Меню Рубрики

Как провести анализ локальной сети

Необходимость анализа сетевого трафика может возникнуть по нескольким причинам. Контроль безопасности компьютера, отладка работы локальной сети, контроль исходящего трафика для оптимизации работы разделяемого подключения к Интернету — все эти задачи часто стоят на повестке дня системных администраторов, и простых пользователей. Для их решения существует множество утилит, называемых снифферами, как специализированных, направленных на решение узкой области задач, так и многофункциональных «комбайнов», предоставляющих пользователю широкий выбор инструментов. С одним из представителей последней группы, а именно утилитой CommView производства компании Tamosoft, и знакомит эта статья. Программа позволяет наглядно видеть полную картину трафика, проходящего через компьютер или сегмент локальной сети; настраиваемая система сигнализации позволяет предупреждать о наличии в трафике подозрительных пакетов, появлении в сети узлов с нештатными адресами или повышении сетевой нагрузки.

CommView предоставляет возможность вести статистику по всем IP-соединениям, декодировать IP-пакеты до низкого уровня и анализировать их. Встроенная система фильтров по нескольким параметрам позволяет настроить слежение исключительно за необходимыми пакетами, что позволяет сделать их анализ более эффективным. Программа может распознавать пакеты более чем семи десятков самых распространенных протоколов (в том числе DDNS, DHCP, DIAG, DNS, FTP, HTTP, HTTPS, ICMP, ICQ, IMAP, IPsec, IPv4, IPv6, IPX, LDAP, MS SQL, NCP, NetBIOS, NFS, NLSP, POP3, PPP, PPPoE, SMB, SMTP, SOCKS, SPX, SSH, TCP, TELNET, UDP, WAP и др.), а также сохранять их в файлы для последующего анализа. Множество других инструментов, таких как определение изготовителя сетевого адаптера по MAC-адресу, реконструкция HTML и удаленный перехват пакетов с помощью дополнительной утилиты CommView Remote Agent также могут быть полезны в определенных случаях.

Для начала нужно выбрать сетевой интерфейс, на котором будет отслеживаться трафик.

CommView поддерживает практически любой тип адаптеров Ethernet — 10, 100 и 1000 Мбит/с, а также аналоговые модемы, xDSL, Wi-Fi и др. Анализируя трафик адаптера Ethernet, CommView может перехватывать не только входящие и исходящие, но и транзитные пакеты, адресованные любому из компьютеров локального сегмента сети. Стоит отметить, что если стоит задача мониторинга всего трафика сегмента локальной сети, то требуется, чтобы компьютеры в ней были подключены через хаб, а не через свитч. Некоторые современные модели свитчей имеют функцию port mirroring, что позволяет их также сконфигурировать для мониторинга сети с помощью CommView. Подробнее об этом можно прочитать в статье на web-сайте Tamosoft. Выбрав нужное соединение, можно приступать к захвату пакетов. Кнопки запуска и остановки захвата находятся около строки выбора интерфейса. Для работы с контроллером удаленного доступа, VPN и PPPoE при инсталляции программы необходимо установить соответствующий драйвер.

Главное окно программы разделено на несколько вкладок, отвечающих за тот или иной участок работы. Первая из них, «Текущие IP-соединения», отображает подробную информацию о действующих IP-соединениях компьютера. Здесь можно увидеть локальный и удаленный IP-адрес, количество переданных и принятых пакетов, направление передачи, число установленных IP-сессий, порты, имя хоста (если в настройках программы не отключена функция распознавания DNS), и имя процесса, принимающего или передающего пакета данной сессии. Последняя информация недоступна для транзитных пакетов, а также на компьютерах, работающих под управлением Windows 9x/ME.

Если по какому-либо соединению щелкнуть правой кнопкой мыши, то откроется контекстное меню, в котором можно найти инструменты, облегчающие анализ соединений. Здесь можно посмотреть объем данных, переданных в рамках соединения, полный список используемых портов, подробную информацию о процессе, принимающем или передающем пакеты данной сессии. CommView позволяет создавать псевдонимы для MAC- и IP-адресов. Например, задав вместо громоздких цифровых адресов машин локальной сети их псевдонимы, можно получить легко читаемые и запоминаемые имена компьютеров и таким образом облегчить анализ соединений.

Чтобы создать псевдоним для IP-адреса, нужно выбрать в контекстном меню последовательно пункты «Создать псевдоним» и «используя локальный IP» или «используя удаленный IP». В появившемся окне поле IP-адреса будет уже заполнено, и останется только ввести подходящее имя. Если новая запись IP-имени создается щелчком правой кнопки мыши по пакету, поле имени автоматически заполняется именем хоста (если оно доступно) и его можно редактировать. Точно так же происходит работа с MAC-псевдонимами.

Из этого же меню, выбрав пункт SmartWhois, можно отправить выбранный IP-адрес источника или получателя в программу SmartWhois — автономное приложение компании Tamosoft, которое собирает информацию о любом IP-адресе или имени хоста, например, сетевое имя, домен, страну, штат или провинцию, город, и предоставляет ее пользователю.

Вторая вкладка, «Пакеты», отображает все перехваченные на выбранном сетевом интерфейсе пакеты и подробную информацию о них.

Окно разделено на три области. В первой из них отображается список всех перехваченных пакетов. Если в нем выбрать один из пакетов, щелкнув по нему указателем мыши, то остальные окна покажут информацию о нем. Здесь отображается номер пакета, протокол, Mac- и IP-адреса передающего и принимающего хоста, используемые порты и время появления пакета.

В средней области отображается содержимое пакета — в шестнадцатиричном или текстовом виде. В последнем случае непечатаемые символы заменяются точками. Если в верхней области выбрано одновременно несколько пакетов, то в среднем окне будет показано общее количество выбранных пакетов, их суммарный размер, а также временной интервал между первым и последним пакетом.

В нижнем окне отображается декодированная детальная информация о выбранном пакете.

Нажав на одну из трех кнопок в правой нижней части окна, можно выбрать расположение окна декодирования: в нижней части, или выровнять по левому или правому краю. Две другие кнопки позволяют автоматически переходить к последнему принятому пакету и сохранить выбранный пакет в видимой области списка.

Контекстное меню позволяет скопировать в буфер обмена MAC-, IP-адреса и целые пакеты, присваивать псевдонимы, применять быстрый фильтр для выбора требуемых пакетов, а также воспользоваться инструментами «Реконструкция TCP-сессии» и «Генератор пакетов».

Инструмент «Реконструкция TCP-сессии» позволяет просмотреть процесс обмена между двумя хостами по TCP. Для того чтобы содержимое сессии выглядело более понятно, нужно выбрать соответствующую «логику отображения». Эта функция наиболее полезна для восстановления текстовой информации, например, HTML или ASCII.

Полученные данные можно экспортировать в виде текстового, RTF- или двоичного файла.

Вкладка «Log-файлы». Здесь можно настроить параметры сохранения перехваченных пакетов в файл. CommView сохраняет log-файлы в собственном формате NCF; для их просмотра используется встроенная утилита, запустить которую можно из меню «Файл».

Имеется возможность включения автосохранения перехваченных пакетов по мере их поступления, ведения протоколов сессий HTTP в форматах TXT и HTML, сохранения, удаления, объединения и разделения log-файлов. Следует помнить, что пакет не сохраняется сразу по его прибытии, поэтому при просмотре log-файла в реальном времени в нем, скорее всего, не будет самых последних пакетов. Для того чтобы программа немедленно переслала буфер в файл, нужно нажать кнопку «Закончить захват».

Во вкладке «Правила» можно задать условия перехвата или игнорирования пакетов.

Для облегчения выбора и анализа требуемых пакетов, можно использовать правила фильтрации. Это также поможет значительно сократить количество системных ресурсов, используемых CommView.

Для того чтобы включить какое-нибудь правило, нужно выбрать соответствующий раздел с левой стороны окна. Всего доступно семь типов правил: простые — «Протоколы и направление», «Mac-адреса», «IP-адреса», «Порты», «Текст», «TCP-флаги», «Процесс», а также универсальное правило «Формулы». Для каждого из простых правил предусмотрена возможность выбора индивидуальных параметров, таких как выбор направления или протокола. Универсальное правило «Формула» является мощным и гибким механизмом создания фильтров с помощью булевой логики. Подробный справочник по его синтаксису можно найти на web-сайте компании.

Вкладка «Предупреждения» поможет настроить параметры извещений о различных событиях, происходящих в исследуемом сегменте сети.

Для того чтобы задать правило предупреждения, нужно, нажав кнопку «Добавить. », в открывшемся окне выбрать необходимые условия, при появлении которых сработает извещение, а также способ уведомления пользователя об этом.

CommView позволяет задать следующие типы отслеживаемых событий:

  • «Обнаружение пакета», соответствующего указанной формуле. Синтаксис формул подробно описан в руководстве пользователя;
  • «Байты в секунду». Это предупреждение сработает при превышении указанного уровня загрузки сети;
  • «Пакеты в секунду». Срабатывает при превышении заданного уровня частоты передачи пакетов;
  • «Бродкасты в секунду». То же, только для широковещательных пакетов;
  • «Мультикасты в секунду» — то же для многоадресных пакетов.
  • «Неизвестный MAC-адрес». Это предупреждение можно использовать для обнаружения подключений нового или несанкционированного оборудования в сеть, задав предварительно список известных адресов с помощью опции «Настройка»;
  • предупреждение «Неизвестный IP-адрес» сработает при перехвате пакетов с неизвестными IP-адресами отправителя либо получателя. Если предварительно задать список известных адресов, то это предупреждение можно использовать для обнаружения несанкционированных подключений через корпоративный брандмауэр.

CommView обладает мощным средством визуализации статистики исследуемого трафика. Для того чтобы открыть окно статистики, нужно выбрать одноименный пункт из меню «Вид».

В этом окне можно ознакомиться со статистикой трафика сети: здесь можно увидеть количество пакетов в секунду, байтов в секунду, распределение протоколов Ethernet, IP и подпротоколов. Диаграммы можно скопировать в буфер обмена, что поможет в случае необходимости составления отчетов.

Текущая версия программы — CommView 5.1. С web-сайта Tamosoft можно загрузить бесплатную демонстрационную версию программы, которая будет функционировать в течение 30 дней.

Разработчик предлагает покупателям два варианта лицензий:

  • Home License (домашняя лицензия), стоимостью 2000 рублей, дает право пользоваться программой дома на некоммерческой основе, при этом количество хостов, доступных для наблюдения в вашей домашней сети, ограничивается пятью. В рамках данного типа лицензии не позволяется работать удаленно с помощью Remote Agent.
  • Enterprise License (корпоративная, стоимость — 10000 рублей) предоставляет право на коммерческое и некоммерческое использование программы одним лицом, которое лично пользуется программой на одной или на нескольких машинах. Программа также может быть установлена на одной рабочей станции и использоваться несколькими людьми, но не одновременно.

Приложение работает в операционных системах Windows 98/Me/NT/2000/XP/2003. Для работы необходим сетевой адаптер Ethernet, Wireless Ethernet, Token Ring с поддержкой стандарта NDIS 3.0 или стандартный контроллер удаленного доступа.

  • локализованный интерфейс;
  • прекрасная справочная система;
  • поддержка разных типов сетевых адаптеров;
  • развитые средства анализа пакетов и определения протоколов;
  • визуализация статистики;
  • функциональная система предупреждений.
  • слишком высокая стоимость;
  • отсутствие пресетов для правил перехвата и предупреждений;
  • не очень удобный механизм выбора пакета во вкладке «Пакеты».

Благодаря отличной функциональности и удобному интерфейсу CommView может стать незаменимым инструментом администраторов локальных сетей, Интернет-провайдеров и домашних пользователей. Порадовал тщательный подход разработчика к русской локализации пакета: и интерфейс, и справочное руководство выполнены на очень высоком уровне. Несколько омрачает картину высокая стоимость программы, однако тридцатидневная пробная версия поможет потенциальному покупателю определиться с целесообразностью покупки этой утилиты.

источник

Отлаженная домашняя или корпоративная сеть может начать сбоить: проблемы с передачей файлов, общие тормоза сети, конфликтность адресов и т. д. В таких случаях необходимы программный анализ и исправление неполадок. Но сначала необходимо провести сканирование локальной сети, состоящее из нескольких этапов.

Комплекс мер по изучению параметров соединения между компьютерами в домашней или корпоративной сети называется анализом локальной сети (АЛС). Процесс включает в себя:

  • измерение скорости сети;
  • просмотр IP-адресов подключённых устройств;
  • анализ трафика сети — процесс, который позволяет выявить конфликтную машину или неисправность паутины в определённом узле.

Эта процедура может обнаружить вредоносное программное обеспечение и изолировать его распространение на всю сеть. Поэтому АЛС стоит проводить даже в профилактических целях.

Первый параметр, который стоит просмотреть на предмет ошибок, — это скорость передачи данных. Если при обмене пакетами информации в ЛС происходят сбои, замедления потери команд, то налицо нарушение протоколов или конфликт адресов. В таких случаях стоит начинать искать неполадку. Просмотреть информацию о скорости передачи данных можно через «Командную строку» или стороннее ПО.

