Меню Рубрики

Как называется анализ на хромосомы

Хромосомный анализ (синонимы — кариотипирование, цитогенетическое исследование, анализ кариотипа) — это исследование, которое позволяет оценить количество и структуру хромосом на наличие в них отклонений от нормы.

Хромосомы (от греческого chroma — цвет, soma — тело) — нитеобразные структуры в ядре каждой клетки нашего тела, содержащие всю генетическую информацию. Каждая хромосома — это одна молекула ДНК, которая компактно упакована в несколько раз.

Она содержит в себе тысячи генов и у каждого из них есть свое определенное место. Эти гены ответственны за проявление всех унаследованных от родителей физических характеристик нашего организма и имеют решающее влияние на рост, развитие и функционирование человека.

Геном человека содержит 46 хромосом, присутствующих в виде 23 пар. Парные хромосомы называют гомологичными. Двадцать две пары встречаются у обоих полов (аутосомы), а одна пара (половые хромосомы) присутствует как XY (у мужчин) или XX (у женщин). Все хромосомы отличаются по строению, форме и размеру. Обычно все клетки в организме, у которых есть ядро, будут содержать полный набор одних и тех же 46 хромосом, за исключением репродуктивных клеток (яйцеклеток и сперматозоидов), которые содержат половину набора — 23 хромосомы. Этот половинный набор является генетическим вкладом родителей своему будущему ребенку. При зачатии половинные наборы от каждого родителя объединяются, чтобы сформировать новый набор из 46 хромосом в развивающемся плоде.

Хромосомные аномалии включают как изменение общего количества, так и структурные преобразования хромосом. Хотя наш генетический аппарат устроен так, что большинство ошибок при копировании генома в клетках уничтожается немедленно, иногда случается нерасхождение хромосом при мейозе (и тогда в одну клетку попадает большее количество хромосом, а в другую — меньшее), выпадение генов (делеция) или их случайный переброс с одной хромосомы на другую (транслокация).

Нормой для человеческого организма является наличие 46 хромосом, не больше и не меньше. Все остальное представляет собой изменение общего количества генетического материала и вызывает проблемы со здоровьем и развитием. Для структурных изменений значимость проблем и их тяжесть зависят от того, какие именно перестройки произошли в хромосоме. Тип и степень проблемы могут варьироваться у различных людей, даже если присутствует одинаковая хромосомная аномалия.

Хромосомное кариотипирование исследует хромосомы человека, чтобы определить, их число, форму и выяснить, является ли каждая хромосома нормальной. Это микроскопическое исследование требует времени и опыта специалиста цитогенетика для правильной подготовки материала и интерпретации результатов. Хотя теоретически для проведения анализа могут использоваться любые клетки, на практике его обычно проводят на образцах клеток амниотической жидкости или плаценты для оценки генотипа плода или на лимфоцитах (белые кровяные тельца) из образца крови для тестирования ребенка или взрослого человека. Кроме того, могут быть использованы белые кровяные клетки костного мозга (методом биопсии) для поиска патологий у пациентов с гематологическими или лимфоидными заболеваниями (например, лейкемия, лимфома, миелома, рефрактерная анемия).

Тест состоит из следующих этапов:

  1. Получение образцов клеток человека, культивирование их в обогащенных питательными веществами средах для активизации деления клеток in vitro. Это делается для того, чтобы выбрать конкретное время на этапе роста клеток, когда хромосомы легче всего рассмотреть (стадия метафазы).
  2. Выделение хромосом из ядра клеток, фиксация и обработка специальным красителем.
  3. Получение микрофотографий хромосом.
  4. Из полученных фотографий складывают хромосомную карту, переставляя, как в головоломке, фотоснимки гомологичных хромосом, чтобы сопоставить пары и упорядочить их по размеру, от самых больших до самых маленьких, с номерами от 1 до 22, за которыми следует 23 пара половых хромосом.

Каждая хромосома выглядит как полосатая соломинка. Она имеет два плеча, которые различаются по длине (короткое плечо (p) и длинное плечо (q)), перетяжку между плечами, называемую центромерой, и серию светлых и темных горизонтальных полос — активных и неактивных зон хромосомы. Длина плеч и расположение полос помогают определить верхнюю и нижнюю часть хромосомы. Изображения также позволяют ориентировать хромосомы вертикально.

Как только фотокоррекция хромосом завершена, лабораторный специалист оценивает пары хромосом и идентифицирует любые присутствующие аномалии.

Наиболее распространенные хромосомные нарушения, которые могут быть обнаружены при кариотипировании, включают:

  • синдром Дауна (трисомия 21), вызванный дополнительной 21 хромосомой;
  • синдром Эдвардса (трисомия 18), состояние, связанное с тяжелой умственной отсталостью, вызванной дополнительной 18й хромосомой;
  • синдром Патау (трисомия 13), вызванный дополнительной 13й хромосомой;
  • синдром Клайнфелтера, наиболее распространенная аномалия половой хромосомы у мужчин, вызванных дополнительными одной или двумя Х-хромосомами;
  • синдром Тернера, вызванный отсутствием одной Х-хромосомы у женщин;
  • синдром кошачьего крика, вызванный делецией (укорачиванием) короткого плеча 5й хромосомы;
  • хроническая миелогенная лейкемия, классическая транслокация 9-22, которая является диагностикой заболевания.

