Меню Рубрики

Как отобрать для анализа серную кислота

9zip.ru Инструкции Примеси в растворах серной кислоты, их действие, обнаружение и удаление

Как попадают примеси в кислоту и ее раствор? Во-первых, примеси могут попадать в кислоту в процессе ее производства, при разливе и т. п. К таким примесям в первую очередь относятся железо, марганец и прочие примеси. В связи с этим рекомендуется при получении кислоты произвести анализ ее на месте до заливки аккумуляторов. То же самое надо сделать с дистиллированной водой. Однако следует иметь в виду, что чаще всего загрязнения попадают в раствор кислоты уже в процессе эксплуатации самих аккумуляторов.

Кроме того, в раствор ск, находящийся в аккумуляторах, примеси могут поступать из самих пластин, сепараторов, грязных сосудов, с доливаемой водой, пылью и т. п. В связи с этим в процессе эксплуатации аккумуляторов надо периодически проверять раствор ск, используя химические лаборатории даже тогда, когда никаких нарушений в работе аккумуляторов не замечено. Это позволит сохранить необходимую чистоту раствора ск и заблаговременно принять меры к его очистке или профилактические меры по предупреждению возможного попадания вредных примесей или, наконец, к своевременной замене раствора новым. Рассмотрим, какое влияние на работу аккумуляторов и их состояние оказывают в первую очередь те примеси, которые регламентированы ГОСТ 667—53 (см. табл. 3.7), если количество их превышает допустимую норму, как их обнаруживать и как с ними бороться.

Марганец оказывает вредное воздействие на состояние и работу аккумуляторов, поэтому допустимая примесь его выражается очень малой величиной. Марганец повышает саморазряд пластин обеих полярностей. Образующаяся у положительных пластин марганцевая кислота окрашивает раствор ск в розово-малиновый цвет. Активная масса сульфатируется. Сильно понижается емкость положительных пластин, так как поры активного слоя положительных пластин засоряются двуокисью марганца и закупоривают их. У отрицательных пластин одновременно с образованием свинцового сульфата выделяется черная пленка двуокиси марганца, которая оседает на стенках сосуда и всплывает на поверхность раствора. На поверхности пластины появляется рыхлый слой, который постепенно опадает на дно сосуда. Оседая на поверхности положительных пластин, двуокись марганца покрывает пластины плохо проводящим слоем.

Во время заряда аккумулятора, пластины которого загрязнены двуокисью марганца, интенсивно выделяется водород. Пластины почти не принимают заряда. Большая часть зарядного тока идет на окисление двуокиси марганца и частично на выделение кислорода, который у исправных аккумуляторов окисляет сульфат свинца до двуокиси свинца.

Процесс заряда не достигает слоев активной массы, лежащих более глубоко из-за закупорки пор двуокисью марганца.

Таким образом, марганец не только повышает саморазряд пластин обеих полярностей, но и понижает их емкость. При больших количествах марганца в растворе электролита аккумулятор очень быстро саморазряжается. Так, например, при наличии 0,025% марганца аккумуляторы в течение месяца теряют большую часть своей емкости и не поддаются заряду.

Марганец разрушающе действует на деревянные сепараторы — они отбеливаются, утоньшаются, покрываются сквозными отверстиями.

Практические способы удаления марганца из аккумуляторов не разработаны. Если присутствие марганца обнаружено в серной кислоте или воде до их заливки в аккумулятор, то пользоваться ими не следует. Присугс1вие марганца в растворе кислоты может быть предварительно проверено. Для этого на фильтровальную бумагу наносят пару капель раствора ск, а затем на образовавшееся пятно каплю аммиачного раствора азотнокислого серебра. Наличие марганца отмечается появлением черного пятна. Для точного опреде- ления процента содержания марганца в кислоте или воде должен быть произведен лабораторный анализ. В тех случаях, когда количество марганца в растворе ‘ск превосходит незначительно (на несколько %) допустимую норму и необходимо, чтобы аккумуляторы временно оставались в работе, аккумуляторные батареи следует: держать в состоянии постоянного подзаряда, напряжение подзаряда увеличить против нормы на 5— 6%, не допускать глубоких разрядов и не оставлять их в разряженном состоянии; каждый заряд аккумуляторов следует производить с перезарядом. Кроме того необходимо ввести в систему более частый контроль емкости аккумуляторов, разряжая их в режиме, при котором они должны отдавать номинальную емкость. Железо—наиболее часто встречающаяся примесь, опасная для аккумулятора.

В аккумуляторе железо растворяется и переходит в сернокислую соль закиси железа. У положительной пластины эта соль окисляется двуокисью свинца до соли окиси. При этом активное .вещество положительной ‘пластины сульфатируется и выделяется вода. Таким образом, фактически происходит разряд положительной пластины. Во время заряда аккумулятора соль окиси железа с положительных пластин переносится к отрицательным, окисляет губчатый свинец, т. е. разряжает минусовые пластины. Во время разряда железо вновь переносится к положительным пластинам и описанный выше процесс положительной пластины повторяется вновь. Таким образом, одно и то же количество железа попеременно разряжает то положительную (при разряде), то отрицательную пластину (при заряде). Замечено, что отрицательные пластины подвергаются более сильному воздействию железа, чем положительные, если судить по тому привесу, который получают пластины под действием железа. Однако при больших количествах железа в аккумуляторе воздействие его на положительные пластины может стать разрушительным, так как пластины (особенно поверхностного типа) теряют механическую прочность. При этом пластины приобретают красноватый оттенок и становятся жесткими на ощупь. Емкость положительных пластин существенно снижается. Нормы допускают наличие в серной кислоте довольно большого количества железа (в 120 раз больше, чем, например, марганца). Это само по себе указывает на то, что вредное действие железа меньше, чем марганца. Однако следует помнить, что превышение допустимой нормы железа в электролите неизбежно ведет к повышению саморазряда, если это . отступление от нормы не велико, а при больших долях примеси — к порче аккумуляторов. Опыт показал, что аккумуляторы, в растворе которых содержится 0,5% железа, полностью саморазряжаются в течение 10 суток.

Один способ качественной проверки серной кислоты состоит в следующем. Чтобы определить содержание железа, в пробирку наливают 25 см куб. 50% раствора серной кислоты. Для растворения должна применяться дистиллированная вода, проверенная на отсутствие железа. Добавляют 1 еж3 азотной кислоты с удельным весом 1200. Смесь нагревают на спиртовой лампе до кипения. После охлаждения смеси до комнатной температуры к ней добавляют 2—3 см3 раствора желтой кровяной соли. Если жидкость приобретает синюю окраску, то значит содержание железа недопустимо большое. Если примеси железа меньше 0,004%, жидкость становится зеленоватого цвета. При несколько большем количестве примеси до 0,012% жидкость окрашивается в бледно-голубой цвет. Такая серная кислота пригодна для применения в аккумуляторах. Этот способ позволяет обнаруживать присутствие железа до 0,0005%.

По другому способу качественной проверки серной кислоты пробу кислоты окрашивают в розовый цвет раствором марганцовокислого калия. Затем добавляют несколько капель сильного яда — роданистого калия. Если после этого смесь становится вишневого цвета, то кислота может считаться пригодной для применения в аккумуляторах. При количестве железа больше допустимого роданистый калий делает пробу непрозрачной. Наличие железа в серной кислоте может быть проверено капельным методом качественного анализа по способу проф. Н. А. Тананаева. Для этого на фильтровальную бумагу наносят одну каплю раствора желтой кровяной соли, а затем на то же место наносят каплю испытуемой кислоты. При количестве железа сверх допустимого пятно на бумаге приобретает синий цвет.