Терминал «Командной строки» — уникальный инструмент для управления компьютером и вывода необходимой информации пользователю. Консоль также может помочь с АЛС, в частности вывести отчёт о скорости доступа в ЛС:

    Чтобы запустить «Командную строку», открываем меню «Пуск», переходим в папку «Служебные» и кликаем по иконке «Командная строка».

Через меню «Пуск» открываем консоль «Командной строки»

Прописываем команду ipconfig /all и находим основной шлюз компьютера

Через команду Ping основного шлюза узнаём скорость обмена данных с роутером

Если максимальное значение будет больше 1500 мсек даже в беспроводной сети, имеет смысл провести анализ трафика, а также проверить каждый компьютер на наличие вредоносного ПО антивирусными программами.

Не только с помощью «Командной строки» можно узнать скорость внутри ЛС. Существуют дополнительные инструменты в виде сторонних программ. По интернету их гуляет огромное количество и большинство схожи между собой как по интерфейсу, так и по выводимым данным. Одной из таких утилит является LAN Speed Test. Утилита на должном уровне справляется с анализом скорости, имеет простой и понятный интерфейс.

  1. Скачиваем, устанавливаем и запускаем программу.
  2. На главной странице приложения нажимаем кнопку Start Test.

В интерфейсе программы LAN Speed Test нажимаем кнопку Start Test

Данные о скорости в сети выводятся в виде таблицы

Также для анализа можно использовать другие утилиты, к примеру, Iperf или LAN Bench.

Первая весьма полезная для домашней и небольшой корпоративной сети. Приложение можно установить на все машины и следить за пингом. Оно весьма полезно, так как может производить мониторинг и вести записи продолжительное время.

Iperf — это программа для слежки за пингом и выявления небольших неполадок в ЛС

LAN Bench — это минималистическая утилита, похожая на LAN Speed Test. Ею очень легко мониторить скорость и пинг в сети, достаточно открыть интерфейс и нажать кнопку Test. Ниже сразу начнут появляться результаты.

LAN Bench — это простейшая утилита для оценки скорости ЛС

Иногда возникает необходимость узнать информацию о подключённых к сети устройствах. В основном это касается беспроводных маршрутизаторов, к которым можно подключиться незаметно и «воровать» трафик. Посмотреть список устройств можно сторонними ПО и штатными средствами (веб-админкой маршрутизатора).

С первым всё довольно просто: существует простейшая утилита под названием Wireless Network Watcher. Она, как IP-сканер локальной сети, прекрасно справляется с анализом адресатов сети и выводит на экран всю доступную информацию о них.

Через программу Wireless Network Watcher можно увидеть список всех подключённых к сети устройств

Однако у программы есть два минуса:

  • для её работы необходимо проводное подключение к роутеру;
  • инструментарий программы ограничивается только выводом информации. Если нарушитель будет обнаружен, она ничего не сможет с ним сделать. То же касается и аналогичных программ. Заблокировать доступ к сети можно только внутри веб-админки роутера.

Для просмотра информации о подключённых устройствах через веб-админку маршрутизатора необходимо сначала её открыть:

    На тыльной стороне устройства знакомимся с реквизитами для входа.

На тыльной стороне роутера знакомимся с реквизитами для входа

Через браузер открываем панель управления маршрутизатором

Находим пункт «Статистика беспроводного режима» и знакомимся со всеми подключёнными устройствами

Анализ трафика — это сложный процесс, который должен быть известен любому профессионалу в IT-индустрии, сисадмину и другим специалистам в области. Процедура оценки передачи пакетов больше похожа на искусство, чем на элемент технического управления. Одних данных от специальных программ и инструментов тут недостаточно, необходима ещё интуиция и опыт человека. Утилиты в этом вопросе лишь инструмент, что показывает данные, остальное должен делать уже ваш мозг.

Wireshark — это новый игрок на рынке сетевого анализа трафика. Программа имеет довольно простой интерфейс, понятное диалоговое окно с выводом данных, а также множество параметров для настройки. Кроме того, приложение охватывает полный спектр данных сетевого трафика, потому является унитарным инструментом для анализа без необходимости добавлять в функционал программы лишние утилиты.

Wireshark имеет открытый код и распространяется бесплатно, поэтому захватывает аудиторию в геометрической прогрессии.

Возможно, приложению не хватает визуализации в плане диаграмм и таблиц, но минусом это назвать сложно, так как можно не отвлекаться на просмотр картинок и напрямую знакомиться с важными данными.

Wireshark — это программа с открытым кодом для анализа трафика ЛС

Kismet — это отличный инструмент для поиска и отладки проблем в ЛС. Его специфика заключается в том, что программа может работать даже с беспроводными сетями, анализировать их, искать устройства, которые настроены неправильно, и многое другое.

Программа также распространяется бесплатно и имеет открытый код, но сложный в понимании интерфейс немного отталкивает новичков в области анализа трафика. Однако подобный инструмент всё больше становится актуальным из-за постепенного отказа от проводных соединений. Поэтому чем раньше начнёшь осваивать Kismet, тем скорее получишь от этого пользу.

Kismet — это специальный инструмент для анализа трафика с возможностью вывода информации о беспроводной сети

NetworkMiner — это продвинутое программное решение для поиска проблем в сети через анализ трафика. В отличие от других приложений, NetworkMiner анализирует не сам трафик, а адреса, с которых были отправлены пакеты данных. Поэтому и упрощается процедура поиска проблемного узла. Инструмент нужен не столько для общей диагностики, сколько для устранения конфликтных ситуаций.

Программа разработана только для Windows, что является небольшим минусом. Интерфейс также желает лучшего в плане восприятия данных.

NetworkMiner — это инструмент для Windows, который помогает находить конфликты и неточности в ЛС

Провести полный анализ сети можно как штатными, так и сторонними способами. А полученные данные помогут исправить возможные неполадки, недочёты и конфликты.

источник

Есть такой маркетинговый приём: выбрать востребованное на рынке свойство продукта или услуги и заявить, что у твоего продукта или услуги это востребованное свойство тоже есть. Всем нужна белизна зубов – заявим, что и наша зубная паста отбеливает зубы.

С управлением производительностью приложений (APM, Application Performance Management, также Application Performance Monitoring) та же история. Сегодня практически каждый производитель систем сетевого управления заявляет, что его продукты позволяют управлять производительностью приложений. Конечно, «пони тоже кони», но давайте разберёмся, что же такое APM и какой функциональностью должен обладать инструментарий, чтобы носить это гордое имя.

Для очень многих измерение времени реакции бизнес-приложения и управление его производительностью – это практически одно и то же. На самом деле, это не совсем так. Измерять время реакции – это необходимо, но этого недостаточно.

APM – это сложный процесс, который включает в себя также измерение, оценку и документирование метрик, относящихся к ИТ-инфраструктуре, и, самое главное, обеспечивающий возможность увязки друг с другом качества работы приложений и качества работы ИТ-инфраструктуры. Другими словами, нужно не только определить, что приложение работает плохо, но и найти «виноватого». Для этого, кроме измерения времени реакции, нужно отслеживать ошибки приложений, контролировать диалог клиентов с серверами, видеть тренды. И всё это нужно делать одновременно для всего активного сетевого оборудования (коммутаторы, маршрутизаторы и т.д.), всех серверов, а также каналов связи.

В приведённой ниже таблице перечислены 10 ключевых признаков зрелого APM-решения.

Ключевой признак Комментарий
1. Комплексный мониторинг Для быстрого определения «масштабов бедствия» и корневых причин сбоев необходимо одновременно контролировать метрики, характеризующие работу приложений, и метрики, характеризующие работу всей ИТ-инфраструктуры без исключения.
2. Высокоуровневые отчёты Необходимы для понимания качества предоставления ИТ-сервисов в масштабе всего предприятия. Должны включать предустановленные панели (dashboards), отчёты, пороговые значения, базовые линии, шаблоны сообщений о сбоях. Обязательно должна быть возможность детализации информации (drill down).
3. Возможность настроить безопасный обмен данными Для быстрого устранения проблем и планирования мощностей необходима кооперация между различными отделами ИТ-Службы. Поэтому зрелое APM-решение должно обеспечивать возможность безопасного обмена данными. Это относится как к real time данным, так и к результатам статистической, экспертной и других обработок.
4. Непрерывный захват сетевых пакетов Контролируя объекты по SNMP, WMI и т.п., безусловно, можно оценить качество работы приложений, но увидеть всю картину целиком и понять, что и почему произошло – сложно. Более правильно – постоянно захватывать весь сетевой трафик полностью (не только заголовки), а когда происходит какое-то, требующее расследование событие, то анализировать содержимое захваченных сетевых пакетов.
5. Детальная информация о работе приложений Анализировать только время реакции приложения – недостаточно. Чтобы быстро диагностировать сбои, нужна информация о запросах (которые делает приложение), как они выполняются, коды возникающих ошибок и другая информация.
6. Экспертный анализ Серьёзный экспертный анализ существенно ускоряет диагностику проблем, т.к., во-первых, позволяет автоматизировать процесс анализ информации, во-вторых, если проблема известна, позволяет сразу получить готовое решение.
7. Сквозной (multiple segment / multihop) анализ Поскольку всё больше бизнес-приложений работают в облаке или через WAN, нужно уметь видеть все задержки и ошибки, возникающие в каждом сегменте сети, через который проходит сетевой трафик (один и тот же пакет). Только так можно быстро локализовать корневую причину сбоя.
8. Гибкие базовые линии Гибкие (настраиваемые) базовые линии позволяют эффективно контролировать как внутренние, так и облачные приложения. Для облачных приложений пороговые значения контролируемых метрик (прописываемые в SLA) обычно статические (известны заранее) и устанавливаются вручную. Для внутренних приложений лучше подходят динамические базовые линии, т.е. изменяемые автоматически с течением времени, в зависимости о производительности работы приложения.
9. Возможность реконструкции информационных потоков При анализе проблем, связанных с плохим качеством передачи голоса и видео, а также проблем в области информационной безопасности, важно иметь возможность воспроизвести сетевую активность и работу приложения в тот момент (а также до и после), когда произошло критическое событие.
10. Масштабируемость Думается, комментарии излишни.


Опытные ИТ-специалисты скажут, за перечисленными выше признаками торчат уши APM-решения, основанного на анализе сетевого трафика. Это действительно так.

Компания Network Instruments выделяет четыре типа решений для управления производительностью приложений:

  • решения, основанные на синтетических транзакциях (GUI-роботы)
  • решения, использующие программные агенты на стороне сервера
  • решения, использующие программные агенты на стороне клиента
  • решения, основанные на анализе сетевого трафика

Решения, основанные на анализе сетевого трафика, стоят в этом списке особняком.

В отличие от решений, основанных на синтетических транзакциях или использующих программные агенты на стороне сервера или клиента, сбор данных осуществляется без использования ресурсов системы.

Анализатор сетевого трафика обычно состоит из нескольких зондов и консоли удалённого администрирования. Зонды подключаются к SPAN-портам, что позволяет APM-решению, основанному на анализе сетевого трафика, пассивно слушать трафик, не потребляя ни ресурсы сервера (как это делают программные агенты на стороне сервера и синтетические транзакции), ни клиента (как это делают агенты на стороне клиента) и не создавая дополнительного трафика (как это делают синтетические транзакции и агенты на стороне клиента).

В основе собственно анализа лежит декодирование сетевых протоколов всех уровней, включая уровень приложения. Например, Observer от Network Instruments поддерживает декодирование и анализ всех семи уровней OSI-модели для таких приложений и сервисов, как SQL, MS-Exchange, POP3, SMTP, Oracle, Citrix, HTTP, FTP и др.

Если требуется получить информацию о задержках, наиболее близкую к восприятию пользователя, зонды подключаются максимально близко к клиентским устройствам. Правда, в этом случае потребуется большое количество зондов. Если точные данные по задержкам не столь критичны, а количество используемых зондов требуется сократить, зонды подключаются ближе к серверу приложений. Впрочем, изменения в задержке будут видны и в том, и в другом случаях.

Примечание. Можно использовать также мониторинг-свичи, собирающие информацию с нескольких SPAN-портов и TAP’ов для последующего перенаправления в систему мониторинга. Мониторинг-свичи также могут проводить первичный анализ трафика.

Второй важный момент. У всех четырёх типов решений, перечисленных Network Instruments, есть свои преимущества и своя область применения, в которой они справляются с задачами лучше других. Например, самую подробную информацию о приложении позволяют собрать программные агенты, получающие информацию непосредственно из приложения на стороне сервера или клиента через ARM-образный API. Эта информация очень полезна на этапе разработке и первоначальной обкатки приложения, но будет избыточна в процессе нормальной эксплуатации.

С другой стороны, как GUI-роботы с синтетическими транзакциями, так и программные агенты собирают данные о состоянии конкретного приложения (или нескольких приложений). Применение программных агентов с внедрением в код вообще предъявляет довольно высокие требования – вендор должен встроить в приложение поддержку конкретного инструмента мониторинга или предоставить API. Для того чтобы узнать контекст, в котором выполняется приложение, необходимо использовать другие инструменты (возможно, включённые в ту же комплексную систему мониторинга, возможно – отдельные).