Что является материалом для анализа:

  • кровь (стандартный забор крови из вены);
  • амниотическая жидкость (амниоцентез производится гинекологом);
  • абортивный материал (для выяснения причин самопроизвольного выкидыша);
  • образцы костного мозга (биопсия).

Кому рекомендуют провести анализ

  1. Беременным женщинам,
    • если один или несколько скрининговых тестов беременной женщины, (например, тест первого триместра на возможное наличие у плода синдрома Дауна или скрининг альфафетопротеина во втором триместре) показали положительный результат;
    • если беременная женщина имеет больший, чем обычно, риск наличия ребенка с дефектом врожденного порока. К сожалению, с возрастом этот показатель увеличивается, поэтому многие врачи считают, что после 35 лет целесообразно проводить хромосомный анализ всем беременным женщинам;
    • если обнаруживаются аномалии развития плода во время ультразвукового исследования.
  2. Семейным парам, планирующим рождение ребенка,
    • если известно о наличии в семье какого-либо наследственного заболевания;
    • если у женщины были предыдущие выкидыши или бесплодие;
    • при близкородственных браках;
    • если хотя бы один из супругов подвергался воздействию мутагенных факторов (радиоактивное излучение, химическое загрязнение, некоторые виды лекарственных препаратов).
  3. Новорожденным и младенцам с врожденными патологиями, включая физические дефекты, умственную отсталость, задержку роста и развития или признаки специфического генетического расстройства.
  4. Пациентам, проходящим лечение от бесплодия или проявляющим признаки генетического расстройства.
  5. Членам семьи для обнаружения специфических хромосомных аномалий, если они были найдены у ребенка или другого члена семьи.
  6. Пациентам, у которых был диагностирован определенный тип лейкемии, лимфомы, рефрактерной анемии или рака, поскольку эти заболевания могут привести к приобретенным изменениям в хромосомах; это исследование может быть выполнено на крови или образце костного мозга.

Предварительная подготовка пациента для проведения исследования не требуется. Обычно исследование достаточно сделать, за исключением случаев выяснения риска зачатия больного ребенка после воздействия мутагенных факторов на родителей, один раз за всю жизнь. Всего одно исследование — и вы владеете исчерпывающей информацией обо всех наследственных факторах, которые могут влиять на здоровье вас и ваших детей!

источник

Пройдите диагностику хромосомных мутаций на основе анализа крови. Исследование входит в программу комплексного скрининга беременных и позволяет рассчитать риск рождения неполноценного ребёнка с точностью до 98%.

Есть мнение, что хромосомные перестройки в генетическом коде ребёнка возникают только на фоне «плохой» наследственности. Однако научно доказано, что риск мертворождения, самоабортирования, рождения малыша с физическими и умственными отклонениями есть и у здоровых пациенток. Поэтому приказом № 572 МЗ РФ от «01» ноября 2012 г. прохождение анализов на хромосомные мутации рекомендовано всем беременным женщинам.

  • 600 Р Альфа-фетопротеин (АФП) крови
  • 700 Р Клинический анализ крови
  • 800 Р Клинический анализ крови CITO
  • 600 Р Β-ХГЧ
  • 800 Р В-ХГЧ сito
  • 600 Р РАРР-А
  • 300 Р Забор крови

Анализ позволяет распознать генные мутации до того момента, когда можно будет прервать беременность без вреда для здоровья женщины. Механизм, который запускает хромосомные перестройки и приводит к аномалиям типа синдром Дауна, Патау, Тёрнера, Эдвардса, до конца не изучен. Поэтому предпосылки к аномалиям развития плода должны быть выявлены как можно раньше.

В нашем центре в рамках пренатального скрининга помимо биохимического анализа крови может быть сделан неинвазивный тест (НИПТ), Natera (USA), информативный уже на 9 неделе беременности.

Отказ от обследования или несвоевременно проведённый генетический анализ не позволят предупредить рождение неполноценного ребёнка.

акушер-гинеколог, гемостазиолог, кандидат медицинских наук

акушер-гинеколог, гемостазиолог, кандидат медицинских наук

Оптимальный срок сдачи анализа на хромосомные патологии – 12 неделя, так как в это время наиболее выраженно проявляются признаки генетических аномалий. Кровь исследуется только после получения результатов УЗИ, в противном случае трактовка результатов будет ошибочной.

Анализ венозной крови (материал забирают на голодный желудок) покажет уровень АФП, ХГЧ, РАРР- А – веществ, которые продуцируются плодом и плацентой. По маркерам крови оценивается картина развития эмбриона, исследуется морфология (строение) ДНК, выявляются лишние или повреждённые хромосомы.

