Меню Рубрики

Как проводится химический анализ металла

Определить химический состав сталей и сплавов

Подтвердить марки сталей

Восстановить документацию на продукцию

Подтвердить или опровергнуть сертификат

Входной контроль металлов и сплавов

Сортировать лом из черных и цветных металлов

Определить химический состав рудных пород

Подобрать аналог сталей и сплавов (с использованием специальной программы — марочника сталей Win Steel 8.0 Prof)

Сжатие и растяжение

Определение твердости

Проведение испытаний на предприятии заказчика

Испытание образцов в нашей лаборатории

Выезд в регионы и получение образцов через транспортные компании

Оперативность

Выезд специалиста на объект заказчика

Работа на всей территории РФ

Высоко квалифицированные специалисты

Работа в соответствии ГОСТ

Подбор аналогов сталей и сплавов

Консультация специалиста

Заявка в один клик (заказать услугу с сайта)

ГОСТ 28033-89

«Сталь. Метод рентгенофлюоресцентного анализа»

ГОСТ 18895-97

«Метод фотоэлектрического спектрального анализа»

ГОСТ 12353-78, ГОСТ 12344-2003, ГОСТ 12345-2001, ГОСТ 12350-78, ГОСТ 12346-78, ГОСТ 12347-77, ГОСТ 12348-78, ГОСТ 12352-81, ГОСТ 12355-78

PMI MASTER UVR-мобильный оптико-эмиссионный анализатор металлов, который позволяет проводить высокоточный анализ и определять марку любых сталей и сплавов с возможностью анализа углерода, серы, фосфора.

АRC-MET-8000 портативный оптико-эмиссионный анализатор работающий в аргоновом режиме. С возможностью определения и прекрасной повторяемостью результатов по углероду, сере, фосфору и бору.

Стационарный твердомер по методу Роквелла МЕТОЛАБ101
Стационарный твердомер используется для измерения твердости твердых сплавов, а также закаленных и не закаленных сталей, литья, подшипниковых сталей, алюминиевых сплавов, тонких плит твердых сплавов, меди, цинкованных, хромированных и луженых покрытий поверхностей и др. по методу Роквелла.
Свидетельство об утверждении типа средств измерений RU.C.28.002.A № 63563.

X-MET 8000 является рентгенофлуоресцентным портативным энергодисперсионным спектрометром с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89.

Диапазон измеряемых элементов: от Mg до Bi.

Пробоподготовка согласно ГОСТ 7565-81

Измерение подходящим анализатором

  • X-MET 8000
  • PMI MASTER UVR
1 3 Обработка результатов, выдача заключения

Сегодня проведение химического анализа металлов — стилоскопирования — не требует нарушения целостности проверяемой конструкции или подготовки образцов. Чтобы сделать спектральный анализ и определить физико-химические характеристики металлов и сплавов, в лабораторию обращаться тоже необязательно: современный фотоэлектрический метод спектрального анализа позволяет контролировать качество готовых изделий даже в полевых условиях.

Проведение спектрального анализа металлов с помощью стационарных или портативных приборов, использующих метод рентгенофлуоресцентного спектрального анализа стали согласно ГОСТ 28033–89, призвано помочь профильным предприятиям в сортировке металла.

Подобное решение демонстрирует целый ряд преимуществ. Чтобы провести экспертизу металла не понадобится много времени. Результат будет известен уже через несколько минут. Такая мини-лаборатория по химическому анализу металла значительно сократит издержки производственного предприятия, крупного ритейлера и коммунальные службы. Устанавливаемая на спектральный анализ металла цена в специализированных организациях и график их работы больше не имеют значения: однажды купив анализатор металлов и пройдя курс подготовки специалистов, которые будут с ним работать в дальнейшем, ваша компания сможет организовать спектральный анализ металла в удобное время и в удобном месте.

Определение химического состава сталей и сплавов.

Восстановление документации на продукцию.

Подтверждение марки, подтверждение сертификатов.

Входной контроль металлов и сплавов.

Сортировка лома металлов и сплавов. В этой сфере достаточно распространены фальсификации, однако если приемщиками используется химический анализ, определение металла, дающее максимально точный результат, гарантированно избавит предприятие от убытков.

Подбор аналогов сталей и сплавов (с использованием специальной программы — марочника сталей Win Steel 7.0 Prof).

Калибровочные программы прибора.

Рентгенофлюоресцентный анализ химического состава металлов и сплавов производится в лаборатории с помощью рентгенофлюоресцентного анализатора типа X-MET 7500 с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89. Диапазон измеряемых элементов: от Mg до Bi. Метод подходит для определения химического состава и марки стали, других металлов. В частности, допускается:

  • химический анализ алюминиевых сплавов;
  • химический анализ титановых сплавов;
  • анализ сплавов железа и т. д.

Универсальная программа химического анализа сплавов использует несколько фундаментальных параметров для анализа металлов и сплавов, стандартный набор из 33 элементов: Mg, Al, Si, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Y, Zr, Nb, Mo, Pd, Ag, In, Sn, Sb, Hf, Ta, W, Pt, Ir, Au, Pb, Bi в концентрациях от 0 до 100%. Применима для анализа металлов на любой основе: Pb, W, Au и пр., ферросплавов

Для того чтобы сделать сделать химический экспресс анализ металла, достаточно приложить к его поверхности один из реализуемых нами приборов. Рентгенофлюоресцентный метод основан на зависимости интенсивности характеристических линий флюоресценции элемента от его массовой доли в пробе.

Рентгенофлуоресцентный спектрометр представляет собой аналитический прибор, который определяет каждый химический элемент, присутствующий в тестируемом образце.

Это устройство также определяет общее количество химических элементов в образце.

Рентгенофлюоресцентный анализ химического состава металлов и сплавов производится с помощью рентгенофлюоресцентного анализатора типа X-MET 7500 с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89. Диапазон измеряемых элементов: от Mg до Bi.Рентгенофлюоресцентный метод основан на зависимости интенсивности характеристических линий флюоресценции элемента от его массовой доли в пробе.