Традиционная парадигма сетевого мониторинга – это централизованный сбор, объединение и анализ данных, получаемых из внешних источников информации. Это SNMP-агенты, WMI-провайдеры, различные логи и т.п. Задача системы мониторинга – собрать эти данные, в удобном виде их показать, проанализировать с использованием сервисно-ресурсной модели, и, таким образом, понять, что происходит. Так работают практически все системы мониторинга, в том числе система мониторинга ProLAN.

Анализатор сетевых протоколов позволяет увидеть сразу контекст.

Во-первых, можно увидеть, как работало интересующее нас приложение на фоне работы сетевых сервисов и компонентов ИТ-инфраструктуры. Например, multihop-анализ позволяет выявить сбоящий маршрутизатор, из-за которого рвётся соединение между сервером и клиентом, и т.п. В принципе, анализатор сетевых протоколов может использоваться в качестве универсального решения, одновременно выполняющего функции и управления производительностью приложений, и мониторинга ИТ-инфраструктуры, и управления безопасности.

Во-вторых, никакой другой способ не позволяет увидеть, что происходит на уровне отдельной транзакции и отдельного пакета. Какие пакеты были отправлены, какие потеряны, какие прошли с ошибками (каждый конкретный пакет, а не сколько вообще) и т.п. Анализ работы приложения на уровне отдельной транзакции может быть реализован только с помощью анализатора сетевых протоколов.


Анализ сетевого трафика может проводиться двумя способами:

  • анализ трафика в режиме реального времени (на лету)
  • ретроспективный анализ трафика
Читайте также:  Виды экономического анализа какой прогноз

Ретроспективный анализ трафика предполагает, что весь трафик или какая-то его часть сначала записывается на диск, а потом анализируется.

Рассмотрим, как это работает и зачем это нужно, на примере GigaStor – решения для записи и ретроспективного анализа трафика от Network Instruments. Это программно-аппаратный комплекс, имеющий в своём составе аппаратный зонд, полнодуплексную сетевую карту, хранилище данных и локальную консоль управления. Для удалённого администрирования понадобится интеграция с другими продуктами Network Instruments – уже упомянутым Observer или Observer Reporting Server. Сетевая карта позволяет захватывать трафик из сетей скоростью до 40 Гб/с, а дисковые массивы – хранить до 5 ПБ данных (альтернатива – выгрузка в SAN до 576 ТБ).

Перехват сетевого трафика позволяет узнать, что сейчас происходит с приложениями, пользователями и ИТ-инфраструктурой. Но как узнать, что было пять минут, или час, или день назад? Традиционный способ заключается в том, чтобы снимать значения метрик и записывать их в базу данных. Так делает подавляющее большинство систем мониторинга. Значения и оценки метрик позволяют получить некоторое представление о том, что было в произвольный момент времени, но не более. Тем, что было записано, мы можем воспользоваться. То, что не было записано, потеряно безвозвратно.

Вернуться в прошлое и посмотреть, что происходило в интересующий нас момент, можно только одним способом, как это делает GigaStor и другие решения этого класса (их, впрочем, немного) – записывать весь трафик. Это обуславливает специфические особенности таких решений:

  • во-первых, доступ к очень большому дисковому пространству (измеряется терабайтами и петабайтами);
  • во-вторых, т.н. функция машины времени, позволяющая отмотать время обратно и посмотреть, что происходило в сети в произвольный момент прошлого.

Возможность путешествия во времени особенно важна в двух случаях:

  1. когда проблема сложна, повторяется нерегулярно или непонятно, к какой области её отнести («серая проблема»);
  2. когда имеет место нарушение безопасности.

Коротко рассмотрим оба случая.

В первом случае системный администратор сталкивается с недостатком информации. Если проблема появляется нерегулярно, её трудно отследить и воспроизвести. То же касается сложных и «серых» проблем. Ретроспективный анализ позволяет восполнить этот недостаток информации, ускорив решение проблемы на часы, а может быть, и дни.

Во втором случае проблему нужно решить максимально быстро – в противном случае могут наступить последствия, которые будет трудно исправить. Самый удобный способ – вернуться во времени и отследить действия злоумышленника, как они происходили на самом деле, не тратя время исследование косвенных признаков и т.п.


1. Зрелое APM-решение предполагает не только умение измерять времени реакции приложения, но и ряд свойств, направленных на оценку результатов измерения и быстрое обнаружение и диагностику проблем.

2. Из четырёх типов APM-решений наиболее универсальными для управления производительностью сетевых приложений представляются решения, основанные на анализе сетевых протоколов.

3. Для решения сложных, повторяющихся нерегулярно проблем, а также проблем, связанных с нарушением безопасности, анализа сетевого трафика в режиме реального времени недостаточно. В этих случаях применяется ретроспективный анализ сетевого трафика с записью трафика на диск и т.н. функцией машины времени.

источник

Для поддержания сети в работоспособном состоянии необходим постоянный контроль над ее работой. Использование средств контроля позволяет администратору выявить и устранить любую угрозу нормальному функционированию сети.

Процесс контроля работы сети делится на два этапа – мониторинг и анализ.

На этапе мониторинга выполняется более простая процедура — процедура сбора первичных данных о работе сети: статистики по циркулирующим в сети пакетам различных протоколов, состоянии портов коммуникационных устройств и т.п.

Далее выполняется этап анализа, более сложный и интеллектуальный процесс осмысления собранной на этапе мониторинга информации, сопоставления ее с ранее полученными данными и выработки предположений о возможных причинах замедленной или ненадежной работы сети.

Все средства, применяемые для мониторинга и анализа вычислительных сетей, можно разделить на несколько крупных классов: системы управления сетью, средства управления системой, встроенные системы диагностики и управления, анализаторы протоколов, оборудование для диагностики и сертификации кабельных систем, экспертные системы, многофункциональные устройства анализа и диагностики.

Системы управления сетью– это централизованные программные системы, которые собирают данные о состоянии узлов и коммуникационных устройств сети, а также данные о трафике, циркулирующем в сети. Эти системы не только осуществляют мониторинг и анализ сети, но и выполняют в автоматическом или полуавтоматическом режиме действия по управлению сетью – включение и отключение портов устройств, изменение параметров адресных таблиц коммутаторов и маршрутизаторов и т.п. Примерами систем управления могут служить популярные системы HPOpenView, SunNetManager, IBMNetView.

В соответствии с рекомендациями стандартов можно выделить ряд функций средств управления сетемой. Кромемониторинга и анализа работы сети, необходимых для получения исходных данных для настройки сети, к ним относятся управление конфигурацией и безопасностью, которые нужны для настройки и оптимизации сети:

· Управление конфигурацией сети и именованием – состоит в конфигурировании компонентов сети, включая их местоположение, сетевые адреса и идентификаторы, управление параметрами сетевых операционных систем.

· Обработка ошибок – это выявление, определение и устранение последствий сбоев и отказов в работе сети.

· Анализ производительности – помогает на основе накопленной статистической информации оценивать время ответа системы и величину трафика, а также планировать развитие сети.

· Управление безопасностью – включает в себя контроль доступа и сохранение целостности данных. В функции входит процедура аутентификации, проверки привилегий, поддержка ключей шифрования, управления полномочиями.

· Учет работы сети – включает регистрацию и управление используемыми ресурсами и устройствами.

· Создание списка сетевых программ, что облегчает их установку и модернизацию, получение данных об использовании приложений, решение вопросов лицензирования.

· Распределение и установка программного обеспечения. После завершения обследования администратор может создать пакеты рассылки программного обеспечения.

· Удаленного анализа производительности и возникающих проблем. Администратор может удаленно управлять мышью, клавиатурой и видеть экран любого ПК, работающего в сети под управлением той или иной сетевой операционной системы.

Инструменты мониторинга встроены во многие современные операционные системы. Они применимы для определения базовых показателей производительности или диагностирования и устранения неполадок в сети. С помощью программы System Monitor Windows 2000 и 2003 можно измерять производительность многих системных компонентов, в частности выводить на экран показания счетчиков сетевых интерфейсов, например общее количество байтов или пакетов в секунду, количество переданных и принятых байтов или пакетов в секунду. Эта программа позволяет выводить данные в графическом формате и составлять по ним отчеты. Измерения можно просматривать в реальном времени, обновлять автоматически или по требованию. Можно конфигурировать оповещение, т.е. установить автоматическое уведомление администратора при наступлении некоторого события, например, если заданные параметр производительности достигнет верхнего или нижнего уровня. Мониторинг позволяет правильно планировать производительность сети.

Анализаторы протоколов представляют собой программные или аппаратно-программные системы, которые ограничиваются функциями мониторинга и анализа трафика в сетях. Хороший анализатор протоколов может захватывать и декодировать пакеты большого количества протоколов, применяемых в сетях. Анализаторы протоколов позволяют установить некоторые логические условия для захвата отдельных пакетов и выполняют полное декодирование захваченных пакетов, то есть преобразуют их из двоичного формата к виду, пригодному для анализа человеком. Существуют такие анализаторы, которые предоставляют статистическую информацию о перехваченных пакетах, дают результаты анализа неполадок в соединениях, анализ производительности, обнаружение вторжений. С помощью комплекса Sniffer, в который входит большой набор разнообразных средств, позволяющих выполнять фильтрацию пакетов, генерировать загрузку сети, облегчающую тестирование новых устройств и приложений. Его можно использовать для моделирования сетевой нагрузки, определения времени ответа и т.д. В программы Sniffer встроены такие утилиты TCP/IP, как ping, tracert, просмотра DNS и др.

Процесс анализа протоколов включает захват циркулирующих в сети пакетов, реализующих тот или иной сетевой протокол, и изучение содержимого этих пакетов. Основываясь на результатах анализа, можно осуществлять обоснованное и взвешенное изменение каких-либо компонентов сети, оптимизацию ее производительности, поиск и устранение неполадок.

Анализатор протоколов представляет собой либо самостоятельное специализированное устройство, либо персональный компьютер, обычно переносной класса Notebook, оснащенный специальной сетевой картой и соответствующим программным обеспечением. Программное обеспечение анализатора состоит из ядра, поддерживающего работу сетевого адаптера и декодирующего получаемые данные, и дополнительного программного кода, зависящего от топологии исследуемой сети.

Программы управления сетями более полные, в них включены не только компоненты мониторинга, но и много других средств. Примерами средств управления системой являются такие продукты, как SystemManagementServer (SMS) компании Microsoft, Manage Wise компании Novell или LANDeskManager фирмы Intel. Программа SMS представляет собой мощное средство управления сетями, с помощью которой можно получать списки оборудования и программного обеспечения. В состав SMS включена полная версия программы Network Monitor фирмы Microsoft. Она предназначена для анализа работы процедур протоколов. Например, она применяется для мониторинга использования пропускной способности сети, измерения количества кадров в секунду и получения дополнительной статистической информации о работе сети, а также разрешения имен и поиска маршрутизаторов. Программа имеет встроенные средства распространения программного обеспечения. Сокращенная версия программы поставляется в составе Windows 2000 и 2003. Программа OpenView компании Hewlett Packard содержит инструменты управления большими и средними сетями, в состав которых входят тысячи серверов и более 5000 рабочих станций. Для управления небольшими сетями используется, например, программа Network Monitor Suite (NMS) компании Lanware и ViewLAN компании NuLink, работа которых основана на протоколах SNMP и CMIP. Программа предоставляет такие возможности, как повторный запуск служебных программ, составление расписаний и перезагрузка серверов.

Протокол SNMP используется для получения от сетевых устройств информации об их статусе, производительности и характеристиках, которые хранятся в базе данных сетевых устройств MIB (Management Information Base). Агент в протоколе SNMP – это обрабатывающий элемент, который обеспечивает менеджерам, размещенным на управляющих станциях сети, доступ к значениям переменных MIB, и тем самым дает им возможность реализовывать функции по управлению и наблюдению за устройством.

Встроенные системы диагностики и управлениявыполняются в виде программно-аппаратных модулей, устанавливаемых в коммуникационное оборудование, а также в виде программных модулей, встроенных в операционные системы. Они выполняют функции диагностики и управления только одним устройством, и в этом их основное отличие от централизованных систем управления. Как правило, встроенные модули управления одновременно выполняют роль SNMP-агентов, поставляющих данные о состоянии устройства для систем управления.

Существует несколько стандартов на базы данных управляющей информации. Основными являются стандарты MIB-I и MIB-II, а также версия базы данных для удаленного управления RMONMIB. Кроме этого, существуют стандарты для специальных MIB устройств конкретного типа (например, MIB для концентраторов или MIB для модемов), а также частные MIB конкретных фирм-производителей оборудования.

Новейшим добавлением к функциональным возможностям SNMP является спецификация RMON, которая обеспечивает удаленное взаимодействие с базой MIB. До появления RMON протокол SNMP не мог использоваться удаленным образом, он допускал только локальное управление устройствами. База RMONMIB обладает улучшенным набором свойств для удаленного управления. Объекты RMONMIB включают дополнительные счетчики ошибок в пакетах, более гибкие средства анализа графических трендов и статистики, более мощные средства фильтрации для захвата и анализа отдельных пакетов. Агенты RMONMIB более интеллектуальны по сравнению с агентами MIB-I или MIB-II и выполняют значительную часть работы по обработке информации об устройстве, которую раньше выполняли менеджеры. Эти агенты могут располагаться внутри различных коммуникационных устройств, а также быть выполнены в виде отдельных программных модулей, работающих на универсальных ПК и ноутбуках (примером может служить LANalyzer Novell).