По результатам УЗИ расчёт рисков осуществляется, исходя из количества маркеров, обнаруженных одновременно. При обнаружении 1 маркера, например, недоразвития носовых костей, прогноз риска хромосомной патологии составляет 2%, а при сочетании 8 и более маркеров – 92%.

При расшифровке маркеров крови любые отклонения от нормативных показателей трактуются как признаки генных мутаций. На сроке 12 недель они должны быть следующими:

АФП ХГЧ РАРР- А
0,5-15 МЕ/мл 13,4-128,5 нг/моль 0,46-3,73 мЕд/мл

Недостаток белка АФП указывает на развитие аутоиммунной реакции – организм матери отвергает плод. Такое состояние чревато выкидышем и гибелью плода.

Пониженный уровень ХГЧ свидетельствует о задержке развития плода, плацентарной недостаточности. Повышение показателей позволяет предположить риск синдрома Дауна, хориокарциномы, пузырного заноса.

Низкий уровень РАРР- А говорит о недоразвитии плаценты, больших размерах плода.

Как правило, все показатели изучаются в совокупности, со «ссылкой» на результаты УЗИ.

Медицинский женский центр – единственная клиника в Москве, где работает уникальная лаборатория крови. У нас проводятся не только общеклинические исследования, но и все возможные анализы на патологии гемостаза и хромосомной структуры.

источник

Экспертный анализ кариотипа лимфоцитов периферической крови с выявлением хромосомных аберраций (с фотографией)

Срок исследования увеличен до 12 дней.

Кариотипирование (цитогенетическое обследование) — это анализ на выявление нарушений хромосомного набора человека. При кариотипировании выявляется количество и строение хромосом, что позволяет выявить хромосомные аномалии, которые могут стать причиной бесплодия, невынашивания беременности, другой наследственной болезни и рождения больного ребенка.

Каждый организм характеризуется определенным набором хромосом, который называется кариотипом. Кариотип человека состоит из 46 хромосом — 22 пары аутосом и две половые хромосомы. У женщины — это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая — Y (кариотип: 46, ХY). В каждой хромосоме находятся гены, ответственные за наследственность. Исследование кариотипа проводится с помощью цитогенетических и молекулярно-цитогенетических методов.
Вне процесса деления клетки хромосомы в её ядре расположены в виде «распакованной» молекулы ДНК, и они трудно доступны для осмотра в световом микроскопе. Для того, чтобы хромосомы и их структура стали хорошо видны используют специальные красители, позволяющие выявлять гетерогенные (неоднородные) участки хромосом и проводить их анализ — определять кариотип. Хромосомы в световом микроскопе на стадии метафазы представляют собой молекулы ДНК, упакованные в плотные палочковидные структуры. Таким образом, большое число хромосом упаковывается в маленький объём и помещается в относительно небольшом объёме ядра клетки. Расположение хромосом, видимое в микроскопе, фотографируют и из нескольких фотографий собирают систематизированный кариотип — нумерованный набор хромосомных пар гомологичных хромосом. Изображения хромосом при этом ориентируют вертикально, короткими плечами вверх, а их нумерацию производят в порядке убывания размеров. Пару половых хромосом помещают в самом конце изображения набора хромосом.
Современные методы кариотипирования обеспечивают детальное обнаружение хромосомных аберраций (внутрихромосомных и межхромосомных перестроек), нарушения порядка расположения фрагментов хромосом — делеции, дупликации, инверсии, транслокации. Такое исследование кариотипа позволяет диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме. Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма. Если это происходит в половых клеток будущих родителей, то кариотип зиготы образовавшейся при слиянии родительских клеток, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма окажутся с одинаково аномальным кариотипом. Однако, нарушения кариотипа могут возникнуть и на ранних стадиях дробления зиготы. Развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с разными кариотипами. Такое многообразие кариотипов во всём организме или только в некоторых его органах называют мозаицизмом.
Как правило, нарушения кариотипа у человека сопровождаются различными, в том числе комплексными, пороками развития, и большинство таких аномалий несовместимо с жизнью. Это приводит к самопроизвольным абортам на ранних стадиях беременности. Однако достаточно большое число плодов (

Читайте также:  Какие анализы сдавать для уролога

2,5%) с аномальными кариотипами донашивают до окончания беременности. Хромосомные аномалии у новорожденных являются причиной 45-50% множественных врожденных пороков развития, около 35% случаев умственной отсталости и 50% отсутствия менструации у женщин. У взрослых хромосомные аномалии клинически могут не проявляться и вовсе, или иметь место в стертых формах. Часто человек считает себя абсолютно здоровым и не подозревает о каких-либо генетических нарушениях. Но он не может иметь детей. Поэтому исследование кариотипа лимфоцитов крови рекомендуется обязательно делать всем бесплодным парам.

источник

Анализ на кариотип — это современное лабораторное исследование, которое позволяет на генетическом уровне выявить возможные патологические нарушения, установить причину бесплодия и даже определить, будет ли здоров будущий ребенок. В полученном результате фиксируются изменения со стороны набора хромосом. Диагностическая процедура в настоящее время пользуется большим спросом, поскольку дает возможность установить уровень генетического соответствия мужчины и женщины.