Полное удаление железа из аккумулятора затруднено. Для снижения содержания железа аккумулятор надо разрядить, удалить раствор серной кислоты, промыть, а затем залить его дистиллированной водой и поставить на заряд.

Затем воду заменяют раствором серной кислоты, разряжают аккумулятор и берут пробу раствора для анализа. Если содержание железа остается еще большим, раствор ск опять удаляют и заливают аккумуляторы более слабым раствором. Затем дают полный заряд и вновь проводят анализ раствора ск. Обычно после двух-трех смен раствора ск процент присутствия железа существенно понижается.

Мышьяк в основном действует на отрицательные пластины, вызывая их сульфатацию. Вес пластины увеличивается за счет мышьяка и сульфата свинца. Растет напряжение при заряде (до 2,8—3,0 в) из-за более высокой поляризации отрицательных пластин. На положительные пластины мышьяк не оказывает вредного воздействия, их потенциал изменяется незначительно.

Обычно мышьяк обнаруживается в растворе серной кислоты в незначительных количествах и постепенно выходит из раствора в виде мышьяковистого водорода, обладающего запахом чеснока. Газ этот очень ядовит. Присутствие мышьяка в кислоте определяется следующим образом. Раствор кислоты (1 см3 кислоты на 10 см3 воды) вливают в пробирку и нагревают до 70—80° С. В нагретый раствор ск опускают спираль из алюминиевой проволоки (или алюминиевой фольги), закрывают пробирку сухой ватой, пропитанной раство- ром уксуснокислого свинца. Затем пробирку (сверх вложенной ваты) покрывают фильтровальной бумагой. Бумагу прокалывают Б нескольких местах булавкой и поверх проколов кладут на бумагу кристаллик азотнокислого серебра. Если в течение 5 мин кристаллик пожелтеет, то это укажет на присутствие мышьяка. Алюминиевая проволока должна быть предварительно сама проверена на отсутствие в ней мышьяка. Для этого проверку проводят описанным выше способом, применяя чистую серную кислоту, не содержащую мышьяка. Действие сурьмы аналогично по своему характеру действию мышьяка, но оно намного сильнее. Известно, что до 10% сурьмы закладывается в решетку положительной пластины для повышения ее кислостойкости. Выделяясь из постепенно разрушающихся положительных пластин, сурьма переносится через раствор ск к минусовой пластине,. оседая на губчатом свинце. Свежевыделившаяся сурьма химически очень активна. Сурьма и губчатый свинец образуют коротко-замкнутые элементы, в результате чего губчатый свинец сульфатируется. Такой процесс продолжается, постепенно усиливаясь на всем протяжении работы аккумуляторов. Он тем интенсивнее, чем больше сурьмы в решетке плюсовой пластины. Таким образом, сурьма сильно повышает саморазряд. Аккумулятор теряет емкость, снижается его кпд.

Описанный процесс происходит при заряде, а при последующем разряде эта сурьма покрывается сульфатом свинца и вредное действие ее снижается.

Хлор попадает в раствор ск или с дистиллированной водой или с аккумуляторной кислотой, содержащей соляную кислоту или ее соли. Хлористые соединения очень вредны для аккумуляторных пластин, так как вызываю! значительный саморазряд. Срок службы положительных пластин сокращается вследствие коррозии основы. Деревянные сепараторы, главным образом, на стороне, обращенной к плюсовой пластине, светлеют, приобретают цвет слоновой кости и становятся хрупкими.

В результате химического взаимодействия соляной кислоты с двуокисью свинца (активный материал положительной пластины), последняя превращается в хлористый свинец. При этом выделяется хлор. Химическая реакция у минусовой пластины в результате взаимодействия соляной кислоты с губчатым свинцом приводит также к образованию хлористого свинца. При этом выделяется водород. Под влиянием раствора серной кислоты хлористый свинец на обеих пластинах образует сульфат (сернокислый свинец) и соляную кислоту. Дальше на плюсовой и минусовой пластинах процесс повторяется.

Выделяясь на положительной пластине и выходя наружу, свободный хлор создает характерный резкий запах. Сульфат свинца, образовавшийся под воздействием соляной кислоты на поверхности обеих пластин, приводит к уменьшению емкости аккумулятора, так как корка сульфата, закупоривая поры активной массы, мешает участию лежащих под этой коркой активных материалов в токообразующих электрохимических процессах. Практические наблюдения показали, что при наличии в растворе серной кислоты 0,02% соляной кислоты саморазряд аккумулятора повышается в 3 раза против нормального.

Благоприятным для аккумуляторов, загрязненных хлором, является то, что он сам медленно удаляется из раствора даже у неработающих аккумуляторов. Что же касается тех аккумуляторов, которые работают в режиме заряд—разряда и часто подвергаются нормальным разрядам, то они довольно быстро освобождаются от хлора. Учитывая это обстоятельство, целесообразно дать аккумуляторам три-четыре цикла заряд—разряда (с разрядом на 100%) в нормальном режиме, чтобы значительная часть хлора ушла из аккумулятора. Более надежный способ удаления соляной кислоты (хлора) из аккумуляторов состоит в следующем. Аккумулятор разряжают, удаляют загрязненный раствор ск, промывают сосуд и пластины дистиллированной водой, заливают аккумулятор слабым раствором ск (уд. вес 1180— 1190 кг/м3) и дают полный заряд. Желательно провести после этого контрольный разряд и затем заряд с перезарядом.

Как уже упоминалось, очень часто хлор вносится в аккумулятор вместе с доливаемой водой, поэтому важно постоянно контролировать доливаемую воду. Если с каждой порцией воды в аккумулятор поступают новые порции хлора, то лечение аккумулятора путем проведения упоминавшихся циклов заряд— разряда становится бессмысленным. В этих условиях присутствие хлора приобретает стойкий характер и вместе с неизменным увеличением саморазряда портятся положительные пластины и сокращается срок их службы.

Помимо внесения хлора с доливаемой водой, хлор может попадать в аккумулятор с потолочной капелью, если потолки аккумуляторного помещения побелены с применением известкового раствора.

Соленая вода (соль, как известно, состоит из натрия и хлора) не должна попадать в аккумуляторы, так как она вызывает саморазряд, сопровождающийся образованием сульфата свинца, сульфата натрия и газообразного хлора, который постепенно выделяется из раствора.

Хлор сам по себе относится к числу удушливых газов, вредных для обслуживающего персонала. Кроме того, свободный хлор, выделяющийся из аккумуляторов, смешиваясь с выделяющимся из тех же аккумуляторов водородом, может образовать гремучую смесь, которая взрывается при воздействии на нее прямых лучей солнца.

Присутствие хлора в серной кислоте может быть проверено -следующим способом. В стеклянную пробирку наливают 5 см3 испытуемой кислоты и разбавляют ее дистиллированной водой (проверенной предварительно на отсутствие хлора). Доводят объем раствора до 50 см3, затем прибавляют 10 капель азотной кислоты уд. весом 1200 кг/м3, а затем около 0,5 см3 10-процентного раствора азотнокислого серебра (ляписа) и перемешивают их. Если по истечении 10 мин опаловое замутнение не возникает подобно нескольким влитым каплям молока, то хлора в кислоте нет. Появ- ление слабого облачка указывает на присутствие небольшого количества хлора. В этом случае рекомендуется провести точный количественный анализ в лаборатории. Надо сказать, что такое же помутнение может возникать и в том случае, когда хлора нет, но зато имеются примеси какого-либо элемента его группы, на- пример, брома или йода При наличии этих примесей помутнение исчезает, если к раствору добавить нашатырный спирт. Достоинство описанного способа проверки состоит в том, что им можно обнаружить наличие хлористых соединений в очень небольших количествах—до 0,0002%.