Оборудование для диагностики и сертификации кабельных систем.Условно это оборудование можно поделить на четыре основные группы: сетевые мониторы, приборы для сертификации кабельных систем, кабельные сканеры и тестеры (мультиметры).

Сетевые мониторы(называемые также сетевыми анализаторами) предназначены для тестирования кабелей различных категорий. Следует различать сетевые мониторы и анализаторы протоколов. Сетевые мониторы собирают данные только о статистических показателях трафика – средней интенсивности общего трафика сети, средней интенсивности потока пакетов с определенным типом ошибки и т.п. Сетевые анализаторы – это крупногабаритные и дорогие (более $20000) приборы, предназначенные для использования в лабораторных условиях специально обученным техническим персоналом и позволяющие измерять различные электромагнитные характеристики кабеля.

Назначение устройств для сертификации кабельных систем, непосредственно следует из их названия. Сертификация выполняется в соответствии с требованиями одного из международных стандартов на кабельные системы.

Кабельные сканеры используются для диагностики медных кабельных систем. Цена на эти приборы варьируется от $1000 до $3000. Для определения местоположения неисправности кабельной системы (обрыва, короткого замыкания, неправильно установленного разъема и т.д.) используется метод «кабельного радара». Суть этого метода состоит в том, что сканер излучает в кабель короткий электрический импульс и измеряет время задержки до прихода отраженного сигнала. По полярности отраженного импульса определяется характер повреждения кабеля (короткое замыкание или обрыв). В правильно установленном и подключенном кабеле отраженный импульс совсем отсутствует.

Тестеры кабельных систем – наиболее простые и дешевые приборы для диагностики кабеля. Они позволяют определить непрерывность кабеля, однако, в отличие от кабельных сканеров, не дают ответа на вопрос о том, в каком месте произошел сбой.

Экспертные системы аккумулируют человеческие знания о выявлении причин аномальной работы сетей и возможных способах приведения сети в работоспособное состояние. Экспертные системы часто реализуются в виде отдельных подсистем различных средств мониторинга и анализа сетей: систем управления сетями, анализаторов протоколов, сетевых анализаторов. Простейшим вариантом экспертной системы является контекстно-зависимая help-система. Более сложные экспертные системы представляют собой так называемые базы знаний, обладающие элементами искусственного интеллекта. Примером такой системы является экспертная система, встроенная в систему управления Spectrum компании Cabletron.

В последние годы, в связи с повсеместным распространением локальных сетей возникла необходимость разработки недорогих портативных приборов, совмещающих функции нескольких устройств: анализаторов протоколов, кабельных сканеров и даже некоторых возможностей ПО сетевого управления. В качестве примера такого рода устройств можно привести Compas компании MicrotestInc или LANMeter компании FlukeCorp.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Дипломная работа: Анализ функционирования локальной сети Службы по делам детей Северодонецкого городского совета

Пояснительная записка к дипломному проекту: 68 с.,7 рис., 9 табл., 11 источников, 3 листа чертежей формата А1.

Объект исследований: Служба по делам детей Северодонецкого городского совета.

Предмет исследования: локальная сеть Службы по делам детей Северодонецкого городского совета.

В первом разделе рассмотрены общие принципы построения локальных сетей, дана характеристика базовым технологиям ЛВС, проанализированы существующие топологи и структура ЛВС, сделан обзор существующего сетевого оборудования, рассмотрены типы соединительных линий и выполнен их сравнительный анализ, выполнен обзор сетевых операционных сетей.

Во втором разделе выполнен анализ административных, технических и программных характеристик Службы по делам детей Северодонецкого городского совета, рассмотрена структура существующей локальной сети, выполнено планирование комплекса мер по информационной безопасности сети.

В тертьем разделе выполнен экономический расчет объекта анализа, а именно расчет на создание проекта ЛВС, расчет материальных затрат, использование ЭВМ, расчет технологический себестоимости ЛВС, расчет капитальных затрат на создание и эксплуатацию ЛВС и экономический эффект от использования ЛВС на данном предприятии.

В четвертом разделе проведены расчеты отопления, вентиляции, природного и искусственного освещения, полученные значения сопоставлены с нормативными.

КАБЕЛЬНАЯ СИСТЕМА, КОНФИГУРАЦИЯ, КОНЦЕНТРАТОР, КОММУТАТОР, ЛОКАЛЬНАЯ СЕТЬ, РАБОЧАЯ СТАНЦИЯ, СЕРВЕР, ТЕХНОЛОГИЯ, ТОПОЛОГИЯ

1 Общие принципы построения и функционирования локальной сети

1.1 Классификация и виды компьютерных сетей

1.2 Топологии вычислительных сетей

1.3 Линии связи и каналы передачи данных

1.4 Типы построения сетей по методам передачи информации

1.5 Сетевые операционные системы для локальных сетей

2 АНАЛИЗ ЛОКАЛЬНОЙ СЕТИ СЛУЖБЫ ПО ДЕЛАМ ДЕТЕЙ СЕВЕРОДОНЕЦКОГО ГОРОДСКОГО СОВЕТА

2.1 Административные, технические и программные характеристики Службы по делам детей Северодонецкого городского совета

2.2 Анализ локальной компьютерной сети службы по делам детей Северодонецкого городкого совета

2.3 Мероприятия по обеспечению информационной безопасности

3 ЭКОНОМИЧЕСКИЙ РАСЧЕТ СТОИМОСТИ ОБЪЕКТА АНАЛИЗА

3.1 Расчет затрат на создание проекта ЛВС

3.2 Расчет материальных затрат

3.3 Использование сетевого оборудования

3.4 Расчет технологической себестоимости ЛВС

3.5 Расчет капитальных затрат на создание ЛВС

3.6 Затраты при эксплуатации ЛВС

3.7 Расчет экономического эффекта на создание и эксплуатацию ЛВС

4.1 Организация рабочего места

4.2 Организация и расчет отопления

4.4 Расчет искусственного освещения помещений

4.5 Расчет природного освещения помещений

ПРИЛОЖЕНИЕ А.Сравнительный анализ базовых технологий построения локальных сетей

ПРИЛОЖЕНИЕ Б. Спецификация ЛВС

ПРИЛОЖЕНИЕ В. План помещения и организации рабочих мест Службы по делам детей Северодонецкого городского совета

В дипломном проекте рассматривается тема «Анализ функционирования локальной сетиСлужбы по делам детей Северодонецкого городского совета».

Объектом исследования является Служба по делам детей Северодонецкого городского совета.

Предметом исследования является локальная сеть.

Целью дипломного проекта является анализ функционирования локальной сети.

Актуальность проекта состоит в том, что данная локальная сеть является единственным возможным средством для организации эффективного функционирования предприятия. Данная локальная сеть проектируется с целью совместного использования общих ресурсов, таких как локальные диски, сетевой принтер, Интернет.

Для достижения поставленных целей и задач необходимо выполнить следующие этапы работы:

— подбор литературы и изучения материалов по данной тематике;

— изучение базовых технологий построения сетей;

— рассмотрение программных и технических характеристик;

— выбор технологий сети с базовыми;

— подбор сетевого оборудования;

— проектирование схемы прокладки кабеля;

— планирование информационной безопасности сети;

— выполнение расчета экономического эффекта на создание и эксплуатацию локальной сети;

— анализ плана помещения предприятия и расчет отопления, вентиляции, природного и искусственного предприятия.

Теоретическая значимость состоит в анализе существующих технологий и применений одной из них для реализации на практике.

Практическая значимость состоит в анализе реализованного на практике проекта по проектированию локальной сети, а так же мер по защите информации, содержащейся в ПК, настройке совместного использования дисковых ресурсов, подключения сетевого принтера и сетевого диска, обновление программного обеспечения для удобства пользования и защиты локальной сети.

1 ОБЩИЕ ПРИНЦИПЫ ПОСТОРОЕНИЯ И ФУНКЦИОНИРОВАНИЯ ЛОКАЛЬНОЙ СЕТИ

1.1 Классификация и виды компьютерных сетей

Сеть – совокупность компьютеров и других сетевых устройств, объединенных между собой.Говоря общими словами, компьютерная сеть — это два компьютера, обменивающиеся сообщениями. Разумеется, большинство сетей состоят из большего количества машин. Принципы сетевого взаимодействия не зависят от количества компьютеров. Чтобы понять принципы общения сотен компьютеров между собой достаточно понять, как это делает пара. Различают локальные и территориально-распределенные сети. Локальные сети (LAN — local area networks) объединяют находящиеся недалеко друг от друга компьютеры. Компьютеры в территориально-распределенных сетях (WAN — wide area networks) могут находиться на расстоянии десятков километров. Но подобное разделение достаточно условно — одни и те, же технологии могут применяться и в пределах одного офиса, и в пределах города, и для связи между городами.

Название: Анализ функционирования локальной сети Службы по делам детей Северодонецкого городского совета
Раздел: Рефераты по коммуникации и связи
Тип: дипломная работа Добавлен 10:24:46 30 декабря 2009 Похожие работы
Просмотров: 2784 Комментариев: 14 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно Скачать

Передача данных может осуществляться последовательно или параллельно. При параллельной передаче биты данных передаются одновременно по нескольким проводникам (по шине)

Рисунок 1.1 – Параллельная передача данных

Напротив, последовательное соединение подразумевает передачу данных по очереди бит за битом. В сетях чаще всего используется именно этот способ.

Рисунок 1.2 – Последовательная передача данных

При передаче используют три различных метода, обозначаемых разными терминами: симплексный (simpex), дуплексный (duplex) и полудуплексный (half-duplex). При симплексном методе данные предаются только в одном направлении. При полудуплексном — в обоих направлениях, но в разное время, а в дуплексном — одновременно в обоих направлениях. Назначением сетей является:

— совместный доступ к общим информационным ресурсам;

— обмен информацией, не прибегая к помощи магнитных и бумажных носителей;

— совместный доступ к периферийным устройствам;

— возможность использования электронной почты;

— обеспечение доступа к информации вне зависимости от территориального расположения;

— возможность оперативного перемещения большого объема информации на любое расстояние.

1.2 Топологии вычислительных сетей

Существует бесконечное число способов соединить компьютеры. Каждое соединение — новый путь для данных. Топология сети — геометрическая форма и физическое расположение компьютеров по отношению друг к другу. Топология сети позволяет сравнивать и классифицировать различные сети. Выделяют три основных топологии: звезда, кольцо и шина.

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Рисунок 1.3 – Топология в виде звезды

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

Центральный узел управления — файловый сервер мотает реализовать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо. Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять “в дорогу” по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Рисунок 1.4 – Топология в виде кольца

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Рисунок 1.5 — Шинная топология

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выключение и особенно подключение к такой сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы.

Новые технологии предлагают пассивные штепсельные коробки, через которые можно отключать и / или включать рабочие станции во время работы вычислительной сети.

Благодаря тому, что рабочие станции можно включать без прерывания сетевых процессов и коммуникационной среды, очень легко прослушивать информацию, т.е. ответвлять информацию из коммуникационной среды.

В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предотвращения коллизий в большинстве случаев применяется временной метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропускной способности вычислительной сети при повышенной нагрузке снижаются, например, при вводе новых рабочих станций. Рабочие станции присоединяются к шине посредством устройств ТАР (англ. Terminal Access Point — точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедряется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.

В ЛВС с модулированной широкополосной передачей информации различные рабочие станции получают, по мере надобности, частоту, на которой эти рабочие станции могут отправлять и получать информацию. Пересылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкополосных сообщений позволяет одновременно транспортировать в коммуникационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая первоначальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.

Далее характеристики топологий вычислительных сетей будут приведены в таблице 1.1.

Таблица 1.1 — Характеристики топологий вычислительных сетей

Характеристики Топология
Звезда Кольцо Шина
Стоимость расширения Незначительная Средняя Средняя
Присоединение абонентов Пассивное Активное Пассивное
Защита от отказов Незначительная Незначительная Высокая
Размеры системы Любые Любые Ограниченны
Защищенность от прослушивания Хорошая Хорошая Незначительная
Стоимость подключения Незначительная Незначительная Высокая
Поведение системы при высоких нагрузках Хорошее Удовлетворительное Плохое
Возможность работы в реальном режиме времени Очень хорошая Хорошая Плохая
Разводка кабеля Хорошая Удовлетворительная Хорошая
Обслуживание Очень хорошее Среднее Среднее

1.3 Линии связи и каналы передачи данных

Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: металлы (в основном медь), сверхпрозрачное стекло (кварц) или пластик и эфир. Физическая среда передачи данных может представлять собой кабель «витая пара», коаксиальные кабель, волоконно-оптический кабель и окружающее пространство.

Линии связи или линии передачи данных — это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные).

В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи — это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи.

Канал передачи данных — это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

В зависимости от физической среды передачи данных каналы связи можно разделить на:

— проводные линии связи без изолирующих и экранирующих оплеток;

— кабельные, где для передачи сигналов используются такие линии связи как кабели «витая пара», коаксиальные кабели или оптоволоконные кабели;

— беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналом, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям «простой старой телефонной линии» (POST — Primitive Old Telephone System) является очень низкой. Кроме того, к недостаткам этих линий относятся помехозащищенность и возможность простого несанкционированного подключения к сети.