Кариотип – хромосомный набор, различаемый по определенным характеристикам. Нормой является наличие 46 хромосом:

  • 44 – ответственны за схожесть с родителями (цвет глаз, волос и др.).
  • 2 – указывают на половую принадлежность.

Анализ на кариотипирование необходим для определения патологических нарушений, происходящих в организме. Лабораторная диагностика незаменима для установки причин бесплодия и наличия врожденных патологий, которые могут передаваться по наследству.

Последовательность проведения кариотипирования:

  1. Забор венозной крови и проведение в условии лаборатории отсеивания лейкоцитов одноядерного типа.
  2. Помещение биологического материала в среду с ФГА (фитогемагглютинином) и начало клеточного культивирования (митотического деления).
  3. Прекращение митоза после достижения стадии метафазы, что осуществляется при помощи колхицина.
  4. Обработка раствором гипотонического типа и изготовление микропрепаратов.
  5. Изучение и фотографирование при помощи специального микроскопа образовавшихся клеток.

Только через 2 недели специалисты в условиях лаборатории получают результат проведенного исследования. В бланке указывается информация по общему количеству хромосом, и фиксируются имеющиеся нарушения со стороны генетического кода.

Назначается генетическое исследование с целью оценки репродуктивных функций пары, планирующей детей. Для постановки диагноза необходима полная картина генетических особенностей. На основании полученных результатов можно искать пути для решения имеющейся проблемы, при ее наличии. Кариотипирование направлено на определение в биологическом образце количества, формы и размера хромосом.

При наличии каких-либо нарушений, имеют место проблемы со стороны внутренних систем и органов. В некоторых случаях полностью здоровые люди являются носителями генетической мутации. Визуально определить это не представляется возможным. Как следствие – проблемы с зачатием, пороки развития или рождение нездорового ребенка.

К проведению кариотипирования существуют следующие медицинские показания:

  • возрастной порог от 35 лет и старше;
  • прерывание беременности и бесплодие;
  • гормональные нарушения в женском организме;
  • облучение или отравление химикатами;
  • загрязненная экология и наличие вредных привычек;
  • наследственная предрасположенность и кровные браки;
  • наличие мутации хромосом у предыдущих детей.

Анализ крови на кариотип нужно проводить однократно, т. к. с возрастом данные характеристики не меняются. Абсолютное показание к кариотипированию – проблема зачатия и невозможность выносить беременность. В последние годы все больше молодых пар сдают данный анализ, с целью убедиться в рождении здоровы детей. Лабораторная диагностика дает возможность оценить вероятность появления на свет малыша с отклонениями, вызванными нарушением со стороны хромосом и выявить истинную причину бесплодия.

Для кариотипирования используются кровяные клетки, поэтому перед сдачей анализа нужно подготовиться, исключив воздействие сторонних факторов, осложняющих их рост. В противном случае проведенное исследование будет низко информативным.

Подготовку необходимо начинать за 2 недели:

  1. Исключить алкоголь, курение и вредные продукты.
  2. Обсудить с врачом прекращение медикаментозной терапии.
  3. За 9-11 часов до забора биологического материала исключить приемы пищи.
  4. За 2-3 часа до лабораторного исследования не употреблять жидкость.

Сдача крови на кариотип осуществляется в утренние часы натощак. В случае ухудшения самочувствия, инфекционного заболевания или обострения хронических болезней, исследование откладывается до той поры, пока пациент не выздоровеет.

При соблюдении рекомендаций по подготовке, кариотипирование позволяет определить:

  • Анеуплоидию (изменение количества). При некачественном биологическом материале могут возникнуть сложности в процессе диагностики.
  • Структурные отклонения – соединенные комбинации после разделения. Исследование выявляет крупные нарушения. С целью выявления мелких отклонений назначается микроматричный хромосомный анализ.

Кариотипирование проводится несколькими способами, которые отличаются между собой подходом к исследованию и источниками биологического материала:

  1. Классический – для исследования берется венозная кровь (10-20 мл). У беременных женщин для проведения диагностики может потребоваться забор околоплодных вод. В некоторых случаях клетки берут из костного мозга. Хромосомы окрашивают и исследуют посредством светового микроскопирования.
  2. SKY (спектральный) – новая методика, которая считается максимально эффективной, т. к. позволяет наглядно и быстро проводить идентификацию нарушений. В данном случае части хромосом обнаруживаются с помощью флуоресцентных меток без культивирования клеток. Используется в том случае, когда стандартное кариотипирование не дало результата.
  3. FISH-анализ (флуоресцентная гибридизация) – исследование проводится особым образом и подразумевает специфическое связывание определенных участков хромосом и флуоресцентных меток. Для лабораторной диагностики осуществляется забор эмбриональных клеток или эякулята.

Для получения максимально точного результата анализ крови проводится вкупе с другими, не менее информативными, генетическими тестами.