Читайте также:  Какие анализы сдавать на иммунитет

Капельный метод проверки присутствия хлора в кислоте предусматривает выполнение следующих операций. Заготавливают 20-процентный раствор азотнокислого серебра и каплю его наносят на эбонитовую пластинку. К этой капле добавляют каплю проверяемой кислоты. Если возникает помутнение, то это указывает на присутствие в кислоте хлора. Наилучшее средство борьбы с хлором — это профилактические мероприятия, предотвращающие возможность попадания его в аккумуляторы.

Азотная кислота и окислы азота оказывают вредное влияние, в первую очередь, на активную массу отрицательных пластин—губчатый свинец—окисляя свинец в окись. Окись свинца, в свою очередь, вступая в реакцию с оставшейся неиспользованной азотной кислотой, образует азотнокислую соль свинца и воду. Азотнокислая соль свинца под действием серной кислоты превращается в сульфат свинца. При этом выделяется свободная азотная кислота. Дальше процесс повторяется и количество сульфата на отрицательных пластинах растет.

Положительные пластины почти не подвержены действию азотной кислоты, но все же замечено, что во время заряда на них выделяется окись азота и постепенно формирует основу положительных пластин, ослабляя таким образом ее механическую прочность. В результате этого пластины растут и коробятся. Остов их становится непрочным, а ребрышки хрупкими.

Отмечено, что при наличии 0,001-процентной азотной кислоты в растворе ск резко увеличивается саморазряд отрицательных пластин. Азотистые соединения обычно попадают в раствор вместе с кислотой или водой в виде аммиака.

Во время каждого заряда часть азотной кислоты выделяется из раствора ск вместе с газами в виде двуокиси азота, поэтому с течением времени количество ее в растворе уменьшается.

Присутствие в серной кислоте азотной кислоты и ее солей может быть проверено следующим образом. Заготавливают водный раствор испытуемой кислоты уд. весом 1384 кг/м3. В 25 см3 такого раствора, еще не остывшею от нагревания при смешивании, вносят несколько капель слабого раствора индиго.

Если после этого раствор кислоты приобретает голубую окраску и сохраняет ее в течение нескольких минут, то это указывает на почти полное отсутствие соединений азота. Если же раствор после доливания индиго быстро желтеет, то, следовательно, в серной кислоте имеется чрезмерно большое количество соединений азота.

Более точный способ проверки наличия азотной кислоты в серной кислоте состоит в следующем: приготавливают водный раствор испытуемой кислоты уд. весом 1384 кг/м3 и 25 см3 такого раствора наливают в пробирку В другую пробирку наливают 25 см3 дистиллированной воды. Затем (уже перед самым испытанием) приготовляют насыщенный раствор сернокислого железа в холодной дистиллированной воде и 2—5 см3 его вливают в пробирку с водным раствором серной кислоты осторожно по стенке пробирки так, чтобы он, не смешиваясь с тяжелым раствором кислоты, образовал на ее поверхности слой. При наличии азотной кислоты на границе жидкостей образуется бурое кольцо (из окислов азота). Если азотистых соединений в кислоте очень мало, то кольцо с легко-бурой окраской возникает не сразу, а спустя 20—30 мин после доливки железного купороса, Оно может быть настолько слабым, что заметить его удается только на фоне белого листа бумаги путем сравнения с цветом чистой дистиллированной воды, наполняющей другую пробирку, Такая кислота годится для применения в аккумуляторах. Если в пробе содержится 0,001— 0,002% азотистых соединений (что уже недопустимо), то кольцо приобретает заметную слабо-бурую окраску, при 0,01% примеси бурая окраска становится темнее, а при более значительном количестве азотистых примесей кольцо резко-бурого цвета появляется тотчас после доливки раствора железного купороса. Капельный метод позволяет обнаружить наличие в растворе ск окислов азота путем добавления испытуемого раствора серной кислоты к одной капле раствора дифениламина (сырье для производства синтетических красителей). В присутствии окислов азота капля окрашивается в синий цвет. Если требуется быстро освободить аккумулятор от примесей азотной кислоты, то следует провести следующие мероприятия. Аккумулятор разряжают, выливают загрязненный раствор ск. Пластины и сосуд промывают чистой водой. Во вновь собранный аккумулятор наливают водный раствор ск уд. весом 1040—1060 кг/м3 и подвергают аккумулятор 2—3 циклам заряд—разряда. При последующем заряде (в конце его) плотность раствора ск повышают до нормы.

Наличие в растворе ск уксусной кислоты легко определить по характерному запаху, выделяющемуся из аккумулятора. Кроме того, внешним признаком присутствия уксусной кислоты является обильное появление кристаллов сульфата свинца на хвостовых отводах пластин на уровне границы между раствором ск и воздухом. Те части положительных пластин, которые защищены слоем двуокиси свинца, невосприимчивы к действию уксусной кислоты. Те же части пластин, на поверхности которых имеется чистый свинец или сульфат свинца, подвергаются самому активному воздействию уксусной кислоты. Чистый свинец превращается в уксусно- кислый свинец, способствующий интенсивному образованию сульфата. Уксусная кислота не ускоряет процесс сульфатации пластин аккумулятора, находящегося в покое. Зато коррозирующее действие ее особенно активно сказывается на свинце и его сплавах, когда последние становятся анодами.

В результате этого решетка пас тированных пластин может корродировать, терять механическую прочность и разваливаться. Действие уксусной кислоты больше всего сказывается на границе между решеткой и активной массой. Все те места у пластин, где оголяется чистый свинец (в результате, например, выкрашивания активной массы), подвержены действию уксусной кислоты. Следует отметить, что у аккумулятора, находящегося в покое (бездействии), присутствие примеси уксусной кислоты в растворе не вызывает существенного повышения саморазряда. Во время же заряда даже незначительные количества уксусной кислоты вызывают сильную коррозию свинцовых ребрышек.

Положительные пластины, пораженные уксусной кислотой, приобретают темный—почти черный цвет, растут (удлиняются) и становятся хрупкими. Особенно подвержены действию хвостовые отводы пластин на уровне зеркала раствора электролита. Они в этом месте сильно коррелируют и обламываются, если, держась за них, пытаются вынуть пластины из аккумулятора.

Наличие уксусной кислоты в электролите проверяется следующим образом. Пробу кислоты, налитой в пробирку, нейтрализуют нашатырным спиртом, затем прибавляют небольшое количество хлорного железа. Если при этом происходит окрашивание раствора в красный цвет, который тут же пропадает после того, как доливаю г немного соляной кислоты, то это указывает на присутствие уксусной кислоты.

Кроме уксусной кислоты, в аккумулятор могут попасть и другие органические вещества, к которым, в первую очередь, надо отнести крахмал, декстрозу, сахарозу и экстракт из деревянных сепараторов. Иногда может попасть в раствор электролита и этиловый спирт. Все органические вещества, главным образом, влияют на положительные пластины. Во время заряда они окисляются двуокисью свинца и одновременно образуются промежуточные продукты в виде Сахаров, спиртов и кислот. Винный спирт переходит у положительной пластины в уксусную кислоту. В общем, все органические примеси действуют в конечном итоге, как уксусная кислота.