Кабельные линии связи имеют довольно сложную структуру. Кабель состоит из проводников, заключенных в несколько слоев изоляции. В компьютерных сетях используются три типа кабелей.

Витая пара (twisted pair) — кабель связи, который представляет собой витую пару медных проводов (или несколько пар проводов), заключенных в экранированную оболочку. Пары проводов скручиваются между собой с целью уменьшения наводок. Витая пара является достаточно помехоустойчивой. Существует два типа этого кабеля: неэкранированная витая пара UTP и экранированная витая пара STP.

Характерным для этого кабеля является простота монтажа. Данный кабель является самым дешевым и распространенным видом связи, который нашел широкое применение в самых распространенных локальных сетях с архитектурой Ethernet, построенных по топологии типа “звезда”. Кабель подключается к сетевым устройствам при помощи соединителя RJ45.

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Витая пара обычно используется для связи на расстояние не более нескольких сот метров. К недостаткам кабеля «витая пара» можно отнести возможность простого несанкционированного подключения к сети.

Коаксиальный кабель (coaxial cable) — это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана (медной оплетки или слой алюминиевой фольги). Внешний проводящий экран кабеля покрывается изоляцией.

Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5 мм и толстый коаксиальный кабель диаметром 10 мм. У толстого коаксиального кабеля затухание меньше, чем у тонкого. Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой.

Коаксиальный кабель применяется, например, в локальных сетях с архитектурой Ethernet, построенных по топологии типа “общая шина”. Коаксиальный кабель более помехозащищенный, чем витая пара и снижает собственное излучение. Пропускная способность – 50-100 Мбит/с. Допустимая длина линии связи – несколько километров. Несанкционированное подключение к коаксиальному кабелю сложнее, чем к витой паре.

Оптоволоконный кабель (fiber optic) – это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой.

Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон. На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование.

Основное преимущество этого типа кабеля – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно. Скорость передачи данных 3Гбит/c. Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.

Радиоканалы наземной (радиорелейной и сотовой) и спутниковой связи образуются с помощью передатчика и приемника радиоволн и относятся к технологии беспроводной передачи данных.

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями — до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

В спутниковых системах используются антенны СВЧ-диапазона частот для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Работа спутникового канала передачи данных представлена на рисунке

Рисунок 1.6 — Работа спутникового канала передачи данных

Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c.

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь — это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи).

Базовые станции подключаются к центру коммутации, который обеспечивает связь, как между базовыми станциями, так и с другими телефонными сетями и с глобальной сетью Интернет. По выполняемым функциям центр коммутации аналогичен обычной АТС проводной связи. LMDS (Local Multipoint Distribution System) — это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу, одна базовая станция позволяет охватить район радиусом несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами. Скорость передачи данных до 45 Мбит/c.

Радиоканалы WiMAX (WorldwideInteroperabilityforMicrowaveAccess) аналогичны Wi-Fi, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. Эксперты считают, что мобильные сети WiMAX открывают гораздо более интересные перспективы для пользователей, чем фиксированный WiMAX, предназначенный для корпоративных заказчиков. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

Радиоканалы MMDS (MultichannelMultipointDistributionSystem) способны обслуживать территорию в радиусе 50—60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с — 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Стандартом беспроводной связи для локальных сетей является технология Wi-Fi. Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении.

Радиоканалы Bluetooht — это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с.

1.4 Типы построения сетей по методам передачи информации

Рассмотрим базовые технологий построения локальных сетей.

Локальная сеть Тоkеn Ring — стандарт разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управления доступом станций к передающей среде используется метод — маркерное кольцо (Тоken Ring). Основные положения этого метода:

— устройства подключаются к сети по топологии кольцо;

— все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);

— в любой момент времени только одна станция в сети обладает таким правом.

В IВМ Тоkеn Ring используются три основных типа пакетов:

— пакет управление/данные (Data/Соmmand Frame). С помощью такого пакета выполняется передача данных или команд управления работой сети.

— маркер (Token). Станция может начать передачу данных только после получения такого пакета, в одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных.

— пакет сброса (Аbort). Посылка такого пакета называет прекращение любых передач.

В сети можно подключать компьютеры по топологии звезда или кольцо.

Arknet (Attached Resource Computer NETWork ) — простая, недорогая, надежная и достаточно гибкая архитектура локальной сети. Разработана корпорацией Datapoint в 1977 году. Впоследствии лицензию на Аrcnet приобрела корпорация SМС (Standard Microsistem Corporation), которая стала основным разработчиком и производителем оборудования для сетей Аrcnet. В качестве передающей среды используются витая пара, коаксиальный кабель (RG-62) с волновым сопротивлением 93 Ом и оптоволоконный кабель. Скорость передачи данных — 2,5 Мбит/с. При подключении устройств в Аrcnet применяют топологии шина и звезда. Метод управления доступом станций к передающей среде — маркерная шина (Тоken Bus). Этот метод предусматривает следующие правила:

— все устройства, подключенные к сети, могут передавать данные;

— только получив разрешение на передачу (маркер);

— в любой момент времени только одна станция в сети обладает таким правом;

— данные, передаваемые одной станцией, доступны всем станциям сети.

Передача каждого байта в Аrcnet выполняется специальной посылкой ISU(Information Symbol Unit — единица передачи информации), состоящей из трех служебных старт/стоповых битов и восьми битов данных. В начале каждого пакета передается начальный разделитель АВ (Аlегt Вurst), который состоит из шести служебных битов. Начальный разделитель выполняет функции преамбулы пакета.

В Аrcnet определены 5 типов пакетов:

1) Пакет IТТ (Information To Transmit) — приглашение к передаче. Эта посылка передает управление от одного узла сети другому. Станция, принявшая этот пакет, получает право на передачу данных.

2) Пакет FBE (Free Buffeг Еnquiries) — запрос о готовности к приему данных. Этим пакетом проверяется готовность узла к приему данных.

3) Пакет данных. С помощью этой посылки производиться передача данных.

4) Пакет АСК ( ACKnowledgments) — подтверждение приема. Подтверждение готовности к приему данных или подтверждение приема пакета данных без ошибок, т.е. в ответ на FBE и пакет данных.

5) Пакет NAK( Negative AcKnowledgments) — неготовность к приему. Неготовность узла к приему данных (ответ на FBE) или принят пакет с ошибкой.

В сети Arknet можно использовать две топологии: звезда и шина.

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation. Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC) и Intel Corporation. В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet институтом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.

На логическом уровне в Ethernet применяется топология шина:

— все устройства, подключенные к сети, равноправны, т.е. любая станция может начать передачу в любой момент времени (если передающая среда свободна);

— данные, передаваемые одной станцией, доступны всем станциям сети.

Сравнительный анализ существующих технологий представлен в Приложении А.

1.5 Сетевые операционные системы для локальных сетей

Основное направление развития современных сетевых операционных систем (Network Operation System — NOS ) — перенос вычислительных операций на рабочие станции, создание систем с распределенной обработкой данных. Это в первую очередь связано с ростом вычислительных возможностей персональных компьютеров и все более активным внедрением мощных многозадачных операционных систем: OS/2, Windows NТ, Windows 95. Кроме этого внедрение объектно-ориентированных технологий (ОLЕ, DСЕ, IDAPI) позволяет упростить организацию распределенной обработки данных. В такой ситуации основной задачей NOS становится объединение неравноценных операционных систем рабочих станций и обеспечение транспортного уровня для широкого круга задач: обработка баз данных, передача сообщений, управление распределенными ресурсами сети (directoгу/namе service).

В современных NOS применяют три основных подхода к организации управления ресурсами сети.

Первый — это таблицы объектов (Bindery). Используется в сетевых операционных системах NetWare 28б и NetWare v3.1х. Такая таблица находится на каждом файловом сервере сети. Она содержит информацию о пользователях, группах, их правах доступа к ресурсам сети (данным, сервисным услугам и т.п.). Такая организация работы удобна, если в сети только один сервер. В этом случае требуется определить и контролировать только одну информационную базу. При расширении сети, добавлении новых серверов объем задач по управлению ресурсами сети резко возрастает. Администратор системы вынужден на каждом сервере сети определять и контролировать работу пользователей. Абоненты сети, в свою очередь, должны точно знать, где расположены те или иные ресурсы сети, а для получения доступа к этим ресурсам — регистрироваться на выбранном сервере. Конечно, для информационных систем, состоящих из большого количества серверов, такая организация работы не подходит.

Второй подход используется в LANServer и LANMahager — структура доменов (Domain). Все ресурсы сети и пользователи объединены в группы. Домен можно рассматривать как аналог таблиц объектов (bindery), только здесь такая таблица является общей для нескольких серверов, при этом ресурсы серверов являются общими для всего домена. Поэтому пользователю, для того чтобы получить доступ к сети, достаточно подключиться к домену (зарегистрироваться), после этого ему становятся доступны все ресурсы домена, ресурсы всех серверов и устройств, входящих в состав домена. Однако и с использованием этого подхода также возникают проблемы при построении информационной системы с большим количеством пользователей, серверов и, соответственно, доменов. Например, сети для предприятия или большой разветвленной организации. Здесь эти проблемы уже связаны с организацией взаимодействия и управления несколькими доменами, хотя по содержанию они такие же, как и в первом случае.

Третий подход — служба наименований директорий или каталогов (Directory Name Services — DNS) лишен этих недостатков. Все ресурсы сети: сетевая печать, хранение данных, пользователи, серверы и т.п. рассматриваются как отдельные ветви или директории информационной системы. Таблицы, определяющие DNS, находятся на каждом сервере. Это, во-первых, повышает надежность и живучесть системы, а во-вторых, упрощает обращение пользователя к ресурсам сети. Зарегистрировавшись на одном сервере, пользователю становятся доступны все ресурсы сети. Управление такой системой также проще, чем при использовании доменов, так как здесь существует одна таблица, определяющая все ресурсы сети, в то время как при доменной организации необходимо определять ресурсы, пользователей, их права доступа для каждого домена отдельно.

В настоящее время по оценке компании IDC наиболее распространенными являются следующие сетевые операционные системы:

— NetWare v2.хи vЗ.х, Nowell Inc. 65%

— LAN Manager, Microsoft Corp. 3%

— VINES, Ваnуаn Systems Inc. 2%

2 АНАЛИЗ ЛОКАЛЬНОЙ СЕТИ СЛУЖБЫ ПО ДЕЛАМ ДЕТЕЙ СЕВЕРОДОНЕЦКОГО ГОРОДСКОГО СОВЕТА

2.1 Административные, технические и программные характеристики службы по делам детей Северодонецкого городского совета

Проведем анализ Службы по делам детей Северодонецкого городского совета.

Назначением данной службы является реализация политики по вопросам социальной защиты детей и предотвращения детской беспризорности и совершения правонарушений детьми. Данная служба является юридическим лицом. В состав данной службы входят такие структурные подразделения как главная бухгалтерия и сектор по вопросу опеки по попечительству. Ниже представлена схема организационной структуры предприятия (см. рисунок 2.1).

Рисунок 2.1 — Организационная структура предприятия

Помещение Службы по делам детей Северодонецкого городского совета состоит из следующих кабинетов:

3. Кабинет заведующего по вопросу опеки и попечительству.

4. Кабинет специалиста I категории.

Графический план представлен в Приложении Б.

В кабинете начальника расположены такие технические средства, как компьютер (1шт), принтер (1шт) и телефон.

В кабинете главного бухгалтера расположены компьютер (1шт) и ксерокс (1шт).

В кабинете заведующего сектором по вопросу опеки и попечительства расположены компьютер (1шт) и сканер (1шт).

В кабинете специалиста I категории расположены компьютер (1шт) и принтер (1шт).

В кабинете специалистов находится компьютер (1шт) и принтер (1шт).

Компьютер, расположенный в кабинете начальника, имеет такие технические характеристики:

— процессорIntel Core 2 Quad 2.33 Ghz;

— материнская плата — на базе чипсета Intel P35Express + ICH10;

— оперативная память — DDR II 4 GB PC2-6400 800 MHz;

— жесткийдиск — 150 GB Serial ATA 16 Mb;

— графический акселератор — NVIDIA 9600GT 512MB/256bit;

— оптический привод DVD -RW/+RW;

— корпус — ATX Middle Tower GIGABYTE GZ-X1 420W (Brand GIGABYTE);

— манипулятор «мышь» — Logitech S96 Optical PS/2;

— клавиатура PS/2 A-4 Tech KB(S)-26;

Компьютеры, расположенные в кабинете заведующего по делам опеки и попечительства и главного бухгалтера, имеет одинаковые характеристики, тикие как:

— процессор – AMD Socket AM2 ATHLON 64 X2 5200+ BOX;

— материнская прлата – MB Asus P4PE-2x;

— оперативная память – DDR 512 PC3200;

— жёсткийдиск — USB 2.0 PRESTIGIO Data Safe II 2.5″ 160GB USB 2.0;

— оптический привод DVD -RW/+RW;

— корпус ATX 4U 4203, 350 W Black;

— монитор 19″ TFT Prestigio P1910;

— манипулятор «мышь» — Mitsumi Optical Scroll Wheel FQ-670 PS/2 silver;

— клавиатура PS/2 A-4 Tech KB(S)-720.