Постановкой диагноза на фоне полученного результата кариотипирования, занимается генетик. Специалист проводит тщательный анализ и делает заключение, в котором указывает причины нарушений со стороны репродуктивных функций или рождения нездорового ребенка.

Расшифровка анализа позволяет определить следующие генетические нарушения:

  • наличие генетически различных клеток;
  • перемещение участков генетического кода;
  • разворот или удвоение хромосомы;
  • отсутствие одного фрагмента или присутствие лишнего.

С помощью кариотипирования удается установить предрасположенность к развитию гипертонии, артрита, инфаркта миокарда, инсульта и сахарного диабета. Благодаря данному анализу тысячи супружеских пар установили причину бесплодия и успешно излечились от имеющихся нарушений в организме.

Отклонения возможны как со стороны мужского, так и со стороны женского организма. Нормальные показатели:

  • у мужчин — 46XY;
  • у женщин — 46XX.

У детей наблюдаются следующие нарушения со стороны генетического кода:

  1. 47XX+21 или 47XY+21 – синдром Дауна (наличие лишней хромосомы).
  2. 47XX+13 или 47XY+13 – синдром Патау.

Есть и иные отклонения от нормы, которые являются менее опасными. Только генетик может риски появления нездорового ребенка на счет для каждого индивидуального случая. Если при кариотипировании были обнаружены опасные нарушения или мутации, то врач рекомендует прерывание беременности.

Кариотипирование дает оценку не только количеству, но и состоянию генов:

  • Мутации, вызывающие тромбообразование, нарушающее питание мелких сосудов в момент формирования плаценты, что является причиной выкидышей.
  • Патологии со стороны гена муковисцидоза, с целью исключения вероятности развития определенного заболевания у ребенка.
  • Генные нарушения со стороны Y-хромосомы.
  • Отклонения со стороны генов, которые отвечают за способности обеззараживания токсических факторов.

При обнаружении делеции (потери участка) в Y-хромосоме речь идет о мужском бесплодии из-за нарушенного сперматогенеза. Это является причиной возникновения наследственных болезней.

Для исключения вероятности генетических отклонений у ребенка, следует еще до зачатия проверить кариотип у обоих родителей. При наличии генетических нарушений врач пояснит возможные риски. Не стоит впадать в панику при обнаружении хромосомных мутаций. Даже в таком случае можно выносить беременность и родить здоровог если будут обнаруженыо ребенка, соблюдая рекомендации врача.

Планирование ребенка позволяет подготовить организм матери и отца к зарождению здорового потомства и определить риски рождения нездоровых детей. Даже после того, как женщина забеременела, в первую неделю можно сделать кариотипирование для оценки возможных рисков, что позволяет вовремя принять меры для предотвращения выкидыша. При наличии серьезных генетических мутаций решение по поводу прерывания беременности принимает супружеская пара. Врач только указывает на возможные последствия и дает рекомендации при необходимости прерывания.

Генетика в настоящее время представляет сбой развитую научную отрасль. При помощи современных диагностических анализов можно выявить происходящие отклонения на начальных формах прогрессирования и принять меры для борьбы с ними. Благодаря кариотипированию удается вылечить бесплодие, предотвратить повторные выкидыши и исключить вероятность рождения детей с генетической мутацией. Планируя семью, не будет лишним провериться на генетическую совместимость.

источник

Нередко отклонения в развитии и сложности с зачатием ребенка связывают с нарушениями, передающимися по наследству. Если у одного из родителей есть родственники, страдающие от генетических заболеваний, либо он сам является носителем, желательно пройти обследование прежде, чем планировать рождение малыша. Врачи берут анализ на кариотип при подозрении на патологии хромосом или молекул ДНК. Для проведения исследования у пациента берут кровь и обрабатывают окрашивающим составом. После обработки под микроскопом изучают размеры, форму и количество хромосом.

Кариотип – это индивидуальный набор хромосом, имеющий свои особенности для каждого конкретного биологического вида и отдельной особи. У человека всего 23 пары хромосом, то есть, в общей сложности, 46. Из двадцати трех пар всего одна определяет пол, а остальные не имеют различий в строении. Генетический анализ кариотип позволяет выявить отклонения в составе или строении хромосом. Благодаря данному исследованию медики могут своевременно принять меры, чтобы патология не вызвала серьезных осложнений, вплоть до гибели плода.

Важно! Будущим родителям достаточно один раз в жизни сделать кариотипирование, чтобы убедиться в отсутствии или наличии патологий.