Медь, попадающая в раствор электролита, главным образом, с дистиллированной водой, не оказывает заметного вредного влияния на работающий аккумулятор. Обычно медь откладывается в виде губчатого слоя на поверхности пластин, а затем этот слой опадает на дно. Голубая окраска раствора постепенно исчезает. Однако если заряженный аккумулятор с примесью меди в растворе долго оставляют в состоянии покоя, то пластины обеих полярностей могут покрыться тонким слоем меди, который сделает аккумулятор неспособным принимать заряд.

Для проверки присутствия меди в водный раствор испытуемой кислоты вливают немного нашатырного спирта. При наличии в растворе солей меди образуется белый осадок, постепенно принимающий синюю окраску. Этим способом можно выявить присутствие в растворе уже 0,005% меди.

Пользуясь капельным методом, медь можно обнаружить, если в раствор кислоты влить немного раствора роданистого аммония. При наличии меди в растворе должно появиться бурое пятно. Действие меди значительно повышается, если в растворе кислоты присутствуют еще и другие примеси. Золото чрезвычайно редко попадается в водных растворах серной кислоты, но оно очень опасно для аккумуляторов.

Серебро действует на аккумуляторы слабее, чем золото. Соли серебра разлагаются в водном растворе серной кислоты, и серебро откладывается на минусовых пластинах в губчатом виде и существенно снижает их емкость.

Платина — одно из самых вредных загрязнении. В настоящее время она, как примесь в кислоте, встречается очень редко. Но в прежние времена, когда в процессе производства серной кислоты ее концентрировали в платиновых сосудах, примесь платины не была редкостью. В связи с этим вредное действие платины на аккумуляторы изучено было достаточно детально. Не вдаваясь в подробности, можно сказать только следующее: уже при наличии 0,00001% примеси платины последняя вызывает такое бурное выделение водорода, что создается впечатление непрерывного «кипения» раствора. После 4—5 циклов заряд—разряда емкость аккумуляторов снижается больше, чем наполовину. При этом отрицательные пластины размягчаются и становятся совершенно непригодными к дальнейшей работе.

Во время заряда напряжение не повышается сверх 2,4 в. Кадмий, никель, олово, цинк заметного вредного дей- ствия на аккумуляторы не оказывают: саморазряд не увеличивают, сепараторы не повреждают. Эти металлы, попадая на активную массу пластин, образуют короткозамкнутый элемент и сами превращаются в сульфат, избыток которого опадает на дно аккумулятора. Со временем большая часть примеси оказывается в шламе, а в растворе ее количество резко снижается.

Алюминий, калий, магний, натрий действуют, главным образом, на положительные пластины, поскольку они способствуют растворимости сульфата и этим самым вызывают глубокое формирование пластин. Кобальт -разрушает сепараторы, понижает напряжение при заряде, уменьшая поляризацию плюса. Аммоний влияет формирующе на положительную пластину и вызывает небольшой саморазряд пластин обеих полярностей.. Появление его в растворе может быть следствием абсорбции аммиака серной кислотой. Кальций не оказывает заметного вредного действия на пластины. Ввиду того что сульфат кальция слабо растворим в серной кислоте, большая часть его оседает на дно.

Висмут вызывает сульфатацию минусовых пластин, в результате чего вес их возрастает. Осадок висмута на минусовых пластинах имеет коричневый цвет. Ртуть влияет на аккумуляторы очень слабо. Как уже упоминалось, комбинация загрязнений действует на аккумуляторы сильнее, чем каждое из загрязнений в отдельности. Так, например, молибден, ртуть, сурьма, цинк при наличии меди сильно повышают интенсивность местных реакций и приводят к быстрому саморазряду минусовых пластин, хотя они сами, а также медь, взятые в отдельности, обычно приносят аккумуляторам мало вреда.

Указанные выше упрощенные способы проверки наличия примесей в серной кислоте и ее растворах дают в основном только качественную и при том в большинстве случаев приблизительную оценку этих примесей. Такую проверку можно выполнить своими силами, пользуясь услугами любой производственной химической лаборатории или местной аптеки. Что же касается точных анализов с определением количественного состава примесей в кислоте и ее растворах, то такой анализ должен выполняться в специальных химических лабораториях.

Пробу раствора серной кислоты для анализа следует брать после разряда аккумулятора, когда большинство металлических примесей переходит в раствор.

В заключение отметим, что если возникает сомнение в том, что полученные бутыли содержат именно серную кислоту (а не соляную или азотную), то для проверки к взятой пробе добавляют раствор хлористого бария. Если после этого в пробе образуется белый осадок сульфата бария, то испытуемая жидкость является действительно серной кислотой.

Хочешь почитать ещё про инструкции? Вот что наиболее популярно на этой неделе:
Валы, подшипники и изоляция электродвигателей АР
Советы по доработкам усилителя Амфитон
Фазовый регулятор (диммер) на NE555
Екатерина одобряет.

Дальше в разделе инструкции: Самостоятельный ремонт электроники, здесь я расскажу о некоторых вещах, которые у опытных радиолюбителей, возможно, вызовут улыбку. однако, не всем же быть опытными, все когда-то начинали. кто-то, если у него сломался аппарат, сразу идет к ремонтникам, а кому-то зудит самому поглядеть, проводки пошевелить. для них, в основном, нижеследующие советы и предназначаются. надеюсь, нам, ремонтникам, после разборок хозяевами проще будет аппаратуру восстанавливать.

Главная 9zip.ru База знаний радиолюбителя Контакты

Дайджест
радиосхем

Новые схемы интернета — в одном месте!

Новые видео:

источник

В городе Ревда с рельсов сошли 15 вагонов с серной кислотой. Груз принадлежал Среднеуральскому медеплавильному заводу.

ЧП произошло на ведомственных железнодорожных путях в 2013-ом году. Кислота разлилась на площади в 1000 квадратных километров.

Это указывает на масштабы потребности промышленников в реагенте. В Средние века, к примеру, в год требовались лишь десятки литров серной кислоты.

В 21-ом же веке мировая выработка вещества в год – десятки миллионов тонн. По объему производства и применения судят о развитии химических отраслей стран. Так что, реагент достоин внимания. Описание начнем со свойств вещества.

Свойства серной кислоты

Внешне 100-процентная серная кислота – маслянистая жидкость. Она бесцветна и тяжела, отличается крайней гигроскопичностью.

Это значит, что вещество поглощает из атмосферы пары воды. При этом, кислота выделяет тепло.

Поэтому, к концентрированной форме вещества воду добавляют малыми дозами. Влей много и быстро, полетят брызги кислоты.

Учитывая ее свойство разъедать материи, в том числе, и живые ткани, ситуация опасна.

Концентрированной серной кислотой называют раствор, в котором реагента больше 40%. Такой способен растворить серебро , палладий .

Раствор серной кислоты до 40% — неконцентрированный, химически проявляет себя иначе. Воду в него доливать можно достаточно быстро.

Палладий с серебром не растворятся, зато, распадутся железо , латунь и медь . А вот концентрату кислоты все три металла не подвластны.

Читайте также:  Медкнижка какие анализы сдавать 2017

Если смотреть на таблицу Менделеева , серная кислота в растворе реагирует с активными металлами, стоящими до водорода.

Насыщенное же вещество взаимодействует и с неактивными. Исключение – благородные металлы. Почему же концентрат не «трогает» железо, медь?

Причина в их пассивации. Так называют процесс покрытия металлов защитной пленкой оксидов.