Компьютеры, расположенные в кабинетах специалиста I категории и в кабинете специалистов, имеют следующие характеристики:

— процессор – AMD Socket AM2 ATHLON 64 X2 5400+ BOX;

— материнскаяпрлата – ASUS M2A-VM SocketAM2 AMD 690G PCI-E;

— оперативнаяпамять – DDR 512 PC3200;

— жёсткийдиск — SATA II 160.0g 7200 Samsung 8Mb (NCQ);

— оптический привод DVD -RW/+RW;

— корпус ATX Midle Tower ASUS TA-668, 350W;

— монитор CRT 17″ LG F720B FLATRON;

— манипулятор «мышь» — Mitsumi Optical Scroll Wheel FQ-670 PS/2 silver;

— клавиатура PS/2 A-4 Tech KB(S)-720.

В работе предприятия используются следующие программные продукты:

— Windows XP Home Edition Russian CD BOX;

— Get Genuine Kit Win XP Pro Russian w/SP 1 License;

— Office Professional Plus 2007 Russian OPL NL;

— Kaspersky Internet Security 2009 5-Desktop 1 year Base Box;

— ABBYY Fine Reader 9.0 Professional Edition;

Таким образом, рассмотрев организационную структуру предприятия можно сказать, что на предприятии осуществляются информационные потоки

— от начальника к главному бухгалтеру и заведующему сектором по вопросам опеки и попечительства в виде приказов;

— от заведующего сектором по вопросам опеки и попечительству к специалисту I категории и трем специалистам в виде приказов;

— от специалиста I категории и специалистов к заведующему сектором по вопросам опеки и попечительства в виде отчетов;

— от главного бухгалтера и заведующего сектором по вопросам опеки и попечительства к начальнику в виде отчетов.

Для обеспечения данного информационного потока была создана локальная сеть.

2.2 Анализ локальной компьютерной сети Службы по делам детей Северодонецкого городского совета

Целями создания локальной сеть Службы по делам детей Северодонецкого городского совета являются:

— совместная обработка информации;

— совместное использование сетевых ресурсов, таких как локальные диски, сетевой принтер, доступ в Интернет;

— централизованное управление компьютерами;

— централизованное резервное копирование всех данных;

— контроль за доступом к информации;

Проанализировав существующую сеть можно сказать, что используемая технология – FastEthernet, топология – «звезда», а используемое кабельное соединение — витая пара категрии 5 (неэкранированная). Она позволяет передавать информацию со скоростью до 100 Мбит/с. В качестве ретранслятора используется GETNET 16 PORT Switch 10/100 GS-D16P. Преимуществами являются низкая цена и легкая наращиваемость.

Полный перечень сетевого оборудования представлен в Приложении Б.

Такая конфигурация сети полностью удовлетворяет требованиям по обеспечению бесперебойного документооборота и по использованию совместных ресурсов. Так как в сеть объединены 5 компьютеров, будет обеспечено высокое быстродействие передачи данных в сети. При моделировании видно, что соединение 100 Мбит/с используется не на полную мощность, что позволит развивать и увеличивать сеть, не задумываясь о скорости передачи данных.

При увеличении числа рабочих станций не нужно будет менять сетевое оборудование, необходимо только добавить отдельные компоненты, такие как дополнительные линии связи, так как свободными остаются еще 11 портов Switch 10/100 GS-D16P.

Так же можно сказать, что для поддержания бесперебойной работы сети, я рекомендую заменить участки линий связи, проходящие в коридоре на экранированную витую пару.

Данная локальная сеть объединяет структурные подразделы предприятия и представлена в приложении В.

2.3 Мероприятия по обеспечению информационной безопасности

На предприятии хранится много конфиденциальной информации. Всякая информация в машине или системе требует той или иной защиты,под которой понимается совокупность методов, позволяющих управлять доступом выполняемых в системе программ к хранящейся в ней информации. Защите подлежит любая документированная информация, неправомерное обращение с которой может нанести ущерб ее собственнику, владельцу, пользователю и иному лицу. Целями защиты являются:

— предотвращение утечки, хищения, утраты, искажения, подделки информации;

— предотвращение угроз безопасности личности, общества, государства;

— предотвращение несанкционированных действий по уничтожению, модификации, искажению, копированию, блокированию информации;

— предотвращение других форм незаконного вмешательства в информационные системы, обеспечение правового режима документированной информации как объекта собственности;

— защита конституционных прав граждан на сохранение личной тайны и конфиденциальности персональных данных, имеющихся в информационных системах;

— сохранение государственной тайны, конфиденциальности документированной информации в соответствии с законодательством;

— обеспечение прав субъектов в информационных процессах и при разработке, производстве и применении информационных систем, технологий и средств их обеспечения».

Проанализировав возможные угрозы информационной безопасности можно выделить следующее:

­ отказы источников питания и скачки напряжения;

­ ошибки при передаче информации;

­ сбои программного обеспечения;

Для защиты информации необходимо использовать следующие методы защиты информации:

1. При воровстве или вандализме нужно:

а) устанавливать бездисковые компьютеры;

б) ограничить доступ паролями и ключами активации, затем информацию нужно зашифровать;

в) установить антивирусы на все рабочие станции и особенно на сервер.

2. Поскольку возможны форс-мажорные обстоятельства то следует использовать кабель, в котором волокна могут располагаться в одной или нескольких термопластиковых трубках, заполненных водоотталкивающим и огнеупорным составом.

3. Для предотвращения повреждения оборудования и потери информации, из-за скачков напряжения в сети, в сети используется источники бесперебойного питания.

4. Для исправления ошибок при передаче информации используют избыточное кодирование и передачу контрольных сумм.

5. При сбоях программного обеспечения нужно обратить особое внимание на настройку сервера и механизм выполнения транзакций.

6. Для того чтобы уменьшить число ошибок пользователей нужно ограничить доступ и проводить обучение пользователей.

Задача защиты информации в информационных вычислительных системах решается, как правило, достаточно просто: обеспечиваются средства контроля за выполнением программ, имеющих доступ к хранимой в системе информации. Для этих целей используются либо списки абонентов, которым разрешен доступ, либо пароли, что обеспечивает защиту информации при малом количестве пользователей.

3 ЭКОНОМИЧЕСКИЙ РАСЧЕТ СТОИМОСТИ ОБЪЕКТА АНАЛИЗА

Целью экономического расчета дипломного проекта является определение величины экономического эффекта от использования разработанной локальной вычислительной сети Службы по делам детей Северодонецкого городского совета, качественная и количественная оценка экономической целесообразности создания, использования и развития этой сети, а также определение организационно-экономических условий ее эффективного функционирования.

Проанализированная в дипломном проекте локальная вычислительная сеть Службы по делам детей Северодонецкого городского совета предназначена для повседневного использования учащимися и сотрудниками высшего профессионального училища.

Использование ресурсов локальной вычислительной сети позволит оперативно использовать данные информационного хранилища и общие аппаратно-вычислительные ресурсы в повседневной работе административных и педагогических работников. К достоинствам данной локальной сети можно отнести то, что она разработана с учетом самых современных технологий в области создания локальных сетей, обладает легкостью и простотой использования.

В следующей ниже таблице представлены исходные данные, предоставленные централизованной бухгалтерией Службы по делам детей Северодонецкого городского совета г. Северодонецк на 01.05.2009г.

Таблица 3.1 – Исходные данные

Условные обозначения Единицы измерения Нормативные обозначения 1. Разработка (проектирование) ЛВС Тарифная ставка программиста — системотехника З сист грн/мес. 2000 Тарифная ставка обслуживающего персонала Зперс грн/мес. 1600 Тариф на электроэнергию Т эл/эн грн 0,5846 Мощность модема, принтера и т.д. WЭВМ Вт /час 300 Стоимость ЭВМ, принтера, модема Стз грн. 16200 Амортизационные отчисления на ЭВМ Ааморт % 25,0 Изготовление ЛВС Тариф на электроэнергию Т эл/эн грн. 0,5846 Мощность компьютера, принтера и т.д WЭВМ Вт /час 1250 Тарифная ставка программиста на месяц Зсист грн/мес. 1500 Норма дополнительной зарплаты Нд % 25 Отчисления на социальные мероприятия Нсоц % 38,52 Накладные затраты Ннакл % 15,0 НДС Нпдв % 20,0 Рентабельность Р % 25,0 Продолжение таблицы 3.1 Транспортно-заготовительные затраты Нтрв % 4,0 Суммарная мощность оборудования ЛВС WЛВС кВт/час 0,9 2. Использование (эксплуатация) ЛВС Тарифная ставка обслуживающего ЛВС персонала Зперс грн. 625 Норма амортизационных отчислений на ЛВС НаПЗ % 4 Отчисление на содерждание и ремонт ЛВС Нр % 10
Читайте также:  Какие анализы сдать при кровотечение

3.1 Расчет затрат на создание проекта ЛВС

Выходные данные для расчёта экономического эффекта создания локальной вычислительной сети приведены в таблице 3.1.

Расчет затрат на разработку проекта проводится методом калькуляции затрат, в основу которого положенная трудоемкость и заработная плата разработчиков.

Трудоемкость разработки проекта Т рассчитывается по формуле:

Т = То + Ти + Ттоп + Тп + Тотл + Тпр + Тд, (3.1)

где То — затраты труда на описание задачи;

Ти — затраты труда на исследование структуры предприятия;

Ттоп — затраты труда на разработку топологии сети;

Тп — затраты труда на прокладку кабеля и подключение пользователей;

Тотл — затраты труда на отладку системы ЛВС на ЭВМ;

Тпр — написание программы минимизации затрат;

Тд — затраты труда на подготовку документации по задаче.

Данные о затратах на проектирование ЛВС и реализацию спроектированного комплекса в училище представлены в таблице 3.2.

Таблица 3.2 — Трудоемкость и зарплата разработчиков ЛВС

Почасовая тарифная ставка

Наименование этапов разработки ЛВС
1 2 4 5 6
Описание задания ЛВС То 30 3,00 90,00
Изучение структуры предприятия Ти 30 2,00 60,00
Разработка топологии сети Та 70 2,50 175,00
Прокладка кабеля и подключение пользователей Тп 110 4,00 440,00
Отладка системы ЛВС Тотл 60 10,00 600,00
Написание программы минимизации затрат ЛВС Тпр 50 5,00 250,00
Оформление документации Тд 20 2,00 40,00
Всего: Т 370 1655,00

Данные по фактической трудоемкости (чел/час) предоставлены ведущим на Украине установщиком кабельных систем ООО «Техника».

Таким образом, полученную трудоемкость по этапам разработки проекта необходимо подставить в формулу (3.1), чел./ч.:

Т = 30+30 +70 +110 +60+50+20 = 370 чел/час.

Основной фонд заработной платы разработчиков определяется по формуле:

где Т — общая (поэтапная) трудоемкость разработки ЛВС, чел./ч.

Читайте также:  Какие анализы нужно принести гастроэнтерологу

Ч — почасовая тарифная ставка специалиста (программиста), грн.

Исходя из имеющихся данных, основной фонд заработной платы будет составлять:

Зпл = 30*3,00 + 30*2,00 + 70*2,50 + 110*4,00 + 60*10,00 + 50*5,00 + +20*2,00 = 1655,00 грн.

3.2 Расчет материальных затрат

Материальные затраты на создание проекта ЛВС рассчитываются исходя из необходимых затрат.

Нормы затрат материалов при разработке проекта и их цена приведены в таблице 3.3.

Таблица 3.3 — Расчет материальных и комплектующих затрат на разработку ЛВС

Материал Норма затрат, шт. Фактическое количество, шт. Цена за единицу, грн. Сумма, грн.
1.НГМД HD 3″ 2 — 5 4 4,50 18,00
2.Бумага формата А-4 500 — 1000 500 0,08 40,00
Всего: å 58,00
ТЗР (4%) 0,01 — 0,04 1,48
Всего: Мв 59,48

3.3 Использование сетевого оборудования

Затраты на использование сетевого оборудования при разработке проектного ЛВС рассчитываются исходя из затрат одного часа по формуле:

где Сч — стоимость работы одного часа сетевого оборудования, грн (данные предприятия).

Тотл — затраты работы на отладку программы на сетевое оборудование, чел./ч.

Тд — затраты работы на подготовку документации по задаче на сетевом оборудовании, чел./ч.

Тпр — написание программы минимизации затрат, чел./ч;

Если на предприятии стоимость 1 часа работы сетевого оборудования не рассчитана, то тогда стоимость работы одного часа сетевого оборудования определяется по формуле:

Сч = Тэл/эн + Саморт + Зперс + Трем, (3.4)

где Тэл/эн — затраты на электроэнергию, грн/ч.;

Саморт — величина 1-го часа амортизации сетевого оборудования, грн.;

Зперс — почасовая зарплата обслуживающего персонала, грн.

Трем — затраты на ремонт, стоимость запасных деталей, грн.

Стоимость одного часа амортизации определяется по формуле:

Саморт = Ст/ср * На/100 * 1/ (Ч раб. сут/нд *Ксмена* Ч раб.нед/год * *Ч раб.час/смена) (3.5)

где Ст/ср — стоимость технических средств, грн — 6000,00 грн.

На — норма годовой амортизации (%) – 3%.

Ч раб. сут/нд – количество рабочих суток в неделе – 5 суток.

Ксмен – количесвто рабочих смен в сутки – 1 смены.