Анализ актуален для людей любого возраста, ведь не все с раннего детства обследовались у генетика. Нет противопоказаний для беременных и кормящих мам. Но в первую очередь исследование требуется новорожденным, которым ранняя диагностика поможет выявить опасные генетические заболевания, влияющие на продолжительности жизни. Анализ в стационаре на кариотип супругов часто проводится по назначению врача, но что же это за обследование такое знают не все. Желающим завести ребенка парам обследование показано в следующих случаях:

  • После неоднократных неудачных попыток зачатия.
  • Нарушение менструального цикла.
  • Если ранее были выкидыши, или рождались мертвые дети.
  • У рожденных ранее детей было зафиксировано отставание в умственном или физическом развитии.
  • Уже на стадии беременности у плода выявлены нарушения развития.
  • Если будущие мама и папа являются близкими родственниками.
  • При наличии вредных привычек у одного из родителей.
  • Проживание в регионе с неблагоприятной экологической обстановкой или работа на вредном производстве.
  • Планирование первой беременности после 35 лет – причина кроется в том, что с возрастом хромосомы могут изменяться.
  • Если у родителей имеются генетические заболевания, даже если до этого рождались здоровые дети.

Внимание! Современные врачи советуют сдавать анализ всем парам, так как не у каждого носителя проявляются патологии, и поэтому многие о них и не подозревают.

Проблемы, вплоть до бесплодия, выявляются тогда, когда человек решает завести ребенка.

Анализ берут в период метафазы, длительность которой составляет от двух до десяти минут. Именно в этот момент легче всего рассмотреть хромосомы в микроскоп. Существует три способа выявления аномалий – молекулярный, цитогенетический и молекулярный таргетный. Подбирать ту или иную методику должен врач. Прежде чем будет произведена сдача анализа кариотип, необходимо подготовиться:

  • Вылечить простудные заболевания, если человек болеет, то сдавать анализ можно не ранее, чем через две недели после выздоровления.
  • За 30 дней до посещения стационара отказаться от приема антибиотиков или снизить их потребление согласно указаниям доктора.
  • Не принимать алкоголь в течение трех дней до тестирования.
  • В день сдачи анализа необходимо плотно позавтракать.

Для тестирования берут венозную кровь. Полученный у пациента материал обрабатывают красящим веществом, чтобы выявить хромосомы. Далее медик делает несколько снимков, которые позволяют определить число молекул ДНК и патологические изменения.

Важно. Молекулярный метод необходим для обнаружения мелких участков структурных аномалий хромосом размером менее 5 миллионов нуклеотидов.

Для более детальной диагностики используется расширенный или таргетный молекулярный метод.

Для представителей сильного пола нормальные кариотип результаты анализа – 46, XY, а для дам – 46, XX. Число 46 указывает на количество хромосом в норме, а X и Y на конце обозначают форму, структуру и размеры у здорового человека – для мужчин и женщин данные показатели разнятся. По результатам анализов врач сделает несколько отметок в бланке. Разобраться в медицинских терминах поможет их расшифровка:

  1. Транслокация – произошла перестройка хромосомы. Если у больного сбалансированная транслокация, то она скорее всего не проявится. При несбалансированной возможны серьезные отклонения.
  2. Мозаицизм – обнаружены клетки с отличными от нормальных генетическими признаками.
  3. Трисомия – данная патология встречается чаще всего, у больного выявляется лишняя хромосома. Наиболее распространено появление копии 21-ой хромосомы, приводящее к таким заболеваниям, как синдром Дауна.
  4. Инверсия – участок хромосомы развернут на 180 градусов.
  5. Моносомия – в генотипе только одна из пар гомологичных хромосом.
  6. Делеция – потерян фрагмент хромосомы.
Читайте также:  Как делать анализ на английском

Не стоит считать, что аномалии в анализе на каринотип всегда говорят о том, что у семейной пары родится больной ребенок, или они вовсе будут бездетными. Например, у родителей со сбалансированной транслокацией может родиться здоровый малыш, у которого не будет хромосомных патологий. Пусть, цены на анализ кариотип высоки и стартуют от трех тысяч рублей, отказываться от него нежелательно. Возможно, по результатам медик посоветует пройти лечение и лишь затем планировать беременность.

Внимание! Если женщина знает, что у нее родится ребенок с патологиями, ей необходимо уделить внимание здоровому образу жизни и следовать рекомендациям медика.

Генетические отклонения могут протекать по-разному. При трисомии тринадцатой и восемнадцатой хромосом дети умирают на первом году жизни. Люди с синдромом Дауна отстают в умственном развитии, но смертность гораздо ниже, чем при аналогичных заболеваниях. Аномалии половых хромосом, такие как, синдром Шерешевского-Тернера, часто приводят к бесплодию, но человек с данными нарушениями может дожить до старости. А при моносомии X около 5% женщин имеют возможность родить малыша. Важно обратиться к врачу-генетику, который точно поставит диагноз. Полностью вылечить генетическое заболевание нельзя, но если регулярно проходить лечение, то качество жизни улучшится.

источник

Исследование половых хромосом высокочувствительным молекулярно-цитогенетическим FISH(fluorescence in situ hybridization)-методом позволяет выявить даже небольшие изменения как в хромосоме, так и в ее части (подтвердить наличие хромосомной перестройки, уточнить точки разрыва хромосом и др.).

FISH-тест на генетические аномалии половых хромосом, FISH-диагностика плода, FISH-диагностика синдрома Клайнфелтера, FISH-диагностика синдрома Тернера, FISH-диагностика синдрома Мартина — Белл (синдром ломкой X-хромосомы), предимплантационная генетическая диагностика (ПГД), FISH-диагностика заболеваний, сцепленных с полом.