Она-то и препятствует растворению поверхностей, правда, лишь в обычных условиях. При нагреве реакция возможна.

Разбавленная серная кислота больше похожа на воду, нежели масло. Концентрат же, отличим не только по тягучести и плотности, но и дыму, исходящему от вещества на воздухе.

К сожалению, в Мертвом озере на Сицилии содержание кислоты меньше 40%. По внешнему виду водоема не скажешь, что он опасен.

Однако, из дна сочится опасный реагент, образующийся в породах земной коры. Сырьем может служить, к примеру, пирит .

Этот минерал еще зовут серным колчеданом . При контакте с воздухом и водой распадается на 2-ух и 3-ех валентное железо.

Второй продукт реакции – серная кислота. Формула героини статьи , соответственно: — H2SO3. Нет ни специфического цвета, ни запаха.

Опустив, по незнанию, руку в воды сицилийского озера Смерти на пару минут, люди лишаются кожи .

Учитывая разъедающую способность водоема, местные преступники взялись сбрасывать в него трупы. Несколько дней, и от органики не остается и следа.

Продуктом реакции серной кислоты с органикой нередко является уголь . Реагент отщепляет от органики воду. Вот и остается черный углерод.

В итоге, топливо можно получить из «сырой» древесины, сахара . Человеческие ткани – не исключение. Но, это уже сюжет для фильма ужасов.

Качество горючего получаемого из обработанной органики низкое. Кислота в реакции является окислителем, хотя, может быть и восстановителем.

В последней роли вещество выступает, к примеру, взаимодействуя с галогенами. Это элементы 17-ой группы таблицы Менделеева.

Все эти вещества сами не являются сильными восстановителями. Если же кислота встречается с таковыми, выступает лишь в роли окислителя.

Пример: — реакция с сероводородом. А какие реакции дают саму серную кислоту, как ее добывают и производят?

Добыча серной кислоты

В прошлые века реагент добывали не только из железной руды, называемой пиритом, но и из железного купороса, а так же, квасцов.

Под последним понятием скрываются кристаллогидраты сульфатов, двойные соли .

В принципе, все перечисленные минералы являются серосодержащим сырьем, поэтому, могут применяться для производства серной кислоты и в современности.

Минеральная основа бывает разной, но итог ее обработки один – серный ангидрит с формулой SO2. Образуется при реакции серы с кислородом. Получается, нужно сжечь основу.

Полученный ангидрит проходит абсорбцию водой. Формула реакции такова: SO2+1/2O2+H2) -àH2SO4. Как видно, в процессе участвует кислород.

В обычных условиях сернистый ангидрид с ним взаимодействует медленно. Поэтому, промышленники окисляют сырье на катализаторах.

Метод именуется контактным. Есть еще нитрозный подход. Это окисление оксидами азота .

Однако, за последний метод «голосуют» лишь 20% промышленников. Основная же масса серной кислоты получается по контактной схеме.

Если подсчитать практику человечества по получению серной кислоты, «накапает» более 1000 лет.

Первые упоминания о реагенте и его добыче содержит труд, датируемый 940-ым годом.

Это записи одного из персидских алхимиков по имени Абубекер аль-Рази. Однако, о кислых газах, получаемых путем прокаливания квасцов, говорил и Джафар аль-Суфи.

Этот арабский алхимик жил еще в 8-ом веке. Однако, судя по записям, в чистом виде серную кислоту не получил.

Применение серной кислоты

Более 40% кислоты идут на производство минеральных удобрений. В ходу суперфосфат, сульфат аммония, аммофос.

Все это комплексные подкормки, на которые делают ставки фермеры и крупные производители.

В удобрения добавляют моногидрат. Это чистая, 100-процентная кислота. Кристаллизуется уже при 10 градусах Цельсия.

Если используют раствор, берут 65-процентный. Такой, к примеру, добавляют в суперфосфат, получаемый из минерала апатит .

На производство всего одной тонны удобрения уходят 600 кило концентрата кислоты.

Около 30% серной кислоты тратятся на очистку углеводородов. Реагент улучшает качество смазочных масел, керосина, парафина.

К ним примыкают минеральные масла и жиры. Их тоже очищают с помощью серного концентрата.

Способность реагента растворять металлы применяется при переработке руд. Их разложение столь же бюджетно, как и сама кислота.

Не растворяя железо, она не растворяет и содержащую его сталь . Значит, можно использовать аппаратуру из нее, а не дорогих сплавов .

Подойдет, так же, дешевый чугун , тоже сделанный на основе феррума. Что же касается растворяемых, добываемых с помощью серной кислоты металлов, можно получить ниобий , титан, цирконий , ванадий , литий . Останется осадить их из раствора.

В главе «Свойства» указывалось, что при нагреве серная кислота справляется с оксидными пленками на латуни, меди, железе.

Поэтому, горячий реагент используют для их травления. Так именуют очистку металлических поверхностей. После обработки, сплавы и изделия из них выглядят как новые.

Способность кислоты поглощать воду из атмосферы, делает реагент отличным осушителем.

Если воздействовать на воздух 95-процентным раствором, остаточная влажность составит всего 0,003 миллиграмма паров воды на литр осушаемого газа. Метод применяют в лабораториях и на промышленных производствах.

Стоит отметить роль не только чистого вещества, но и его соединений. Они пригождаются, в основном, в медицине.

Бариевая каша, к примеру, задерживает рентгеновское излучение. Врачи заполняют веществом полые органы, облегчая исследования рентгенологов. Формула бариевой каши: — BaSO4.

Природный гипс , кстати, тоже содержит серную кислоту, и тоже нужен медикам, но уже при фиксации переломов.

Необходим минерал и строителям, использующим его в качестве связующего, скрепляющего материала, а так же, для декоративной отделки.

Цена серной кислоты

Цена на реагент – одна из причин его популярности. Килограмм технической серной кислоты можно приобрести всего за 7 рублей.

Столько за свою продукцию просят, к примеру, менеджеры одного из предприятий Ростова на Дону. Разливают канистрами по 37 кило.

Это стандартный объем тары. Встречаются, так же, канистры в 35 и 36 килограммов.

Купить серную кислоту специализированного плана, к примеру, аккумуляторную, немногим дороже.

За 36-килограммовую канистру просят, как правило, от 2000 рублей. Вот, кстати, еще одна сфера применения реагента.

Не секрет, что разбавленная дистиллированной водой кислота – это электролит. Он нужен не только для обычных батареек, но и машинных аккумуляторов.

Разряжаются они, поскольку серная кислота расходуется, при этом, выделяется более легкая вода. Падает плотность электролита, а значит, и его эффективность.

источник

1. Отбор проб технической серной кислоты и олеума

2.1 Определение моногидрата

2.2 Определение свободного серного ангидрида в олеуме

2.3 Определение остатка после прокаливания

2.5 Определение окислов азота

2.9 Определение суммы тяжелых металлов при пересчете на свинец

2.13 Определение веществ, восстанавливающих перманганат калия

Список используемой литературы

Раствор триоксида серы в серной кислоте называется олеумом. Его широко применяют в промышленности, например для очистки нефтепродуктов, изготовления некоторых красителей, производства взрывоопасных веществ.

В олеуме часть молекул SО3 соединяется с серной кислотой. При этом образуется бисерная кислота Н2 S2 О7 .

Техническую серную кислоту и олеум отправляют обычно в цистернах или контейнерах. Разовые пробы отбирают через люк емкости при помощи пробоотборника из нержавеющей стали ЭИ-448, прикрепленного к цепи из кислотостойкой стали. Пробоотборник погружают до дна емкости. При этом происходит постепенное и равномерное заполнение пробоотборника жидкостью из разных слоев по высот.