Ч раб.нед/год — количество недель на год, (48 недели/год).

Ч раб.час/смена — количество рабочих часов в смену) – 8 час/смен

Подставляя значения в формулы получаем:

Саморт = 16200*0,3/100 * 1/ (48*5*1*8)=253,21 грн.

(48*5*1*8) = 1920 рабочих часов в год

З час=Зп/месс / Кчас/месс = 1500/160=9,4,

Кчас/мес = 1920 часа/12мес*1смены = 160 часов.

Т рем=16200*3%*1/160=3,04 грн/час.

Сч = Тэл/эн + Саморт + Зперс + Трем = 0,18+0,3+3,85+0,87 = 5,20 грн/час

Подставив данные в формулу 3.3 получим:

З= Сч * ( Тотл + Тд + Тпр) = 5,20*(60+50+20) = 676,00 грн.

3.4 Расчет технологической себестоимости ЛВС

Расчет технологической себестоимости создания ЛВС проводится методом калькулирования затрат (таблица 3.4).

В таблице 3.4 величина материальных затрат рассчитана в таблице 3.3, основная зарплата берется из таблицы 3.2, дополнительная зарплата берется 10 % (см.табл. 3.1) от основной зарплаты, отчисление на социальные мероприятия — 37,2% от основной и дополнительной зарплаты (вместе). Накладные затраты (13 %) от основной зарплаты.

Таблица 3.4 — Калькуляция технологических затрат на создание ЛВС

Наименование статей Условные обозначения Затраты (грн.)
1 Материальные затраты Мз 59,48
2 Основная зарплата З 1655,00
3 Дополнительная зарплата (10% от основной зарплаты) Зд 165,50
4 Отчисление на социальные мероприятия (38,52%) Ос 637,51
5 Накладные затраты предприятия (15 % от основной зарплаты) Ннакл 248,25
6 Затраты на использование сетевого оборудования при складывании проекта и программы ЛВС З 533,00
7 Итого (– Себестоимость создания ЛВС) СЛВС 3298,74

3.5 Расчет капитальных затрат на создание ЛВС

В данном случае необходимо использовать дополнительные денежные средства для приобретения оборудования для ЛВС. Перечень необходимого оборудования представлен в таблице 3.5. Цены на перечисленное ниже оборудование взяты из прайс-листа ООО «Техника». Компания является крупнейшим поставщиком офисной техники в восточной Украине, что гарантирует приемлемый уровень цен.

Таблица 3.5 – Перечень расчет капитальных затрат на приобретение оборудования

Наименование Единицы измерения Количество Цена за единицу (грн.) Общая стоимость (грн.)
GETNET 16 PORT Switch 10/100 GS-D16P шт. 1 330,00 330,00
Кабель FTP, Cat.5 Enh, system бухта 305 м. AMP (USA) м. 12 40,50 486,00
Дюбель быстрого монтажа шт. 420 0,44 184,80
Штекер RJ 45 шт. 30 0,17 5,10
Итого (Кзатр.оборудов.) 1005,9

Стоимость работ по монтажу (Ст.лок.) и настройке кабельной сети предоставлена ООО «Техника» и составляет 91,50 грн.

Полученные результаты, приведены в таблице 3.6.

Таблица 3.6 — Капитальные затраты на создание ЛВС

1. Прямые затраты на создание ЛВС

Наименование показателей Условные обозначения Сумма (грн.)
Пр/затрат 1097,40
2. Сопутствующие затраты на создание ЛВС (10% от Пр/затрат) Ст.соп.затраты 177,84
Всего (Кз/лвс) Кн 1275,24

Кз/ЛВС= Пр/затрат+ Ст.соп.затраты = 1097,40+177,84=1275,24 грн.

3.6 Затраты при эксплуатации ЛВС

Зарплата обслуживающего персонала рассчитывается по формуле:

Зо = Чпер * То * Тст./час * (1 + ) * ( 1 + ), (3.7)

где Чпер. — численность обслуживающего персонала, лиц – 8 человека;

То — время обслуживания системы ЛВС, часов – 1920 часов/год;

Тст/час — почасовая тарифная ставка обслуживающего персонала, грн. – 2,5 грн.;

Нд — норматив дополнительной зарплаты, 10%

Нсоц — норматив отчислений на социальные мероприятия, 38,52%.

Время обслуживания ЛВС рассчитаем по формуле:

То= Ч раб. сут/нд *Ксмена* Ч раб.нед/год * *Ч раб.час/смена (3.8)

Численность обслуживающего персонала составляет 3 лица, поэтому зарплата обслуживающего персонала составит:

Амортизационные отчисления А на использование ЛВС рассчитываются по формуле:

А = Кз/лвс * + Слвсанм (3.9)

где Кз/лвс — стоимость технических средств ЛВС, грн. – 1275,24 грн (см. таблицу 3.6);

На — норма амортизационных отчислений – 4% (см. таблицу 3.1);

Слвс – себестоимость создания сети – 3298,74 (см. таблицу 3.4);

Нанм – норма годовой амортизации на нематериальные активы (15%).

Для проектируемого варианта амортизационные отчисления составляют:

Поскольку количество используемых компьютеров не изменилось в связи с установкой сети, расчет затрат на электроэнергию будет производится только для добавленного активного сетевого оборудования.

Затраты на использованную активным сетевым оборудованием электроэнергию рассчитываются по формуле:

З эл/эн = Wлвс * Тлвс * Тэл/эн (3.10)

где Wлвс -суммарная мощностьоборудования ЛВС, кВт/ч – 0,9 кВт/час.

Тлвс — время работы ЛВС на ЭВМ за год; часов – 1 смены.

Тэл/эн — стоимость одной квт/ч. электроэнергии = 0,5846 грн.

Предполагается, что ЛВС работает постоянно, поэтому время ее работы:

Подставляя значения в формулу 6.9 получим:

Затраты на ремонт и эксплуатацию технических средств определяются по формуле:

Зр = Стз * , (3.11)

где Стз — стоимость технических средств, грн.

Нр — отчисление на эксплуатацию (содержание), ремонт ЛВС, %.

Для проектируемого варианта:

Все результаты расчетов по затратам на все время (за год) эксплуатации ЛВС приводятся в таблице 3.7.

Таблица 3.7 — Годовые затраты при использовании ЛВС

Виды затрат Условные обозначе-ния Единица измерения Величина затрат, (грн.)
Зарплата обслуживающего персонала (1655,00 *12) Зо грн. 19860,00
Стоимость электроэнергии Зэл/эн грн. 1010,19
Амортизационные отчисления ЛВС А лвс грн. 3096,00
Ремонт и эксплуатация ЛВС Зр. грн. 1620,00
Всего å грн. 25586,19

3.7 Расчет экономического эффекта на создание и эксплуатацию ЛВС

Рассчитаем годовой экономический эффект от внедрения кабельной сети:

1) Доходы от эксплуатации проектируемого оборудования:

— предоставление доступа в глобальную сеть Internet;

— аренда вычислительных мощностей ПЭВМ;

— распечатка различной документации;

Изучив спрос на подобные услуги в компьютерных клубах г. Северодонецка и проанализировав журналы учета работы в трех организациях, а именно:сеть компьютерных клубов «Галактика», компьютерный клуб «Кибермен», компьютерный клуб «Компас», компьютерный клуб «Малахит», предоставляющих подобные услуги, можно сделать следующий прогноз о коммерческом использовании проектируемого оборудования за один час рабочего времени:

— работа в Internet – 3 клиент/час;

— работа на ПЭВМ без использования Internet – 5 клиентов/час;

— распечатка документации – около 20 страниц формата А4.

Стоимость часа работы в Internet в г. Северодонецк составляет в среднем 5,00 грн.

Стоимость часа работы на компьютере составляет 4 грн.

Стоимость распечатки страницы формата А4 – 0.35 грн.

Таким образом, анализируемая ЛВС, в случае использования ее в коммерческих целях могла бы приносить (за ежедневное время работы) – 4*5,00+5*4,00+35*0,35 = 52,25грн/час, 52,25*8 = 418,00 грн/день, что составит за год около – 418*22раб/дн*12мес=110 352,00 грн.

2) Доходы от переквалификации работников предприятия.

В связи с автоматизацией процессов Управление труда и социальной защиты населения может отказаться от услуг 1 работника. Следовательно, экономия фонда заработной платы за год составит 12 мес* 669 грн.=8 028,00 грн.

Суммарный годовой экономический эффект от внедрения ЛВС составит разницу ежегодных затрат на обеспечение функционирования ЛВС и прибыли по всем направлениям использования:

где Эк – доходы от коммерческого использования оборудования (110 352,00 грн.);

Эп – доходы от переквалификации работников (8028,00 грн.);

Зф – годовые затраты на функционирование ЛВС (19 268,10 грн.);

Таким образом Эг =110 352,00+8028,00-19 268,10= 99 111,90грн.

Т ок= Кз/лвс/Эг= 1097,40*12 / 99 111,90грн=0,13 года.

Из этой цифры видно, что затраты на создание и внедрение ЛВС окупятся максимум в течение 6 месяцев.

Расчетные значения основных технико-экономических показателей приводятся к таблице 3.8.

Таблица 3.8 — Технико-экономические показатели разрабатываемой ЛВС

Наименование Условные обозначения Единицы измерения
Технические
1. Скорость передачи Ск Mb/s 100 100
2. Потребленная мощность W кВт/ч 0,9 0,9
3. Общая длина линий L м 1254 1254
4. Выход в Іnternet Да Да

Разработанная ЛВС помогает улучшить технические характеристики, позволяющие значительно увеличить производительность труда работников Службы по делам детей Северодонецкого городского совета и дает новые возможности для расширения деятельности.

Кроме этого, при введении в эксплуатацию ЛВС позволяет сократить обслуживающий персонал на 1 лицо, что позволяет дополнительно сэкономить 8028,00 грн. в год (при минимальной заработной плате обслуживающего персонала – 669,00 грн.)

Также внедренная технология имеет более высокую надежность, что позволяет сократить численность обслуживающего персонала и тем самым снизить расходы на ее содержание.

Проектируемая система ЛВС даст полученный годовой экономический эффект в сумме 112 554,42грн. что разрешит окупить затраты в течение 6 месяцев.

4.1 Организация рабочего места

Безопасные условия работы на компьютерах регламентирует документ «Гигиенические требования к видеодисплейным терминалам, персональным ЭВМ и организации труда» (Санитарные правила и нормы – СанПиН 2.2.2 542-96). В санитарных правилах и нормах СанПиН 2.2.2 542-96 даются общие требования к организации и оборудования рабочих мест из ВДТ и ЭВМ.

Планирование рабочего места называют просторное размещение основного и дополнительного оборудования, оснащения и предметов труда.

Рабочие места организовывают соответствующей мебелью и инвентарем, которые отвечают наиболее комфортабельным условиям работы и потребностям физиологии, психологии и эстетики.

Размещая производственные участки и оборудования, необходимо придерживаться следующим условиям:

— при размещении оборудования придерживаться необходимым размерам промежутков между оборудованием, расстояний от стен, которые должны обеспечивать свободу перемещения людей, удобство выполнения работ и безопасность работающих;

— рабочие места операторов ПК, а также участки подготовки технических носителей информации необходимо иметь в своем распоряжении ряды;

— размещение мест может быть дворядным, трирядным, четырерядным;

— размещение рядов может быть прямым и поперечным;

— создавать на рабочих местах нормальные условия работы.

При реализации перечисленных условий необходимо расчетливо тратить средства на приобретение техники и оборудования перемещений.

Зрительные нагрузки связаны с влиянием на зрение дисплея (видеотерминала — ВДТ). Чтобы условия труда оператора были благоприятными, снизилась нагрузка на зрение, видеотерминал должен отвечать таким условиям:

— экран должен иметь антибликовое покрытие;

— цвет знаков и фона должны быть согласованы между собой. При работе с текстовой информацией наиболее благоприятным для зрительной работы оператора есть представление черных знаков на белом фоне.

— для многоцветного изображения рекомендуется использовать одновременно максимум 6 цветов – пурпурный, голубой, синий, зеленый, желтый, красный, а также черный и белый;

— необходимо регулярное тщательное обслуживание терминалов специалистами.

Конструкция рабочего стола должна обеспечивать оптимальное размещение на рабочей поверхности использованного оборудования с учетом его количества и конструктивных особенностей (размер ВДТ ЭВМ, клавиатуры и др.) характера выполняемой работы.

Высота рабочей поверхности стола должна регулироваться в пределах 680-800 мм; при отсутствии такой возможности высота рабочей поверхности стола должна составлять 725 мм. Модульными размерами поверхности стола для ЭВМ, на основе которых рассчитывается конструктивные размеры, необходимо считать: ширину 800, 1000, 1200 и 1400 мм, глубину 800 и 1000мм при нерегулируемой его высоте, равной 725мм.

Рабочий стол должен иметь пространство для размещения ног, которое составляет: высоту – не меньше 450 мм и на уровне вытянутых ног – не меньше 650мм.

Рабочий стул (кресло) должен быть подъемно-поворотным и регулированным по высоте и углам наклона сидения и спинки, а также расстояние спинки от переднего края сидения.