Синонимы английские

FISH analysis on Fragile X Syndrome, FISH diagnosis of 47, XYY Syndrome, FISH-test for genetic abnormalities, FISH analysis of sex chromosomes (X and Y), FISH testing Turner’s Syndrome, FISH diagnosis of Klinefelter’s Syndrome, fetal sex test, preimplantation genetic diagnosis (PGD), FISH diagnosis of Sex-Linked Genetic Diseases.

Дифференциальное окрашивание хромосом.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Исследование проводится в состоянии сытости, не рекомендуется сдавать кровь на данное исследование натощак.
  • Исключить (по согласованию с врачом) прием антибактериальных и химиотерапевтических препаратов в течение 14 дней до исследования.
  • Исследование рекомендуется проводить не ранее чем через 2 недели после перенесенных инфекционных/острых воспалительных заболеваний.

Общая информация об исследовании

Цитогенетический анализ проводится методом флуоресцентной гибридизации in situ (FISH, от англ. fluorescence in-situ hybridization). Подробнее с методом можно ознакомиться здесь (https://helix.ru/kb/item/12-052).

У человека 46 хромосом (23 пары), из них две половые — XX или XY. В норме у женщины имеется 2 X хромосомы, такой кариотип обозначается как 46XX, у мужчины есть одна X и одна Y хромосома (кариотип 46XY). Возможны различные варианты количественных и качественных генетических аномалий половых хромосом. Например, приблизительно у 1 из 350 новорождённых мальчиков кариотип 47,XXY или 47,XYY, а у одного ребенка на каждые несколько тысяч новорождённых — моносомия по Х-хромосоме.

Аномалии половых хромосом являются общими и вызывают синдромы, связанные с рядом физических и психических нарушений. Многие из этих заболеваний не определяются внутриутробно, если беременной не проводится пренатальное тестирование по другим причинам, например из-за ее более старшего возраста. Часто отклонения трудно распознать при рождении и они диагностируются только в период пубертата.

Синдромы, вызванные аномалиями половой хромосомы, менее выражены, чем при патологии аутосомных хромосом. Например, девочки, у которых есть дополнительная Х, часто кажутся нормальными физически и умственно, затем, вырастая, являются плодовитыми. Напротив, у детей с лишними аутосомными хромосомами (от 1 до 22) обычно наблюдаются серьезные нарушения, такие как синдром Дауна, который обычно возникает при трисомии хромосомы 21 (три вместо пары). А дополнительная хромосома 1 может быть фатальной для плода. Девочки без половой хромосомы жизнеспособны, тогда как плоды, у которых отсутствует аутосомная хромосома, не выживают. Часто сниженная фертильность или бесплодие связаны с патологией в половой хромосоме. Так, при первичной аменорее аберрации Х-хромосомы находят примерно у 25% женщин. В связи с этим многим бесплодным парам рекомендуется пройти генетическое исследование.

В настоящее время существует более 300 наследственных заболеваний, передающихся сцепленно с полом (например, Болезнь Фабри, гемофилия А и В, прогрессирующие мышечные дистрофии Дюшенна и Беккера, X-сцепленная глухота). Для данной патологии обычно характерно, что здоровые женщины-носительницы передают патологический ген своим сыновьям. При рождении мальчиков вероятность их поражения составляет 50%, в то время как девочки рождаются фенотипически здоровыми, но 50% из них являются носителями. Если женщина знает, что она является носительницей наследственного заболевания, сцепленного с полом, то рекомендуется пройти генетическое обследование на ранних сроках беременности, чтобы решить вопрос о необходимости ее прерывания.

Синдром Тернера (в РФ более известный как синдром Шерешевского — Тернера) встречается примерно у 1/2500-3000 живых женских родов во всем мире. 99% из 45,X0 вариантов прерываются спонтанно. Около 50% пораженных девочек имеют 45,X0 кариотип, около 80% из них потеряли отцовскую X. Большинство других из 50% — это мозаики (например, 45,X0/46,XX или 45,X0/47,XXX). Около 15-20% из половины случаев связаны со структурными перестройками Х-хромосомы, например делецией короткого или длинного плеча, изохромосомой Х по длинному или короткому плечу, кольцевой Х-хромосомой. Среди мозаичных девочек фенотип может отличаться от типичного для этой патологии.