Данный вид контроля используется в следующих случаях :

  • Определение химического состава сталей и сплавов.
  • Восстановление документации на продукцию.
  • Подтверждение марки,подтверждение сертификатов.
  • Входной контроль металлов и сплавов.
  • Сортировка лома металлов и сплавов.
  • Подбор аналогов сталей и сплавов (с использованием специальной программы — марочника сталей Win Steel 7.0 Prof).

Пользователю доступен набор из 8 специализированных эмпирических программ: «низколегированные стали и чугуны», «нержавеющие стали», «инструментальные стали», «алюминиевые сплавы», «медные сплавы», «кобальтовые сплавы», «титановые сплавы», «никелевые сплавы». Выбор программы, с помощью которой планируется проводить определение химического состава металла, осуществляется автоматически.

  • Программа для идентификации спектра (да/нет).
  • Программа для анализа углеродистых, низколегированных сталей и чугунов.
  • Программа для анализа нержавеющих сталей.
  • Программа для анализа инструментальных сталей.
  • Программа для анализа медных сплавов.
  • Программа для анализа никелевых сплавов.
  • Программа для анализа титановых сплавов.
  • Программа для анализа кобальтовых сплавов.
  • Программа для анализа алюминиевых сплавов.
  • Идентификационные программы (да/нет).
  • Функция автоматического определения типа материала и выбора необходимой программы для анализа.
  • Автоматическая коррекция концентраций при измерении образцов малых размеров и сложных форм.
  • Функция рекалибровки по одной точке.
  • Встроенный марочник металлов и сплавов, возможность корректировки и добавления марок.
  • Возможность усреднения результатов не менее чем по 50-ти измерениям для получения достоверных результатов при анализе неоднородных образцов.
  • Возможность создания отчетов в защищенном от корректировки формате PDF по шаблону пользователя с возможностью размещением логотипа компании, результатов измерений, погрешности измерений, времени и длительности измерений, имени оператора и другой информации на выбор пользователя.

источник

ВЫБОР МЕТОДА АНАЛИЗА ХИМИЧЕСКОГО СОСТАВА НАПЛАВЛЕННОГО МЕТАЛЛА

Зяблов Антон Сергеевич

студент 1 курса магистратуры, Национальный исследовательский Томский политехнический университет; г. Томск

При сварке и наплавке металлических материалов большая часть легирующих элементов испаряется за счет воздействия высоких температур электрической дуги. Благодаря тому, что средняя температура капель электродного металла и сварочной ванны колеблется в пределах 1900…2500 К некоторые элементы переходят в металл шва не полностью. В таблице представлены коэффициенты перехода С, Mn, Si и Cr в зависимости от способа сварки и наплавки в наплавленный металл [5, с. 346].

Коэффициенты перехода элементов в наплавленный металл

Способ сварки/наплавки

Коэффициенты перехода элементов

В атмосфере без защиты проволокой:

Для выбора схемы проведения исследований необходимо проанализировать существующие методы определения химического состава металлов.

В настоящее время имеется ряд методов, способных установить химический состав материалов: пробирный анализ, волнодисперсионный анализ, рентгено-флоуресцентный анализ, эмиссионный анализ. Поэтому целью данной работы является сравнительный обзор способов химического анализа состава металлов и сплавов.

Все способы определения химического состава металлов основываются на аналитической химии, которая позволяет разработать методы определения компонентов изучаемого образца, решить задачи анализа конкретных объектов.

Основная задача аналитической химии — обеспечить в зависимости от поставленной задачи точность, высокую чувствительность, экспрессность и избирательность анализа. Активно разрабатываются методы, способные анализировать микрообъекты (микрохимический анализ), осуществлять локальный анализ (в точке, на поверхности и т. д.), анализ без разрушения образца, на некотором расстоянии от него (дистанционный анализ), непрерывный анализ, а также определять, в виде какого химического компонента существуют элементы в материале (фазовый анализ) [1, с. 48].

Химический анализ состава металлов и сплавов в зависимости от цели можно разделить на качественный и количественный. Качественный анализ — совокупность химических, физико-химических и физических методов, используемых для нахождения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе применяют легко выполнимые химические реакции, при которых происходит появление или исчезновение окрашивания, появление или растворение осадка, выделение газа и др. Качественный анализ позволяет определить элемент в материале. Количественный анализ—совокупность методованалитической химиидля определения количества (содержания) элементов (ионов),радикалов, функциональных групп, соединений или фаз в анализируемом объекте. Количественный анализ позволяет идентифицировать концентрацию или массу элемента в материале.

Для проведения качественного анализа широко применяется метод стилоскопирования, основанный на визуальном определении того или иного элемента по интенсивности его свечения. Данный метод имеет недостатки: необходимость хорошей подготовки операторов, невозможность определения примесей, субъективность результатов, влияние человеческого фактора, к тому же длительная работа на стилоскопе пагубно сказывается на зрении оператора [3, с. 27].

Стилоскопирование также как и рентгено-флуоресцентный анализ, не дает информации о содержании углерода, серы и фосфора в сталях. Это ограничение не позволяет проводить полную сортировку и исследование углеродистых и карбидосодержащих сталей [4, с. 116].

Высокую точность можно достичь с помощью пробирного метода, сущность которого основана на физико-химических закономерностях восстановления металлов, шлакообразования и смачивания расплавленными веществами. Но для проведения такого анализа необходима длительная по времени и трудоемкая процедура пробоподготовки [1, с. 57].

В настоящее время широко используются различные спектрометры: рентгенофлуоресцентный, искровой оптико-эмиссионный, лазерный, ИК-спектрометр, спектрометр индуктивно-связанной плазмы, атомно-абсорбционный, масс-спектрометр.

Данные приборы использует тот же (спектральный) принцип работы, что и стилоскоп, но благодаря современной цифровой автоматической обработке спектра и использованию инертного газа (аргона) позволяют осуществить точный количественный анализ любых типов сталей с высокой точностью в условиях лаборатории, цеха, улицы.

В отличие от портативных приборов, специализирующихся на ограниченном круге задач, стационарные установки универсальны. Это связано, в первую очередь, с тем, что для точного количественного анализа необходим набор эталонных образцов для каждого элемента, что невозможно при работе с портативными установками. При этом стоит уделить особое внимание подбору и подготовке аналитических проб, составлению схемы анализа и выбору методов, принципах и путях автоматизации анализа. Поэтому для исследования выгорания элементов новых конструкционных материалов приемлемым является использование стационарных установок, среди которых оптико-эмиссионные и атомно-абсорбционные спектрометры получили наибольшее распространение.

