуют различные способы соединения слагаемых граф с их итогом:

· строка «Итого» или «Всего» завершает статистическую таблицу;

· итоговая строка располагается первой строкой таблицы и соединяется с совокупностью ее слагаемых словами «В том числе».

В групповых и комбинационных таблицах всегда необходимо давать итоговые графы и строки.

4. Для того чтобы было легче читать и анализировать большие (по количеству приведенных строк) таблицы целесообразно оставлять двойной промежуток после каждых пяти (и далее кратных пяти) строк.

5. Если названия отдельных граф повторяются, содержат повторяющиеся термины или несут единую смысловую нагрузку, то им необходимо присвоить общий объединяющий заголовок.Данный прием используется и для подлежащего, и для сказуемого таблиц.

6. Графы (столбцы) и строки полезно нумеровать. Графы, заполненные названием строк, принято обозначать заглавными буквами алфавита (А, В и т.д.), а все последующие графы номерами в порядке возрастания.

7. Взаимосвязанные и взаимозависимые данные, характеризующие одну из сторон анализируемого явления (например, число библиотек вообще и удельный вес публичных, абсолютный прирост и темп роста библиотечного фонда и т.д.), целесообразно располагать в соседних друг с другом графах.

8. Графы и строки должны содержать единицы измерения, соответствующие поставленным в подлежащем и сказуемом показателям. При этом используются общепринятые сокращения единиц измерения (экз., док., назв. и т.д.).

9. Лучше всего располагать в таблицах сопоставляемую в ходе анализа цифровую информацию в одной и той же графе, одну под другой, что значительно облегчает процесс их сравнения. Поэтому в групповых таблицах, например, группы по изучаемому признаку более грамотно располагать в порядке убывания или возрастания его значений при сохранении логической связи между подлежащим и сказуемым таблицы.

10. Для удобства работы числа в таблицах следует представлять в середине граф, одно под другим: единицы под единицами, запятая под запятой, четко соблюдая при этом разрядность.

11. По возможности числа целесообразно округлять. Округление чисел в пределах одной и той же графы или строки следует проводить с одинаковой степенью точности (до целого знака или до десятой и т.д.). Если все числа одной и той же графы или строки даны с одним десятичным знаком, а одно из чисел имеет два или более знака после запятой, то числа с одним знаком следует дополнять нулем, тем самым подчеркивая их одинаковую точность.

12. Отсутствие данных об анализируемом объекте может быть обусловлено различными причинами, что по-разному отмечается в таблице:

Если данная позиция (на пересечении соответствующих графы и строки) вообще не подлежит заполнению, то ставится «Х».

Когда по какой-либо причине отсутствуют сведения, то ставится многоточие «…» или «Нет свед.», или «Н. св.»

При отсутствии данных клетка заполняется «—» или остается пустой.

Для отображения очень малых чисел используют обозначения 0,0 или 0,00, предполагающие возможность наличия числа.

13. В случае необходимости дополнительной информации к таблице могут даваться примечания.

Соблюдение приведенных правил построения и оформления статистических таблиц делает их основным средством представления, обработки и обобщения информации о состоянии и развитии анализируемых явлений.

Анализу статистических таблиц предшествует этап ознакомления — их чтения.

Чтение и анализ таблиц должны осуществляться не хаотично, а в определенной последовательности. Чтение предполагает, что исследователь, прочитав слова и числа таблицы, усвоил ее содержание, сформулировал первые суждения об объекте, уяснил назначение таблицы, понял ее содержание в целом, дал оценку явлению или процессу, описанному в таблице.

Анализ таблицы как метод научного исследования путем разбиения предмета изучения на части делится на структурные и содержательный.

Структурный анализ предполагает анализ строения таблицы, характеристику представленных в таблице:

совокупности и единиц наблюдения, формирующих ее;

признаков и их комбинаций, формирующих подлежащее и сказуемое таблицы;

признаков: количественных или атрибутивных;

соотношения признаков подлежащего с показателями сказуемого;

вида таблицы: простая или сложная, а последняя — групповая или комбинационная;

решаемых задач — анализ структуры, типов явлений или их взаимосвязей.

Содержательный анализ предполагает изучение внутреннего содержания таблицы: анализ отдельных групп подлежащего по соответствующим признакам сказуемого; выявление соотношения и пропорций между группами явлений по одному и разным признакам.

Прежде чем приступать к анализу числовой информации, необходимо проверить ее достоверность и научную обоснованность. Исследователь должен убедиться в достоверности и надежности источника информации данных и критически оценить их цифровые значения. Следует произвести логическую и счетную проверки данных. Схематически изображено на «Рисунке 1.4.»

Рисунок 1.4 Этапы анализа статистических таблиц

Логическая проверка состоит в возможности определения конкретных признаков теми или иными числовыми значениями (например, абсурдно, если численность работающих на фирме составила 106,7 человека).

Счетная проверка предполагает выборочный расчет отдельных значений признаков по группе, либо итоговых значений строк или граф и т.д.

Анализ данных таблиц производится по каждому признаку в отдельности, затем в логико — экономическом сочетании всей совокупности признаков в целом.

Анализ отдельных признаков и групп необходимо начинать с изучения абсолютных, затем — связанных с ними относительных величин. При анализе данных следует рассматривать динамику каждого признака за весь период, переходя при этом от одного к другому.

Соблюдение правил и последовательности работы со статистическими таблицами помогает исследователю осуществлять научно обоснованный экономико — статистический анализ объектов и процессов.

В анализе данных наряду со статистическими таблицами применяются и другие виды таблиц, одним из которых является матрица.

Матрицей называется прямоугольная таблица числовой информации, состоящая из m строк и n столбцов. Таким образом, матрица имеет размерность m x n:

где аij — элемент матрицы, стоящий на пересечении i-й строки и j-столбца.

Различают два вида матриц:

прямоугольная (размерность m x n);

квадратная. Если число строк строго равно числу столбцов (m = n), то матрица называется квадратной порядка n.

Квадратная матрица порядка n называется диагональной (ДУ), если все элементы, стоящие вне главной диагонали (d1, d2. dn), равны нулю.

Если в диагональной матрице Д все di = 1, то матрица называется единичной, при di= 0 — нулевой.

Схематично названные виды матриц могут быть представлены следующим образом на «Рисунке 1.5.»

Матрицы и анализ явлений и процессов на их основе составляют базу матричного моделирования и позволяют исследовать взаимосвязи между экономическими объектами.

Таблицы-матрицы широко применяются на практике, например, в экономике в виде балансово-нормативных моделей, отражающим соотношение результатов производства, нормативов производственных затрат и т. д. Успешно используют матрицы и в межотраслевом балансе, системе национального счетоводства и т. д.

Таблицей сопряженности называется таблица, которая содержит сводную числовую характеристику изучаемой совокупности по двум и более атрибутивным (качественным) признакам или комбинации количественных и атрибутивных признаков.

Таблицы сопряженности получили наибольшее распространение при изучении социальных явлений и процессов: общественного мнения, уровня и образа жизни, общественно — политического строя и т.д.

Наиболее простым видом таблиц сопряженности является таблица частот 2 х 2. Пример — Таблица 1.6.

Таблица 1.6 Общая схема таблицы частот 2 х 2

источник