Конструкция стула должна обеспечивать:

— ширину и глубину поверхности сидения не менее 400мм;

— поверхность сидения с закругленным передним краем;

— регулирование высоты поверхности сидения в пределах 400-550мм и углов наклона вперед 150 и назад до 50мм;

— высоту опорной поверхности спинки 300±20мм, ширина не менее 380мм и радиус кривизны горизонтальной площади 400мм;

— угол наклона спинки вертикальной плоскости 0±300мм;

— регулирование расстояния спинки от переднего края сидения в пределах 260-400мм.

Рабочее место должно быть оборудовано подставкой для ног, которая имеет ширину не менее 300мм, глубину не менее 400мм, регулирование по высоте в пределах до 150мм и по углу наклона опорной поверхности подставки до 200. Поверхность подставки должна быть рефленной и иметь по переднему краю бортик 10 мм.

Клавиатура компьютера лучше всего размещать 10-15 мм от края стола, тогда запястья рук будут опираться на стол.

Для эффективного использования манипулятора типа «мышь» необходим специальный «коврик» – планшет. Коврик-планшет должен удовлетворять основным критериям: во-первых, хорошо держаться на поверхности стола, во-вторых, материал верхней поверхности планшета должен обеспечивать хорошее сцепление с шариком, но не усложнять движение мыши.

4.2 Организация и расчет отопления

Отопление предназначено для обеспечения температурных условий в помещении соответственно требований санитарных норм в холодное и переходное времена года. Обогреваться может все помещение, а также отдельные рабочие места.

Отопительные системы состоят из таких основных элементов: генератор тепла – установка, в которой тепло, полученное за счет горения или преобразованное электрической силой передается воде, пару, воздуху, нагревательные приборы, которые передают тепло воздуху, трубопроводы, по которым теплоносители передаются от генератора к нагревательным приборам.

При водяном отоплении теплоносителемявляется нагретая вода температуройдо 100 о С и выше. В паровых системах теплоноситель – пар – перемещается к отопительным приборам под собственным давлением.

Теплоноситель в воздушных системах – этот горячий воздух, который нагревается в калорифере, по строению различают центральное или местное воздушное отопление. В центральных системах нагретый воздух подается к помещениям по трубопроводам. Из существующих систем центрального отопления самым распространенным является система водяного отопления низкого давления. Она имеет такие санитарно-гигиенические и эксплуатационные свойства: возможность регуляции теплоотдачи отопительных приборов в зависимости от температуры внешнего воздуха, изменения температуры или расходы горячей воды; пожарная безопасность; долговечность системы (срок эксплуатации 30-50 лет); возможность размещения отопительных приборов вдоль внешних стен и под окнами; простота эксплуатации.Эти системы используют преимущественно для отопления бытовых и общественных помещений.Системы водяного отопления высокого давления используют для отопления производственных помещений. В таких системах температура воды составляет 130-145 о С. Относительно санитарно-гигиенических характеристик водяного отопления высокого давления, то они уступают системам низкого давления.Для отопления общественных зданий также применяют комбинируемые пароводяные системы.Чтоб предотвратить проникновение холодного воздуха к помещениям, ворота, двери или технологические прорези оборудуют воздушными или воздушно-тепловыми завесами.Расчет потери воды Службы по делам детей содержит в себе такие разделы: бытовые потребности и отопление.Потери воды на бытовые нужды рассчитываются:

где N – количество человек, N=7,

Др. – дни роботы за год, Др.=240 дня

S = 30,3+6,0+3,9+56,8+4,8+9,7+3,9+1,5+2,6+3,4=122,9 м 2

Qп = ((40*7+1,5*122,9)*1,2*240)/1000 = 133,73 м 3

Расчет отопления.Годовая потребность пара на отопление рассчитывается по формуле:

где gт – расходы тепла на 1 м 3 помещение, gт = 30, ккал/год;

t – количество часов отопления, t = 240 х 24 = 5760 год;

V – объем сооружения, V = S x H = 122,9*3 = 368,7 м 3 ;

Е – теплота испарения, Е = 540, Гкал/год.

Qo = ((30*5760*368,7)/(540*1000)*1,826=215,44 м 3

В связи с тем, сто компьютерный клуб относится к помещениям общественного типа необходимо произвести расчет вентиляции помещений без вредных выделений.

Объем подаваемого воздуха рассчитывают по формуле:

где К – кратность воздухообмена (принимается ровной 6-10), 1/годину;

V — объем рабочего помещения, м 3

Расчет вентиляционных систем при излишке тепла в помещении.

Объем воздуха, которое подается в помещение с излишком тепла, расчитывается по формуле:

где Qнад – излишек тепла (берется с теплового баланса)

Ср – теплоемкость воздуха (Ср=1кДж/кг*град при Т=293° К)

Ρ – плотность воздуха (ρ= 1,198 кг/м 3 при 293° К)

Θподав – температура воздуха, которое подается

Θвывод — температура воздуха, которое выводится

где tр.з – температура рабочей зоны

Δt – температурный градиент по высоте помещения = 25,3 0

H – расстояние от пола до центра вытяжных отверстий = 2,5 м

м 3

4.4 Расчет искусственн ого освещения помещений

Светотехнические расчеты являются основой при проектировании осветительных установок. Целью расчета является определение нужного светового потока светильников, за которым в справочных таблицах находят наиболее близкое значение мощности стандартной лампы нужного типа. Считается допустимым, если световой поток выбраной стандартной лампы отличается от расчетного не более чем на -10 или +20%.

Определяем расстояние от потолка до светильника:

Возможная высота подвески светильника над осветительной поверхностью:

Высота подвески светильника над полом соответственно:

расстояние между центров светильника составляет:

Необходимое количество ламп:

N = S/ L 2 где S площадь помещения

4.5 Расчет природного освещения помещений

Освещение производственных помещений влияет на состояние здоровья, продуктивность работы, качество продукции и уровень производственного травматизма. Организация правильного освещения рабочих мест, зон обработки и производственных помещений имеет большое санитарно-гигиеническое значение, способствует повышению продуктивности работы, снижения травматизма, улучшения качества продукции. И наоборот, недостаточное освещение усложняет исполнения технологического процесса и может быть причиной несчастного случая и заболевания органов зрения.Освещение должно удовлетворять такие основные требования:- быть равномерным и довольно сильным;

— не создавать различных теней на местах работы, контрастов между освещенным рабочем местом и окружающей обстановкой;

— не создавать ненужной яркости и блеска в поле взора работников;

— давать правильное направление светового потока;

Все производственные помещения необходимо иметь светлопрорезы, которые дают достаточное природное освещение. Без природного освещения могут быть конференц залы заседаний, выставочные залы, раздевалки, санитарно-бытовые помещения, помещения ожидания медицинских учреждений, помещений личной гигиены, коридоры и проходы.

Коэфициент природного освещения:

Где Ен – значение КПО для III пояса светового климата

m – коэффициент светового климата

с – коэффициент солнечности климата

а = 0,07+0,1+0,17=0,34 (можно сказать, что для площади 280,7 м 2 19 окон достаточно для естественного освещения)

Где a- световой коэффициент;

ΣSв – суммарная площадь окон в помещении;

Sп – площадь пола в этом же помещении – 122,9 м 2 ;

Расчет необходимой суммарной площади окон по формуле:

Расчет площади одного окна:

Суммарная площадь окон и ламп:

В данном дипломном проекте были сформулированы технико-экономическое обоснование модернизации ЛВС, проанализирована структурная схема ЛВС, спланированы информационная безопасность и произведены экономические расчеты.

В дипломном проекте мною была проанализирована локальная сеть Службы по делам детей Северодонецкого городского совета, даны рекомендации по расширению ЛВС и защите информации.

Анализ показал, что целями создания локальной сети Службы по делам детей Северодонецкого городского совета являются:

— совместная обработка информации;

— совместное использование сетевых ресурсов, таких как локальные диски, сетевой принтер, доступ в Интернет;

— централизованное управление компьютерами;

— централизованное резервное копирование всех данных;

— контроль за доступом к информации.

Проанализировав существующую сеть можно сказать, что используемая технология – FastEthernet, топология – «звезда», а используемое кабельное соединение — витая пара категрии 5 (неэкранированная). Она позволяет передавать информацию со скоростью до 100 Мбит/с. В качестве ретранслятора используется GETNET 16 PORT Switch 10/100 GS-D16P. Преимуществами являются низкая цена и легкая наращиваемость.

Такая конфигурация сети полностью удовлетворяет требованиям по обеспечению бесперебойного документооборота и по использованию совмесных ресурсов. Так как в сеть объединены 5 компьютеров, будет обеспечено высокое быстродейсвие передачи данных в сети. При моделировании видно, что соединение 100 Мбит/с используется не на полную мощность, что позволит развивать и увеличивать сеть, не задумываясь о скорости передачи данных.

При увеличении числа рабочих станций не нужно будет менять сетевое оборудование, необходимо только добавить отдельные компоненты, такие как дополнительные линии связи, так как свободными остаются еще 11 портов Switch 10/100 GS-D16P.

Так же можно сказать, что для поддержания бесперебойной работы сети, я рекомендую заменить участки линий связи, проходящие в коридоре на экранированную витую пару.

Использование анализируемой ЛВС даст годовой экономический эффект в сумме 112 554,42 грн., что позволит окупить затраты в течение 6 месяцев.

В разделе охраны труда был произведен расчет отопления, вентиляции, природного и искусственного освещений. Сравнив их с нормативными значениями, сделала вывод, что все нормы охраны труда соблюдаются.

1. Кульгин М. В. Компьютерные сети. Практика построения.–СПб., 2003.

2. Медведовский И. С. DNS – под прицелом. – СПб., 2003.

3. Олифер В.Г., Олифер Н.А. Компьютерные сети: принципы, технологии, протоколы.– СПб., 2001

4. Пьянзин К. К. Настройка серверов имен DNS. – М., 2005.

5. Фадеев А. С. Конфигурирования сервиса DNS. – М., 2005.

6. Фратто М. М. Механизмы защиты корпоративных сетей.-М.,2001

7. Фратто М. М. Межсетевое экранирование. — М., 2002.

8. Шалин П. А. Компьютерная сеть своими руками. – СПб., 2003.

9. Акулов О. А. Информатика: базовый курс. – М.: Омега-Л, 2004.

10. Барсуков В. С., Тарасов О. В. Новая информационная технология. Вычислительная техника и ее применение. 2001

11. Вычислительные системы, сети и телекоммуникации: Учебник для вузов.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ БАЗОВЫХ ТЕХНОЛОГИЙ ПОСТРОЕНИЯ ЛОКАЛЬНЫХ СЕТЕЙ

Параметры сети Базовые технологии
Ethernet Token Ring Arcent
Стандарт IEEE8023 IEEE8025 Datapaint
Типология Шина Кольцо Шина
Скорость передачи 100 Мбит/с 16 Мбит/с 25 Мбит/с
Длина 5 км 120 км 6 км
Метод управления CSMA/CD Маркер Маркер
Код Манчестер Биоразрядный Arcent
Количество бит До 1024 До 260 До 255

— Процессора Intel Core 2 Quad 2.33 Ghz

— Материнская плата — на базе чипсета Intel P35Express + ICH10

— Оперативная память — DDR II 4 GB PC2-6400 800 MHz

— Жесткийдиск — 150 GB Serial ATA 16 Mb

— Графический акселератор — NVIDIA 9600GT 512MB/256bit

— Оптический привод DVD -RW/+RW

— Корпус — ATX Middle Tower GIGABYTE GZ-X1 420W (Brand GIGABYTE)

Клавиатура PS/2 A-4 Tech KB(S)-26

— Процессор – AMD Socket AM2 ATHLON 64 X2 5400+ BOX

— Материнскаяпрлата – ASUS M2A-VM SocketAM2 AMD 690G PCI-E

— Оперативная память – DDR 512 PC3200

— Жёсткий диск — SATA II 160.0g 7200 Samsung 8Mb (NCQ)

— Оптический привод DVD -RW/+RW

— Корпус ATX Midle Tower ASUS TA-668, 350W

— Монитор CRT 17″ LG F720B FLATRON

— Клавиатура PS/2 A-4 Tech KB(S)-720

— Процессор – AMD Socket AM2 ATHLON 64 X2 5200+ BOX

— Материнская прлата – MB Asus P4PE-2x

— Оперативная память – DDR 512 PC3200

— Жёсткийдиск — USB 2.0 PRESTIGIO Data Safe II 2.5″ 160GB USB 2.0

— Оптический привод DVD -RW/+RW

— Корпус ATX 4U 4203, 350 W Black

— Монитор 19″ TFT Prestigio P1910

— Клавиатура PS/2 A-4 Tech KB(S)-720

Наименование Количество
Сервер 2 шт
Сетеваякарта D-Link DFE-530TX+ Ethernet PCI 10/100 5 шт
Коммутатор GETNET 16 PORT Switch 10/100 GS-D16P 1 шт
Кабель UTP5 12 м
Принтер Canon LBP-3010 1 шт
Разъем RJ-45 10 шт

ПЛАН ПОМЕЩЕНИЯ И СХЕМА ОРГАНИЗАЦИИ ЛОКАЛЬНОЙ СЕТИ СЛУЖБЫ ПО ДЕЛАМ ДЕТЕЙ СЕВЕРОДОНЕЦКОГО ГОРОДСКОГО СОВЕТА

источник