Использование оптико-эмиссионного метода дает возможность одновременно определять в пробе несколько элементов. Интервалы обнаружения Cr, Al, Hg, As, Ni, Pb составляют 1—20 мкг/л. Однако, эмиссионные спектрометры уступают атомно-абсорбционным по воспроизводимости и по селективности [6, с. 356].

Атомно-абсорбционный метод позволяет исследовать до 70 элементов в пробе с чувствительностью в пределах 10 -4 —10 -9 % масс. С использованием графитовой печи затруднительно определять Hf, Nb, Та, W и Zr, образующие с углеродом труднолетучие карбиды. Пределы обнаружения многих элементов в растворах при атомизации в пламени 1—100 мкг/л, в графитовой печи в 100—1000 раз ниже. Стандартное относительное отклонение в оптимальных условиях измерений достигает 0,2—0,5 % для пламени и 0,5—1,0 % для печи. Отличительная особенность атомно-абсорбционного метода высокая абсолютная и относительная чувствительность. Атомно-абсорбционный метод превосходит другие по точности и чувствительности [2, с. 203].

На основании проведенного обзора можно сделать вывод, что для анализа выгорания химических элементов новых конструкционных материалов в зависимости от параметров режима наплавки высококонцентрированными источниками энергии целесообразно использовать атомно-абсорбционные спектрометры с атомизацией пробы в пламени. Осуществление поставленной задачи возможно с использованием атомно-абсорбционного спектрометра SOLAAR S2/S4.

Список литературы:

  1. Аналитическая химия: наука, приложения, люди / Золотов Ю.А. — М.: Наука, 2009. — 324 с.
  2. Атомно-абсорбционный анализ: учебное пособие / А.А. Ганеев и др. — СПб.: Лань, 2011. — 304 с.
  3. Оптический и рентгеноспектральный анализ / Петров В.И. — М.: Металлургия, 1973. — 285 с.
  4. Рентгеноспектральный анализ: раздельный учет физических процессов / Верховодов П.А. — Н. Думка, 1992. — 232 с.
  5. Сварка и свариваемые материалы: В 3-х т. Т. 1. Свариваемость материалов. Справочник / под ред. Э.Л. Макарова. — М.: Металлургия, 1991. — 528 с.
  6. Цифровой спектральный анализ и его приложения / Марпл С.Л. — М.: Мир, 1990. — 584 с.

источник

Химический анализ металлов – это основное исследование, которое проводят при изучении характеристик сталей, да и не только сталей, а любого материала, используемого в промышленности.

Лет триста назад, чтобы сделать химический анализ металла необходимо было провести целый ряд химических опытов на каждый определяемый элемент. А такие элементы, как углерод, вообще не поддавались количественному определению.

Даже в середине прошлого века, в век технического прогресса, углерод в сталях зачастую определяли методом «искровой пробы». Исследуемый образец металла прислоняли к вращающемуся наждачному кругу и по форме и цвету искры определяли тип стали и примерное количество углерода. Нужно отдать должное металлургам того времени, они достаточно точно для такого метода могли определить процент углерода. Но даже этим мастерам было не по силам определить примесные элементы (S, P, As).

На помощь сталеварам пришел рентген. А именно, энергодисперсионный рентгеновский анализ («energy-dispersive X-ray spectroscopy»). Суть его заключается в облучении рентгеновскими лучами поверхности исследуемого металла, что провоцирует возбуждение атомов в исследуемом образце. Возбужденные атомы переходят на новый энергетический уровень, испуская свое рентгеновское излучение, длина волны которого является абсолютно уникальной. Вот по этим уникальным волнам и определяются элементы, присутствующие в образце – это так называемы качественный анализ. А по интенсивности данного излучения определяют массовую долю этого элемента – количественный анализ.

Пример рентгенограммы представлен на фото.

Приставки рентгеновского химического анализатора устанавливают на растровые (сканирующие) электронные микроскопы, что вкупе с их высоким разрешением позволяет определять состав даже совсем небольших частиц, такие как неметаллические включения в стали.

Современное программное обеспечение позволяет накладывать уже оцифрованные и посчитанные значения массовой доли элементов на изображение структуры металла, полученное на растровом (сканирующем) электронном микроскопе. Это позволяет наблюдать распределение по полю исследуемого элемента, а иногда и нескольких сразу. Пример многослойного изображения представлен на фото.

Но рентгеновским методом порой трудно определить легкие элементы, как тот же углерод, например.

Тогда в ход идет оптико-эмиссионый анализ («optical emission analysis»). Его принцип в чем-то схож с рентгеновским. Элементы идентифицируют по уникальной длине волны испускаемой им. Только в этом случае волны находятся в оптическом спектре, они даже различимы человеческим глазом. Данное свечение получается при помощи нагрева поверхности образца плазмой в инертном газе (в аргоне, например). Плазму получают при помощи обыкновенной электрической дуги. Данный метод позволяет определять содержание даже легких элементов с точностью до тысячной доли процента.

У каждого из этих двух рассмотренных нами методов есть свои преимущества. У оптико-эмиссионного – это простота изготовления оборудования и точность определения элементов. А у рентгеновского – это возможность делать анализ микрообъектов (при установке приставки на сканирующий электронный микроскоп), таких как неметаллические включения. Совместить сканирующий электронный микроскоп с эмиссионным спектрометром крайне затруднительно из-за технических особенностей этих приборов. Мы в Компании «Металл-экспертиза» при проведении металловедческой экспертизы используем оба вышеописанных вида химического анализа металлов.

источник

Химический анализ металлов и сплавов является важной процедурой, с помощью которой можно контролировать наличие в том или ином металле каких либо, примесей и включений других металлов.

Физико-химические методы анализа металлов и сплавов позволят определить чистоту материала на предмет содержания в нем нежелательных примесей. Это в свою очередь позволит прогнозировать технические характеристики будущих деталей, которые будут производиться с применением того или иного металла либо сплавов нескольких металлов.

Металлы, а также их сплавы широко используются в разных отраслях промышленности и народного хозяйства. В чистом виде металлы практически не существуют – они обязательно имеют в своем составе природные или технологические примеси.