Отбирать пробы можно также из трех мест по высоте жидкости: на расстоянии 0,5 м от дна, из середины и на расстоянии 0,5 м ниже поверхности жидкости в цистерне или контейнере. Если емкость, где хранится серная кислота, очень большая, то отбирают пять проб – в перечисленных точках и в точках, находящихся между верхней и средней и между нижней и средней точками отбора.

Можно также воспользоваться пробоотборником, который позволяет отобрать пробу на определенной глубине. Пробоотборник изготавливают из нержавеющей стали. Металлический стержень просто прикрепляют ко дну. К кольцу стержня прикрепляют цепь или шнур, на котором нанесены метки, отвечающие глубине расположения выбранных точек отбора. К кольцам крышки пробоотборника привязывают второй шнур. На выбранной глубине с помощью второго шнура открывают крышку пробоотборника и забирают жидкость. Отпускают шнур и крышка плотно закрывает пробоотборник отобранную пробу выливают в емкость для составления общей пробы, затем отбирают пробу с другой глубины.

При анализе кислоты из каждой цистерны или другой емкости, отобранную пробу в лаборатории тщательно перемешивают стеклянной палочкой и отбирают среднюю пробу не менее 0,5 л в чистую сухую склянку емкостью 0,5-1 л с хорошо притертой стеклянной пробкой, а для олеума дополнительно со стеклянным колпачком. Если проба отобрана с помощью пробоотборника, то она не подвергается дальнейшей обработке.

Если надо получить среднюю пробу из всей партии, то разовые пробы из всех цистерн или контейнеров, входящих в партию, смешивают в емкости для составления общей пробы, тщательно перемешивают и отбирают среднюю пробу.

При отборе проб серной кислоты или олеума из бочек или бутылей отбирают пробу из 5% мест, но не менее, чем из трех бочек или бутылей при малых партиях. Пробы отбирают стеклянной трубкой, достающей до дна бутылки или бочки. Объем разовой пробы должен быть не менее 100-150 мл. Пробы кислот, орошающих сушильные башни, моногидратные и олеумные абсорберы, отбирают из кислотомеров или из соответствующих сборников.Анализ технической улучшенной аккумуляторной кислот и олеума.

Содержание моногидрата в кислоте определяют титрованием щелочью

Фенолфталеин, 1%-ный спиртовой раствор.

Метиловый красный, 1%-ный спиртовой раствор.

Дистиллированная вода, нейтрализованная по метиловому красному.

Едкий натр, 0,5 н раствор. Поправочный коэффициент 0,5 н раствора едкого натра устанавливают по янтарной кислоте следующим образом: 1-1,25 г высушенной при 100˚С до постоянной массы янтарной кислоты взвешивают с точностью до 0,0002 г, растворяют при нагревании в 50 мл воды и в горячем состоянии титруют раствором едкого натра до появления розовой окраски, не исчезающей в течении 1 мин. Поправочный коэффициент вычисляют по формуле:

Где g – навеска янтарной кислоты, г; V – объем раствора едкого натра, израсходованного на титрование, мл; 0,0295 – масса янтарной кислоты, соответствующая 1 мл 0,5 н. раствора едкого натра, г.

Ход определения. Около 5 г кислоты взвешивают в пипетке Лунге – Рея или в бюксе с точностью до 0,0002 г, переносят в мерную колбу емкостью 250 мл, в которую предварительно налито 150 мл воды. После охлаждения до комнатной температуры доводят объем раствора водой до метки и перемешивают. Переносят пипеткой 25 мл раствора в коническую колбу емкостью 250 мл и титруют раствором едкого натра в присутствии метиловго красного до перехода красной окраски раствора в желтую.

Расчет. Содержание моногидрата х (в % масс.) вычисляют по формуле:

Где V – объем 0,5 н. раствора едкого натра, израсходованного на титрование, мл; К – поправочный коэффициент 0,5 н. раствора едкого натра; 0,02452 –масса Н2 SO4 , соответствующая 1 мл точно 0,5 н. раствора едкого натра, г; g – навеска пробы, г.

Концентрацию кислоты можно определить в меньшей навеске (около 0,5 г) без разбавления или с помощью лабораторных кондуктометров.

Общее содержание свободного ангидрида в олеуме определяют титрованием щелочью. Содержание свободного серного ангидрида вычисляют по формуле или находят по таблице.

Фенолфталеин, 1%-ный спиртовой раствор.

Метиловый красный, 1%-ный спиртовой раствор.

Дистиллированная вода, нейтрализованная по метиловому красному.

Едкий натр, 0,5 н раствор. Поправочный коэффициент 0,5 н раствора едкого натра устанавливают по янтарной кислоте следующим образом: 1-1,25 г высушенной при 100˚С до постоянной массы янтарной кислоты взвешивают с точностью до 0,0002 г, растворяют при нагревании в 50 мл воды и в горячем состоянии титруют раствором едкого натра до появления розовой окраски, не исчезающей в течении 1 мин.

Поправочный коэффициент вычисляют по формуле:

Где g – навеска янтарной кислоты, г; V – объем раствора едкого натра, израсходованного на титрование, мл; 0,0295 – масса янтарной кислоты, соответствующая 1 мл 0,5 н. раствора едкого натра, г.

Ход определения. Стеклянную ампулу емкостью 2-3 мл с длинным капилляром взвешивают с точностью до 0,0002 г. Шарик ампулы слегка нагревают и быстро погружают конец капилляра в олеум. Набрав около 1 г олеума наружную поверхность капилляра тщательно запаивают. После охлаждения в эксикаторе ампулу с олеумом взвешивают.

В стеклянную банку емкостью 500 мл наливают около 150 мл воды, помещают несколько стеклянных бусин, опускают взвешенную ампулу с олеумом и плотно закрывают пробкой. Энергичным встряхиванием банки разбивают ампулу и встряхивают ампулу до полного поглощения тумана водой. Кусочки капилляра и ампулы раздавливают стеклянной палочкой. Пробку горло банки и стеклянную палочку ополаскивают водой в ту же банку. Содержимое банки титруют раствором едкого натра в присутствии метилового красного до перехода красной окраски раствора в желтую.

Расчет. Общее содержание серного ангидрида х1 (в % масс.) вычисляют по формуле:

Где 0,02001 – масса SO3 , соответствующая 1 мл точно 0,5 н. раствора едкого натра, г; V – объем 0,5 н. раствора едкого натра, израсходованного на титрование, мл; К – поправочный коэффициент 0,5 н. раствора едкого натра; g – навеска пробы, г.

Содержание свободного серного ангидрида х (в % масс.) вычисляют по формуле:

Где 98,08 – молекулярная масса серной кислоты; 18,02 – молекулярная масса воды.

Содержание свободного SO3 можно определять с помощью лабораторных кондуктометров.

Ход определения. Пробу серной кислоты или олеума тщательно перемешивают. Фарфоровую, кварцевую или платиновую чашку прокаливают до постоянной массы и взвешивают с точностью до 0,0002 г. Около 10 г (5-6 мл) кислоты, предварительно отмеренных цилиндром, взвешивают с точностью до 0,1 г; кислоту взвешивают в чашке, а олеум в пипетке Лунге-Рея или в бюксе с внешней крышкой. Навеску кислоты или олеума выпаривают досуха на песочной бане, после чего прокаливают в муфельной печи 30 мин при 800-850˚С. Чашку с прокаленным остатком охлаждают в эксикаторе и взвешивают с точностью до 0,0002 г.