От их типа и концентрации напрямую зависят эксплуатационные параметры будущей продукции, которая производится из металла. Использование химического анализа позволит установить его качественные и количественные свойства.

В процессе проведения этого анализа можно будет:

  • определить количественный состав элементов;
  • выявить наличие инородных соединений и их концентрацию;
  • провести идентификацию сплавов;
  • определять соотношение смесей в металлических сплавах при их маркировке.

В основном анализ проводится для:

  • экспертизы качества выпускаемых металлов и сплавов на предмет их соответствия текущим стандартам;
  • контроля технологических процессов на этапе производства;
  • выполнения входной экспертизы сырья;
  • разработки и создания новых сплавов;
  • сертификации продукции из металла;
  • освидетельствования чистых металлов.

На сегодняшний день существует много разных методов, которые позволяют провести качественный анализ металлов и их сплавов.

Используемые методы должны обеспечивать:

  • экспрессность проведения процедуры анализа;
  • высокую точность результатов;
  • неразрушающий контроль;
  • простоту проведения эксперимента;
  • возможность использования методик анализа в производственном цикле.

Среди основных методов контроля наиболее часто используется спектральный анализ и эмиссионный химический анализ. Рассмотрим их особенности и преимущества.

Этот метод исследования металлов позволяет за короткий промежуток времени с высокой вероятностью определить истинный состав исследуемого металлического образца.

На сегодня существует несколько разновидностей этого метода, но наибольшую популярность имеет атомно-эмиссионный спектральный анализ. Именно он используется в научной и промышленной отрасли для экспрессного получения данных о составе исследуемых образцов.

Эти методы анализа металлов и сплавов основаны на том принципе, что кратковременный высокотемпературный нагрев металла приводит к тому, что атомы вещества переводятся в возбужденное состояние и излучают свет в определенном интервале частот. Для каждого химического элемента характерна своя частота, по которой его и можно идентифицировать.

Полихроматическое излучение, которое получается вследствие такого разогрева металлического образца, фокусируется с помощью специальной оптической системы, с последующим раскладыванием в спектр и фиксированием регистратором.

После этого полученные данные обрабатываются с помощью компьютерной техники, на которой установлено специализированное программное обеспечение, позволяющее, используя аналитические инструменты, провести качественный и количественный анализ.

Метод эмиссионного анализа отличается высокими показателями чувствительности, что позволяет определять даже малейшие концентрации примесей в металлах и сплавах.

Показатель чувствительности этого метода находится в пределах 10 -5 …10 -7 %.

Что касается точности, то метод позволяет получить показатель в пределах 5% при небольших концентрациях примесей и до 3% при более высоком содержании примесей.

К основным преимуществам современного эмиссионного анализа относятся:

  • возможность параллельного определения сразу 70-ти элементов в составе металла или его сплава;
  • высокая скорость проводимого анализа;
  • низкий порог обнаружения примесей;
  • высокая точность и чувствительность;
  • информативность полученных результатов;
  • относительная простота проведения эксперимента;
  • возможность исследования больших изделий без ущерба их поверхностям.

Спектральный анализ относится к методам качественного и количественного контроля составов металлических объектов. Он основан на проведении изучения спектров взаимодействия металла с используемым излучением.

Исследованию подлежат спектры электромагнитного излучения, спектры распределения элементарных частиц по энергиям и массам, а также спектры акустических волн. Комплексный анализ перечисленных спектров позволит получить детальную картину о составе исследуемого образца.

Спектральный анализ – это современный метод анализа металлов и сплавов, который основан на излучении и поглощении атомами электромагнитных волн при переходе из одного энергетического уровня на другой. Чтобы перевести атомы вещества в возбужденное состояние, в котором они могут излучать характеристическое излучение, в спектральном анализе используются разные источники света.

Общим для всех используемых источников является использование плазмы (высоко- или низкотемпературной), кинетической энергии частиц которой достаточно, чтобы перевести атомы вещества в возбужденное состояние. С помощью специального регистратора фиксируются полученные спектры, которые обрабатываются посредством программного обеспечения на компьютерной технике.

Химический спектральный анализ относится к высокоточным методам, которые также отличаются и высокой чувствительностью к наличию примесей в исследуемых образцах.

Показатель точности для этого метода находится в пределах от 10 -7 до 10 -6 %, а величина относительного стандартного отклонения составляет порядка 0,15…0,3.

  • простота проведения контроля исследуемых образцов;
  • потребность минимального количества исследуемого вещества;
  • возможность определения различных примесей;
  • высокая точность и надежность измерений;
  • возможность применения метода в условиях технологического процесса.

Выполнение химического анализа металлов и сплавов стало необходимым атрибутом в различных отраслях промышленности. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями.

От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.

источник

Анализ химического состава металлов и сплавов — неотъемлемая часть многих технологических процессов, используемых в различных отраслях промышленности. Исследование позволяет определить присутствия в образце примесей и включений, а также прогнозировать эксплуатационные характеристики готового изделия.

Для решения этой задачи используются анализаторы — надежные и эффективные приборы, способные работать как в производственных, так и лабораторных условиях.

Химический анализ позволяет:

  • определить количественный состав;
  • исследовать образец на присутствие примесей и определить их концентрацию;
  • идентифицировать сплав;
  • выяснить соотношение примесей сплава для его маркировки.

Проведение исследования необходимо для:

  • экспертизы продукции для определения соответствия действующим стандартам;
  • непрерывного контроля технологического процесса;
  • входного контроля исходного сырья;
  • разработки и создания новых сплавов;
  • сертификации продукции;
  • освидетельствования чистых металлов.

Для проведения химического анализа металлов и сплавов могут быть использованы различные методы. Однако не все они удовлетворяют следующим требованиям:

  • максимальная оперативно;
  • высокая точность результатов;
  • использование неразрушающих методов;
  • простота эксперимента;
  • применение в производственных условиях.

Атомно-эмиссионный спектральный анализ (АЭСА) металлов и сплавов получил наибольшее распространение в различных отраслях промышленности. С его помощью можно исследовать вещества в различных агрегатных состояниях на присутствие многих химических элементов. Он имеет низкий предел обнаружения элементов, отличается простотой и низкой себестоимостью, что делает целесообразным его использование в лабораториях спектрального анализа металлов, решающих различные аналитические задачи.

Регистрация эмиссионного спектра пробы осуществляется спектрографом, спектроскопом или спектрометром. По этому признаку все способы проведения АЭСА подразделяются на следующие три группы, каждая из которых имеет свою специфику.

Проводится с использованием спектрографа, который позволяет относительно быстро получить надежные результаты. Метод предусматривает регистрацию атомных спектров на фотопластинку с последующей идентификацией их с помощью планшета или на спектропроекторе.

  • трудоемкость;
  • низкая оперативность.

Для исследования пробы применяются приборы с фотоэлектрической регистрацией спектра. Этот вид химического анализа металлов и сплавов относится к объективным методам и позволяет оперативно получать информацию.

  • экспрессность;
  • высокая точность результатов;
  • полная автоматизация процесса;
  • обработка результатов на ЭВМ и их архивирование.
  • сложность эксплуатации оборудования;
  • возникновение проблем оптической и электрической стабильности;
  • нельзя одновременно регистрировать широкую область спектра.

Отличается от двух предыдущих субъективностью, так как приемником излучения служит человеческий глаз. Несмотря на ограниченные возможности, визуальный спектральный анализ широко используется в промышленности. Особенное значение визуальный метод приобретает при необходимости контроля химического состава легированных сталей в процессе их производства.

  • экспрессность;
  • простота;
  • проведения анализа в месте нахождения проб;
  • низкая стоимость оборудования.

  • невысокая точность результатов;
  • не позволяет определять неметаллические элементы.

Атомно-эмиссионный спектральный анализ имеет ряд преимуществ по сравнению с другими методами химического анализа.

  • определять многие элементы бесконтактным способом;
  • проводится в кратчайшие сроки;
  • обеспечивает высокую точность результатов без необходимости отбора массивных проб.

источник

Точная стоимость зависит от конкретного случая. Оставьте заявку или уточняйте по телефону.

К металлам относят элементы с кристаллическим строением. Им свойственны непрозрачность, отражающая способность, блеск и способность к проведению тепла и электричества. Химический анализ металлов и их сплавов позволяет определить состав того или иного металла или сплава в элементном соотношении. Подобный анализ помогает определить сорт сплава. В целом, сплав – это твердая или жидкая субстанция, полученная путем сплавления металлов между собой, или металлов с неметаллами. Что касается показателей физических свойств самих сплавов, то они более высокие, чем свойства их компонентов.

Экспертиза металла проводится при возникновении ряда вопросов. Так, например, она позволяет определить: почему возникла коррозия металла? каков химический состав металла/сплава? почему возникли дефекты на металлическом изделии? каков химический состав того или иного объекта из металла? При проведении подобных исследований можно выявит причины хрупкости металлов, сплавов, выявить нарушения, допущенные в процессе производства изделия, установить его реальный срок эксплуатации.

Зачастую проведение экспертизы металла назначается судом по различным категориям дел. Подобная экспертиза часто служит защите прав потребителей. Так, например, она может назначаться при наличии претензий по качеству приобретенного изделия или же по подозрению в производстве контрафактной продукции. Когда в уголовном процессе нужно установить факт взаимодействия предметов, назначают металловедческую экспертизу для нахождения микрочастиц металла. Получить грамотную независимую экспертную оценку качества металлов и сплавов Вы можете, обратившись в НП «Федерация Судебных Экспертов».

Экспертизе могут быть подвергнуты различные металлические предметы: изделия из черных и цветных металлов, украшения, выполненные из драгоценных металлов, металлические автозапчасти, холодное оружие.

На сегодняшний день существуют различные структурные методы исследования металлов: рентгеновский, спектральный, термический анализы, микро- и макроанализ, дефектоскопия.

С помощью макроанализа исследуют макроструктуру, видимую через лупу. Рассматривая изломы металлического изделия, специалисты способны сделать вывод о его макроструктуре. Макроанализ помогает выявить недостатки металлическкого изделия, среди которых всевозможные трещины, пузырьки и т.п. Макроанализ определяет соотношение примесей, их неравномерное распределение, если таковое имеет место быть.

Микроанализ направлен на более детальное изучение структуры металла. Изделие изучается под микроскопом. Микроанализ позволяет выявить незаметные невооруженному глазу дефекты, определить качество тепловой обработки. Под микроскопом специалист определяет форму зерен металла, его структуру. Подобный анализ, также как и макроанализ позволяет выявить дефекты изделия.

Структурный анализ кристаллов, проводимый путем рентгеновского анализа изучает глубинные дефекты. Что немаловажно, рентгеновский анализ относится щадаще к структуре металла, не повреждая его. При проведении данного анализа гамма-лучи проникают в самую глубину металла.

Для изучения магнитных металлов используют магнитный метод. Так, экспертиза черных металлов проводится с использованием небольших магнитов. Она позволяет выявить микрочастицы металлов. К черным металлам относят углеродистые стали, чугун, железо и сталь.

Магнитным методом исследуют дефекты в магнитных металлах. Ультразвуковой метод также служит для определения глубинных свойств металла. Когда нужно определить качество поковок или рельсов часто применяют этот метод, позволяющий не нарушать целостности изделия.

В НП «Федерация Судебных Экспертов» применяют все методы структурного анализа металлов, что позволяет с точностью определить характеристики изделия и выявить причины возможных дефектов.

Вид экспертизы Стоимость экспертизы
Экспертиза химического состава металлов и сплавов от 9 000
Определение химического состава органических соединений от 22 500
Определение химического состава неорганических соединений от 18 000
Установление идентичности лакокрасочного покрытия в случае ДТП от 18 000

Цена химической экспертизы указана с учетом налогов. Транспортные расходы оплачиваются отдельно.

источник

Самый эффективный способ определения химического состава металлов по оптическим спектрам излучения атомов и ионов анализируемой пробы, возбуждаемых в источнике света.

В качестве источника света для оптико-эмиссионного анализа используется плазма электрической искры или дуги, которую получают с помощью источника возбуждения (генератора). Принцип основан на том, что атомы каждого элемента могут испускать свет определенных длин волн — спектральные линии, причем эти длины волн разные для разных элементов.