Читайте также:  Как делать анализ на английском

Расчет. Содержание остатка после прокаливания х (в % масс.) вычисляют по формуле:

Где g1 – масса остатка после прокаливания, г; g – навеска кислоты или олеума, г.

В аммиачной среде Fe II и Fe III образуют с сульфосалициловой кислотой комплексы, окрашенные в желтый цвет, которые имеют одинаковый коэффициент поглощения.

Сульфосалициловая кислота, 30%-ный раствор.

Серная кислота, плотностью 1,84 г/см 3 и 0,1 н. раствор.

Железоаммонийные квасцы, перекристаллизованные.

Стандартный раствор железа (Ш). Навеску железоаммонийных квасцов 8,6350 г растворяют в 50 мл воды, подкисленной 1 мл концентрированной серной кислоты. Полученный раствор переносят в мерную колбу емкостью 1 л, доводят объем раствора водой до метки и перемешивают – раствор А; 1 мл раствора А соответствует 1 мг железа (Ш). Помещают 25 мл раствора А в мерную колбу емкостью 500 мл, доводят объем раствора до метки 0,1 н. раствором серной кислоты и перемешивают – раствор Б; 1 мл раствора Б соответствует 0,05 мг железа (Ш). Раствор Б должен быть свежеприготовленным.

источник

Серная кислота (H2SО4) — это одна из самых едких кислот и опасных реагентов, известных человеку, особенно в концентрированном виде. Химически чистая серная кислота представляет собой тяжелую токсичную жидкость маслянистой консистенции, не имеющую запаха и цвета. Получают ее методом окисления сернистого газа (SO2) контактным способом.

При температуре +10,5°C, серная кислота превращается в застывшую стекловидную кристаллическую массу, подобно губке, поглощающую влагу из окружающей среды. В промышленности и химии серная кислота является одним из основных химических соединений и занимает лидирующие позиции по объему производства в тоннах. Именно поэтому серную кислоту называют «кровью химии». С помощью серной кислоты получают удобрения, лекарственные препараты, другие кислоты, большой ряд химических веществ, удобрений и многое другое.

К концентрированным растворам серной кислоты относятся растворы от 40%, способные растворять серебро или палладий.

К разбавленной серной кислоте относятся растворы, концентрация которых составляет менее 40%. Это не такие активные растворы, но они способны вступать в реакцию с латунью и медью.

  • Серную кислоту в колоссальных объемах используют для производства минеральных удобрений.
  • Серная кислота используется для производства взрывчатых веществ, в качестве одного из видов сырья для производства тротила (TNT).
  • Очистка нефтепродуктов. Для получения керосина, бензина минеральных масел требуется очистка углеводородов, которая происходит с применением серной кислоты. В процессе переработки нефти на очистку углеводородов данная индустрия «забирает» целых 30% мирового тоннажа серной кислоты. Вдобавок, серной кислотой увеличивают октановое число топлива и при добыче нефти обрабатывают скважины.
  • В металлургической промышленности. Серная кислота в металлургии используется для очистки от окалины и ржавчины проволоки, листового металла, а также для восстановления алюминия при производстве цветных металлов. Перед тем как покрывать металлические поверхности медью, хромом или никелем, поверхность протравливается серной кислотой.
  • При производстве лекарственных препаратов.
  • При производстве красок.
  • В пищевой промышленности, в качестве эмульгатора.
  • В химической промышленности. Серная кислота используется при производстве моющих средств, этилового средства, инсектицидов и т.д., и без нее эти процессы невозможны.
  • Серная кислота в разбавленном виде применяется в качестве электролита в свинцовых аккумуляторах.
  • Для получения других известных кислот, органических и неорганических соединений, используемых в промышленных целях.

Серная кислота представляет повышенную опасность для человеческого организма. Ее токсическое действие наступает не только при непосредственном контакте с кожей, но при вдыхании ее паров, когда происходит выделение сернистого газа.

Опасное воздействие серной кислоты распространяется на:

  • Дыхательную систему;
  • Кожные покровы;
  • Слизистые оболочки.

Интоксикацию организма может усилить мышьяк, который часто входит в состав серной кислоты.

При соприкосновении серной кислоты с кожей происходят сильнейшие ожоги, но не меньшую опасность представляет и отравление парами серной кислоты. Если на слизистые покровы или на кожу попадает серная кислота, появляется сильный ожог, плохо заживающий. Если по масштабу ожог внушительный, у пострадавшего развивается ожоговая болезнь, которая может привести даже к смертельному исходу, если своевременно не будет оказана квалифицированная медицинская помощь.

Предельно допустимая концентрация (ПДК) паров серной кислоты в атмосферном воздухе не должна превышать 0,3 мг/м3 (максимально разовая) и 0,1 мг/м3 (среднесуточная), что соответствует 2-му классу опасности (по ГОСТ 2184-2013).

Вследствие технических неполадок на производстве или неосторожности и массивного выброса в атмосферу может случиться массовое отравление парами серной кислоты. Для предотвращения таких ситуаций применяются газоанализаторы серной кислоты. Газоанализаторы серной кислоты сигнализируют об утечках серной кислоты в цехах химических производств, на складах хранения серной кислоты, при проведении погрузочно-разгрузочных работ, связанных с серной кислотой. Могут применяться в отраслях промышленности, связанных с производством, хранением и использованием серной кислоты.

Ниже в таблице представлены модели газоанализаторов, анализаторов, газосигнализаторов, контролирующих содержание паров серной кислоты (H2SO4) в воздухе.


ГАНК-4С
газоанализатор стационарный
для автоматического непрерывного контроля концентраций одного вредного вещества из трех: азотная кислота, серная кислота и щелочи едкие (в пересчете на NаОН) в воздухе рабочей зоны, в промышленных выбросах и в технологических процессах в целях охраны окружающей среды, обеспечения безопасности труда и оптимизации технологических процессов
Отбор: принудительный
Количество контролируемых газов и канальность: 1
Тип сенсора: зависит от исполнения
Газоанализатор на газы:
азотная кислота, серная кислота, щелочи едкие, Взрывозащита: не предусмотрена
Выходные сигналы: токовый выход 4-20 мА, RS-485, «сухие» контакты реле
Индикация: цифровая, световая, звуковая
Единицы измерения: мг/м3
Рабочий диапазон температур: от +5°С до +50°С (с термостатом), от -50°С до +5°С (без термостата)
Питание: от сети 220 В, 50 Гц
Габариты: 250х200х150 мм
Масса: 3,5 кг
Гарантийный срок: 1 год
Межповерочный интервал: 1 год
>>>Подробно
>>>Опросный лист

По территории Республик Башкортостан и Татарстан возможна доставка оборудования КИПиА до склада Покупателя. Доставка в другие регионы России осуществляется посредством транспортных компаний Автотрейдинг и ЖелДорЭкспедиция, в отдельных случаях-службой доставки Даймекс, PONY EXPRESS.

На всю представленную продукцию распространяются гарантийные обязательства Завода — Производителя.

источник

Допускается содержание сернистой кислоты — до 50 мг в сушеных фруктах, готовых продуктах (джеме, варенье, повидле) из сульфитированного сырья до 20 мг на 1 кг продукта. Добавляют 0,3-0,15% консерванта при сульфитировании плодов и ягод, что зависит от вида сырья, его кислотности и ряда других причин. Удаляют SО2 из фруктового пюре нагреванием, а из плодов и ягод — предварительным промыванием с последующим нагреванием. В сульфитированных продуктах часть сернистой кислоты находится в свободном состоянии, а часть — в связанном с составными частями продукта: сахарами, пектином, красящими веществами, белками, карбонильными соединениями.