Для того чтобы атомы начали испускать свет, их необходимо возбудить электрическим разрядом. Электрический разряд в виде искры в атмосфере аргона способен возбудить большое количество элементов. Достигается высокотемпературная (более 10000 К) плазма, способная возбудить даже такой элемент, как азот.

В искровом штативе между вольфрамовым электродом и исследуемым образцом возникают искры с частотой от 100 до 1000 Гц. Искровой стол имеет световой канал, по которому полученный световой сигнал попадает в оптическую систему. При этом световой канал и искровой штатив продуваются аргоном. Попадание воздуха из окружающей среды в искровой штатив ведет к ухудшению пятна обжига и соответственно к ухудшению качества химического анализа пробы.

Современная оптическая система выполнена по схеме Пашена-Рунге. Спектральное разрешение оптической системы зависит от фокального расстояния, количества штрихов используемой дифракционной решетки, параметра линейной дисперсии и квалифицированном выполнении юстировки всех оптических компонентов. Для покрытия всех необходимых эмиссионных линий достаточно охватывать спектральную область от 140 до 680 нм. Для хорошей видимости спектра оптическая камера должна быть заполнена инертным газом (аргоном высокой частоты) или вакуумирована.

Прибор для спектрального анализа металла — анализатор М5000, В качестве регистрирующих элементов современные анализаторы металлов, оснащаются CCD детекторами (или ФЭУ), которые преобразуют видимый свет в электрический сигнал, регистрируют его и передают на компьютер. На экране монитора мы наблюдаем концентрации элементов в процентах.

Интенсивность спектральной линии анализируемого элемента, помимо концентрации анализируемого элемента, зависит от большого числа различных факторов. По этой причине рассчитать теоретически связь между интенсивностью линии и концентрацией соответствующего элемента невозможно. Вот почему для проведения анализа необходимы стандартные образцы, близкие по составу к анализируемой пробе. Предварительно эти стандартные образцы экспонируются (прожигаются) на приборе. По результатам прожигов для каждого анализируемого элемента строится градуировочный график, зависимость интенсивности спектральной линии элемента от его концентрации. Впоследствии, при проведении анализа проб, по этим градуировочным графикам производится пересчет измеренных интенсивностей в концентрации.

Следует иметь виду, что реально анализу подвергается несколько миллиграммов пробы с ее поверхности. Поэтому для получения правильных результатов проба должна быть однородна по составу и структуре, при этом состав пробы должен быть идентичным составу анализируемого металла. При анализе металла в литейном производстве для отливки проб рекомендуется использовать специальные кокили. При этом форма пробы может быть произвольной. Необходимо лишь, чтобы анализируемый образец имел достаточную поверхность и мог быть зажат в штативе. Для анализа мелких образцов, например прутков или проволоки, используются специальные адаптеры.

  • Низкая себестоимость
  • Возможность одновременного количественного определения большого числа элементов,
  • Высокая точность,
  • Низкие пределы обнаружения,
  • Простота пробоподготовки

С помощью анализатора металлов М5000 от компании Focused Photonics Inc Вы можете сделать высокоточный спектральный анализ металлов и сплавов!

источник

Оценка и экспертиза №1 – ООО «АБО»

НАШИ ЭКСПЕРТЫ ПОДГОТОВЯТ ДЛЯ ВАС ОТЧЕТЫ И ЗАКЛЮЧЕНИЯ ЛЮБОЙ СЛОЖНОСТИ, ДЛЯ ЛЮБОЙ ЦЕЛИ, ОТ 24 ЧАСОВ!

Штат аккредитованных экспертов и более 4 000 довольных клиентов!
Консультация по тел. 8 (3852) 25-11-50, 8-903-947-6150 Звоните!

Экспертиза металлов и сплавов: металловедческая экспертиза. Химический анализ

Эксперты ООО «АБО» проводят судебные и досудебные металловедческие экспертизы и химический анализ любой сложности Есть вопросы? Звоните! тел. 8 (3852) 25-11-50, 8-903-947-6150!

Металловедческая экспертиза металлов, сталей и сплавов – отдельный вид экспертиз, задачей которых являться анализ и определение качества металла и сплавов и изделий из них, определение структуры, объема, пригодности, соответствия техническим условиям. Для определения качества металлов и сплавов нередко определяется химический анализ металла или сплава в лабораторных условиях, с применением специальных лабораторного оборудования: дефектоскоп металла, электронный микроскоп.

Экспертиза металлов и сплавов или металловедческая экспертиза устанавливает состав металлического изделия, способ изготовления, воздействие, которое было оказано на предмет.

Целью металловедческой экспертизы являются идентификация либо проверка соответствия металла или сплавов требованиям технической документации или определение (контроль) качества металлических изделий.

Объекты, представляемые для проведения экспертизы металлов, сплавов и изделий из них для металловедческой экспертизы

  • Химический анализ металлов. Установление марки материала.
  • Испытание образцов на статическое растяжение
  • Испытание образцов на изгиб
  • Металлографический анализ
  • Измерение твердости металла
  • Определение причин коррозии металла
  • Определение причин разрушения объектов из металла

    Примерный перечень и суть вопросов для металловедческой экспертизы.

  • Совпадает ли марка стали, из которой изготовлен объект, с образцами, предоставленными на экспертизу для сравнения?
  • Соответствует ли металл технической документации?
  • Какой металл или сплав был использован для изготовления предоставленного для исследования предмета или фрагмента?
  • Какова причина повреждения металлического оборудования (например крепления навесного оборудования, прочностные характеристика болтов экскаватора погрузчика, подшипники и их крепление, повреждения бетоносмесителя) эксплуатационный или производственные?
  • Из каким химических элементов состоит металл?
  • Какой марки металл или сплав использован для изготовления данного объекта?
  • Какой состав у исследуемого объекта?
  • Каков химический состав обнаруженных частиц объекта экспертизы?
  • Какова проба данного металла (сплава)?
  • Какому методу обработки было подвергнуто исследуемое изделие?
  • Каков механизм разрушения предоставленного для исследования объекта (детали, агрегата, узла)?
  • В чем заключаются причины разрушения анализируемого металлического объекта?
  • Присутствуют ли следы оплавления на предоставленных металлических предметах (провода, трубы, кабели, корпусы электрощитов и пр.)?
  • Как именно был разделен на части исследуемый объект (дужка висячего замка, дверца сейфа, прутья ограды и пр.)?
  • Совпадают ли типы сплавов, из которых изготовлен анализируемый объект и предоставленные образцы?
  • Совпадает ли классификационная принадлежность материала, из которого изготовлены разные исследуемые объекты?

    На металловедческую экспертизу был предоставлен коленчатый вал автомбиля КАМАЗ.

    Перед экспертом была поставлены два вопроса:
    1. Имеются ли у предоставленного для экспертизы товара – коленчатый вал недостатки? Если да, то какие именно?
    2. Являются ли данные дефекты следствием производственного характера, либо вызваны ненадлежащей хранением, эксплуатацией товара, либо действий третьих лиц?

    источник

    Трудоёмкой проблемой на многих пунктах приёма металлолома является процесс сепарирования поступающего сырья по маркам и виду металлов. Иногда сложно отличить медь от сплавов, с высоким содержанием меди, а определить содержание никеля в нержавеющей стали абсолютно невозможно. Поэтому при разнородном характере поступающих металлоотходов применяются анализаторы состава металлов.

    Практическое применение получили два вида таких приборов – основанные на использовании явления оптической эмиссии (лазерная), и применяющие рентгеновское излучение.

    Анализаторы металлов и сплавов этого типа позволяют с высокой степенью точности устанавливать наличие и содержание лёгких химических элементов – серы, фосфора, углерода, т.е., тех элементов, которые обязательно присутствуют в химическом составе любой стали.

    Оптический анализатор металлов — метод исследования искры

    Их действие основано на следующем: исследуемый фрагмент подвергается воздействию искрового разряда на воздухе. Образующаяся искра содержит в себе в ионизированном виде все вышеперечисленные элементы, эмиссия которых улавливается чувствительным элементом прибора, и выводится на дисплей. Оптико-эмиссионным методом удаётся быстро идентифицировать металлолом, не прибегая к его заметному разрушению. Иногда, с целью снижения опасности взрыва или возгорания вместо воздуха используется инертный газ, преимущественно аргон. Смена режима исследования осуществляется простой переустановкой насадки.

    Фиксация химического состава металла производится тремя способами:

    • Марочным, когда фактический состав сличается с тем, который указан в эталонной таблице. Метод сравнительно громоздкий, поскольку требует обязательного вмешательства человека;
    • По отпечатку, когда сравниваются спектры эмиссии исследуемого металла и эталонные;
    • По принципу «да/нет», когда требуется ответить на вопрос, является ли исследуемый образец тем металлом или сплавом, который необходимо определить.

    Область применения анализаторов рассмотренного типа – исследование низкоуглеродистых сталей ферритного класса, а также нержавеющих сталей, содержащих титан, никель, кобальт – элементы, эмиссионный спектр которых является достаточно характерным. Широкого распространения такие приборы не получили, в связи с повышенной чувствительностью к внешним условиям площадки, где они установлены.

    Анализаторы, действующие с использованием рентгеновского излучения, используют явление флуоресценции, при котором атомы химических элементов излучают фотоны строго определённого энергии. В качестве источника рентгеновского излучения используется трубка, которая работает под напряжением 45000 В.

    В таких условиях для работы анализатора необходимо выделять специальное помещение, и оборудовать его надёжным свинцовым защитным экраном. Подобным образом действуют стационарные аппараты, которые применяются для химического анализа крупных фрагментов металла, но такие анализаторы — анахронизм, они могут еще использоваться в старых лабораториях, оставшихся с советских времен, но в настоящее время встречаются все реже и реже.

    Сейчас распространение получили носимые, компактные приборы — портативные анализаторы металлов, предназначенные для применения непосредственно на точках приёма металлолома. Они не используют радиоизотопы, а потому считаются более безопасными.

    Рентгеновский портативный анализатор металлов — может легко делать анализ стружки

    При рентгеновском способе определения химического состава металла производится его анализ по 45 позициям, которые определяются различным энергетическим уровнем излучаемых электронов. Соответственно, определяется аналогичное количество элементов, в чём и состоит основное преимущество способа.

    Кроме того, такие анализаторы компактны, удобны в применении, а постоянное обновляемое программное обеспечение позволяет совершенствовать обработку получаемых результатов.

    Рентгеновские анализаторы химического состава состоят из флюоресцирующей рентгеновской трубки, детектора, регистрирующего устройства и блока управления. Детекторы адаптированы под твердотельный режим функционирования, в связи с чем очень удобны для использования на крупных пунктах приёма лома чёрных и цветных металлов.

    Портативный рентгеновский спектрометр металлов

    Технологические возможности рентгеновских анализаторов:

    • Метод определения – многокомпонентный (одновременно устанавливается процентное содержание нескольких химических элементов);
    • Радиоизотопные источники – отсутствуют;
    • Количество одновременно определяемых параметров – до 33 (независимо от атомной массы элемента);
    • Вид исходного образца для анализа – любой, в том числе шлако- и пылеобразные фракции до 50 мкм (может быть использовано для определения редких и редкоземельных элементов в отходах производства, стружке и пр.);
    • Визуализация результатов исследования – цветной дисплей и регистрация в базовый файл специального компьютера (возможно и подключение к обычному компьютеру через разъём USB).

    Такие характеристики позволяют применять анализаторы при определении сорта металла, идентификации марки цветного сплава, технологическом контроле в процессе плавки металлов и т.д.

    Рентгеновские анализаторы работают достаточно быстро, поскольку не нуждаются в предварительной настройке прибора. Калибровка выполнятся только при решении специальных задач исследовательского характера.

    Видео на английском — тест лазерного анализатора Sciaps Laser-Z300

    Данные приборы появились сравнительно недавно. Они используют принцип глубинного сканирования образца, используя квантовое лазерное излучение. Поскольку спектр излучения лазера может быть настроен значительно более тонко, чем спектр рентгеновского излучения, то подобного типа анализаторы имеют ряд эксплуатационных преимуществ:

    • Существенно возрастает количество определяемых химических элементов (до 90, в связи с чем такие установки рекомендуется использовать для определения химического состава сложных многокомпонентных сплавов);
    • Повышается точность фиксирования того или иного химического элемента, что позволяет идентифицировать сплав даже с процентным содержанием элемента менее 0,0005%;
    • Прибор пригоден для количественного определении я радиоактивного компонента, что особенно важно для радиационной безопасности оборудования и работающих. Отсекается возможность поступления лома, «грязного» в радиоактивном отношении;
    • Приборы лазерного типа потребляют значительно меньше энергии, что позволяет длительное время применять их без подзарядки аккумуляторов;
    • Поскольку скорость лазерного сканирования весьма велика, то процесс выяснения химического состава даже многокомпонентного сплава занимает доли секунды.