Основной метод определения количества сернистой кислоты — йодометрический — основан на ее способности окисляться, при этом из сернистой кислоты образуется серная кислота. Серная кислота с растворимыми солями бария дает нерастворимый осадок, который можно отфильтровать и взвесить (весовой метод) или же установить количество затраченного окислителя, в данном случае йода, и тогда содержание SО2 определяют объемным методом.

Методика объемного метода следующая. 25 г исследуемого продукта смешивают с 90-100 мл 20%-ного раствора хлористого натрия, добавляют 5 мл буферного раствора (рН 4,2-4,6) и переносят в фарфоровую ступку. Содержимое тщательно растирают и помещают в мерную колбу емкостью 250 мл. Ступку смывают 20%-ным раствором хлористого натрия и доводят содержимое в колбе до метки. Колбу несколько раз взбалтывают и содержимое фильтруют через ватный фильтр или марлю. Из фильтрата отбирают в две конические колбы по 50 мл, добавляют в каждую по 2 мл нормального раствора едкого натра. Колбы закрывают пробками и дают отстояться 2 мин. После этого добавляют по 2 мл, 6 н. соляной кислоты. Содержимое одной колбы тотчас же титруют 0,02 н. раствором йода, в качестве индикатора прибавляют 1 мл 1%-ного раствора крахмала. К содержимому второй колбы добавляют 1 мл 40%-ного раствора формалина, оставляют колбу стоять 10 мин. и титруют 0,02 н. раствором йода в присутствии индикатора крахмала. В первой колбе определяют количество титрованного раствора йода, израсходованного на окисление сернистой кислоты и всех окисляющихся органических веществ исследуемого продукта. Во второй колбе после добавления формалина сернистая кислота из реакции окисления удаляется и окисляются только органические вещества, реагирующие с йодом.

По разнице между количеством раствора йода, израсходованного на титрование первой и второй колб, устанавливают содержание сернистого ангидрида в исследуемой навеске по формуле

где X — содержание сернистого ангидрида, %;

А — разность 0,02 н. раствора йода между первым и вторым титрованиями, мл;

К — поправочный коэффициент пересчета на 0,02 н. раствора йода;

Р — навеска анализируемого продукта, соответствующая

взятому для титрования объему фильтрата, г. Если исследуют сок, то пипеткой отбирают 50 мл сока и анализируют его по приведенной методике. Буферный раствор рН-4,2-4,6 приготавливают растворением 11,87 г Na2HPО42О в 1 л воды и растворением 9,078 г КН2РО4 также в 1 л воды. Для получения 10 частей буферного раствора смешивают 0,1 часть раствора NО2HPО42О и 9,9 частей раствора КН2РО4. Можно также пользоваться не чисто фосфатным, а фосфатно-лимоннокислым буферным раствором.

Кроме описанного йодометрического метода, существуют и другие методы определения сернистой кислоты. В лабораторной практике сернистую кислоту определяют методом отгонки ее в приемник, в котором находится перекись водорода. Здесь сернистая кислота окисляется в серную, которая титруется щелочью. По расходу титрованного раствора едкого натра можно определить содержание сернистого ангидрида SО2. 1 мл 0,01 н. раствора щелочи соответствует 0,32 мг сернистого ангидрида в продукте. Схема прибора для анализа показана на рис. 107.

Рис. 107. Прибор для определения сернистой кислоты.

Методика определения следующая: в колбу емкостью 500 мл наливают 250 мл дистиллированной воды и закрывают пробкой с двумя отверстиями. Одно отверстие соединено с холодильником (обратным), в который вставлена насадка Кьельдаля, в свою очередь соединенная с изогнутой пипеткой. В другое отверстие вставлена почти до дна колбы стеклянная трубка. Трубка имеет тройник с краном и двумя сосудами, где находится жидкость для промывания углекислоты. Углекислый газ получают в аппарате Киппа разложением углекислого кальция соляной кислотой. Аппарат Киппа соединен с двумя сосудами для газа. Один содержит сернокислую медь, а второй — соду (5%-ные растворы). Приемник, где находится сернистый ангидрид, состоит из двух последовательно соединенных колб. В первую наливают 15 мл, а во вторую 10 мл 3%-ного чистого раствора перекиси водорода и по 3 капли индикатора (бромфеноловый синий).

Перед анализом вытесняют воздух из прибора, пропуская в течение 5 мин. углекислый газ. Затем открывают пробку в колбе, помещают в нее 25 г исследуемого вещества. Через капельную воронку вливают в колбу 20 мл 10%-ной соляной кислоты. Углекислота должна поступать так, чтобы в приемниках можно было отсчитать отдельные пузырьки газа.

Колбу подогревают на горелке. Через час прибор разъединяют, прекращают нагревание и подачу газа. Содержимое двух колб помещают в одну колбу, промывают сосуды водой, сливая ее в ту же колбу. Затем прибавляют 2-3 капли индикатора бромфенолового синего и титруют 0,01 н. раствором едкого натра до тех пор, пока титруемый раствор ни приобретет желтый цвет. Описанный метод дает точные результаты, если в исследуемом продукте не происходили процессы брожения.

Вместо титрования едким натром серную кислоту можно вывести в осадок хлористым барием. Для этой цели после прекращения подачи углекислого газа содержимое двух колб сливают в химический стакан и добавляют 1 мл химически чистой соляной кислоты (удельный вес 1,19) и 5 мл 10%-ного раствора хлористого бария. Смесь кипятят 10 мин. и отстаивают 3-4 часа. В дальнейшем фильтруют через беззольный фильтр, промывают водой, сушат и сжигают. Тигель взвешивают на аналитических весах. По разнице в весе чистого сухого тигля без осадка и после сжигания его определяют количество полученного сернокислого бария BaSО4. Содержание сернистого ангидрида SО2 рассчитывают, применяя коэффициент пересчета сернокислого бария на сернистый ангидрид, который равен 0,274.

Свободную сернистую кислоту определяют вытеснением ее воздухом из исследуемого вещества. Предварительно кислород воздуха поглощается щелочным раствором пирогаллола. Схема прибора показана на рис. 108.

Рис. 108. Прибор для определения свободной сернистой кислоты: 1 — водяная баня; 2 — коническая колба с продуктом; 3 — колбы с перекисью водорода; 4 — термометр; 5 — щелочный раствор пирогаллола.

Методика определения следующая: в коническую колбу емкостью 400-500 мл вносят 50 г исследуемого продукта и наливают 150 мл дистиллированной воды. Колбу закрывают пробкой с двумя отверстиями, в которые вставляют две стеклянные трубки — одна короткая, другая почти до дна колбы. К последней присоединяют два сосуда для промывания, содержащие по 30-50 мл щелочного раствора пирогаллола (5 г пирогаллола) на 100 мг 25%-ного раствора NaOH.

К первой трубке для поглощения свободной сернистой кислоты подключают последовательно две колбы с 3%-ной перекисью водорода и индикатором. Колбу с исследуемым продуктом взбалтывают, ставят на водяную баню (40-50°) и в течение 2 час. пропускают через колбу воздух. Затем колбы-приемники отделяют от прибора, растворы сливают, колбы промывают и определяют содержание сернистой кислоты весовым методом.

источник