    Отображение результатов лазерного анализатора на экране смартфона Android

    Результат работы лазерного анализатора может выводиться на экран монитора, а может фиксироваться встроенной видеокамерой или выводиться через специальное приложение на экран смартфона.

    Искровые оптико-эмиссионные спектрометры, пожалуй, самые дорогие, цена на такие анализаторы могут доходить до 50 000$ .

    Портативные рентгеновские анализаторы металлов — стоят немного меньше, но цена тоже немаленькая — порядка 20 000 — 30 000 $ .

    Лазерные спектрометры — это анализаторы последнего поколения, набирающие все большую популярность, со временем цена будет падать, сейчас стоимость примерно — 30 000- 40 000 $ .

    В интернете даже у фирм продавцов на сайте не всегда стоит цена. Т.е. есть товар, есть описание анализатора, представлен большой выбор устройств, но в поле цена стоит «Сделать запрос» или «Узнать цену». Где вы оставляете свои контактные данные и ждете ответа с ценой. Это можно объяснить так — анализатор металлов устройство дорогое, позволить себе может не каждая металлоприемка. Чтобы не потерять клиента и довести продажу до конца — менеджеры предпочитают вести диалог напрямую с клиентом, варьируя ценой и прочими бонусами при покупке анализатора у них. Иначе говоря — это маркетинговый ход, сближающий продавца и покупателя, что делает продажу анализатора металлов проще.

    источник

    Мы выполняем работы по:

    • Качественному и количественному химическому анализу сталей различных марок, чугунов, сплавов цветных металлов (на основе алюминия, никеля, титана, цинка, меди, бронзы, кобальта и др.), металлургического сырья и ферросплавов
    • Определению содержания основных, легирующих и примесных элементов
    • Анализу макро- и микроструктуры
    • Определению неметаллических включений
    • Определению среднего размера зерна
    • Контролю качества термообработки
    • Определению толщины покрытий
    • Проведению металлографические исследований
    • Анализу механических свойствметаллов и сплавов, их покрытий и отдельных фаз
    • Определению марки стали
    • и др.

    Проводим экспертизу соединений металлов и сплавов с целью контроля сварного или паяного шва и соответствия его структуры основному металлу соединяемых деталей, что позволяет находить «узкие» места еще до их появления.

    Новейшее оборудование мирового уровня позволяет выполнять практически неограниченный перечень анализов металлов, подробнее об этом можно узнать по телефону +7/343/229-05-77

    В области аккредитации находятся десятки методик анализа и испытания металлов, сплавов и изделий из них.

    Проводим экспресс-анализ металла, возможен выезд специалиста с мобильным оборудованием.

    В среднем анализ металла с выдачей протокола занимает 2-3 дня.

    • Цветные металлы (медь и медные сплавы, алюминий и алюминиевые сплавы, никель и никелевые сплавы, титановые сплавы, бронзы);
    • Стали (углеродистые, низколегированные, легированные и высоколегированные, хромоникелевые и хромистые);
    • Чугуны;
    • Порошки металлические (никелевые, кобальтовые, медные, бронзовые, железные, окиси алюминия);
    • Металлургическое сырье;
    • Платина и платиновые сплавы;
    • Дисперсные и пористые металлические
      материалы и изделия из них (в т. ч. платиновые и платино-родиевые катализаторы, сорбенты);
    • Листовой и сортовой прокат, поковки;
    • Проволока, прутки;
    • Сварные и паянные соединения металлов;
    • Детали машин и оборудования

    Виды химических анализов металлов и металлографических исследований, проводимых в нашей лаборатории:

    • Идентификация марок сталей и сплавов
    • Определение химического состава металлов и сплавов, металлургического сырья
    • Определения содержания легирующих и примесных элементов
    • Качественный и количественный структурный
      анализ
    • Контроль неметаллических включений
    • Металлографические исследования
    • Контроль величины зерна
    • Анализ микро- и макроструктуры металлов
    • Определение химического состава микропримесей
    • Анализ механических свойств металлов и сплавов
    • Стереометрическая металлография
    • Определение газовых примесей в металлах
    • Определение содержания ферритной фазы
    • Дефектоскопия изделий из металлов
    • Анализ дисперсных и пористых металлических материалов
    • Испытания на стойкость к межкристаллитной коррозии
    • Стилоскопирование
    • и мн. другое.
    • Радиографический анализ;
    • Оптическая микроскопия;
    • Электронная сканирующая микроскопия (SEM);
    • Электронно-зондовый рентгеноспектральный микроанализ;
    • Атомно-силовая микроскопия (AFM);
    • Атомно-эмиссионная спектрометрия с ИСП (ICP-AES);
    • Атомно-абсорбционная спектрометрия с ИСП (ICP-AAS);
    • Масс-спектрометрия с ИСП (ICP-MS);
    • Рентгенофлуоресцентная спектрометрия (XRF)
    • Рентгеновский дифракционный анализ (XRD);
    • УФ спектрометрия (UV);
    • ИК Фурье-спектрометрия (FTIR);
    • Фотоколориметрия;
    • Титриметрический анализ;
    • Гравиметрический анализ;
    • Фотометрический анализ;
    • Ртутная порометрия;
    • Метод низкотемпературной адсорбции азота;
    • Пикнометрия;
    • Фототурбидиметрия;
    • Метод гидростатического взвешивания;
    • Седиментационный анализ;
    • Ситовый анализ;
    • Электрогравиметрический анализ;
    • Дифференциальный термический анализ (DTA);
    • Дилатометрия и т.д.
  • Подробнее о доставке образцов в лабораторию здесь.

    Читайте также:  Как сдавать анализ на гармоны щитовидки

    источник