Беременность плодом, имеющим синдром Тернера, часто протекает неблагоприятно, с угрозой выкидыша и преждевременных родов. И как правило, риск возникновения этой генетической поломки никак не связан с возрастом беременной. У младенцев высокий риск развития дисплазии бедра, а 10% подростков имеют сколиоз. Остеопороз и переломы довольно часто отмечаются среди женщин с этим синдромом. Часто новорождённые с синдромом Тернера практически не отличаются от здоровых детей. но у многих из них даже при доношенном сроке беременности наблюдается сниженная масса тела и небольшой рост. Некоторые из них имеют выраженную отечность рук и ног, лимфостаз и/или короткую шею со свободными складками кожи по бокам (птеригиум-синдром). В раннем возрасте часто наблюдается слабый сосательный рефлекс, моторное беспокойство, срыгивания фонтаном, отставание в физическом развитии. Умственная отсталость встречается редко, но у многих детей есть проблемы с обучением из-за дефицита внимания и/или гиперактивности. При классическом типе заболевание проявляется коарктацией аорты и различными врождёнными пороками сердца. Артериальная гипертензия часто возникает в старшем возрасте, даже без коарктации. Также характерны аномалии почек (например, подковообразная) и гемангиомы. У большинства пациентов наблюдаются потеря слуха, косоглазие, дальнозоркость или близорукость, дальтонизм. Дисгенезия гонад (вместо яичников лентовидные полоски белесоватой ткани без ооцитов) характерна для 90% женщин. Тиреоидит, гипотиреоз, сахарный диабет, алопеция, ожирение, гипертрихоз и целиакия более распространены, чем среди населения в целом. Взрослые обычно низкорослые, с короткой шеей с крыловидными складками, широкой грудной клеткой, низкой границей роста волос, с недоразвитой нижней челюстью, высоким нёбом, аномалиями прикуса, деформацией ушных раковин. Также обращают на себя внимание множественные пигментированные невусы, девиация локтевых суставов, укорочение IV и V пальцев на руках и ногах и гипоплазия ногтей. Дисгенезия гонад приводит к невозможности нормального полового созревания и к соответствующим клиническим симптомам (например, отсутствие менструации, недоразвитие первичных половых признаков). В подавляющем большинстве случаев женщины бесплодны, но при мозаичных вариантах возможно зачатие и вынашивание плода.

Крайне редко синдром Тернера встречается у мужчин (известно чуть более 70 случаев) и связан в таком случае с транслокацией или хромосомным мозаицизмом.

Синдром Мартина — Белл (синдром ломкой X-хромосомы, fragile X syndrome) является наиболее часто диагностируемой наследственной причиной умеренной умственной недостаточности. При этом чаще страдают мальчики, чем девочки. Симптомы синдрома Мартина — Белл вызваны аномалией гена FMR1 в локусе Хq27.3, приводящей к недостаточной выработке белка FMR1, необходимого для нормального развития нервной системы. Эта патология встречается приблизительно у одного из 2000-3000 мужчин и у одной из 259 женщин. Дети и взрослые могут иметь физические, интеллектуальные и поведенческие проблемы. Новорождённые крупные с большой головой, с широким и высоким лбом, с большими (часто оттопыренными) ушами, вытянутым лицом и выступающим подбородком. Многие из них светловолосые с голубыми глазами. У мальчиков большие яички, что становится наиболее очевидным после полового созревания. Часто наблюдаются аномально гибкие подвижные суставы, возможно развитие сердечной недостаточности из-за пролапса митрального клапана. Могут быть не все признаки, а один или несколько. У всех детей наблюдается олигофрения разной степени выраженности, сопровождающаяся различной неврологической симптоматикой. Могут развиться проявления, напоминающие аутизм (например, непереносимость прикосновений, плохой зрительный контакт, эхолалия). Такие больные часто говорят быстро, сбивчиво, может быть «бормочущая речь», разнообразные гримасы, монотонное хныканье и дискоординация движений.

Синдром FXTAS (тремор/атаксия, ассоциированные с ломкой Х-хромосомой) может поражать до 1 из 3000 мужчин старше 50 лет. Он является результатом менее обширной аномалии (называемой премутацией) в гене FMR1. Риск развития расстройства возрастает по мере старения. Часто заболевание начинается с тремора рук во время выполнения какого-то движения. Затем появляются проблемы с координацией (медленно прогрессирует атаксия), паркинсонизм и в конечном итоге деменция. На поздних стадиях может утрачиваться контроль над функциями тазовых органов. После появления симптомов люди могут прожить от пяти до двадцати пяти лет.

При синдроме тройного Х (Triple X) дополнительная Х-хромосома обычно унаследована от матери. Чем старше мать, тем больше риск развития у плода этого синдрома. Примерно 1 из каждых 1000 девочек рождается с третьей Х-хромосомой. Синдром Triple X редко вызывает очевидные физические нарушения. Девочки могут иметь более низкий уровень интеллекта, проблемы с вербальными навыками и больше проблем с обучением, чем их братья и сестры. Иногда синдром вызывает нарушения менструального цикла и бесплодие. Тем не менее некоторые женщины с синдромом тройного Х родили физически нормальных детей с нормальным кариотипом. По данным некоторых исследований, около 90% трисомиков по X-хромосоме остаются невыявленными.

В чрезвычайно редких случаях рождаются младенцы с четырьмя или даже пятью Х-хромосомами. Чем больше Х-хромосом, тем больше вероятность умственной отсталости и физических аномалий.

Синдром 47, XYY встречается примерно у 1/1000 мальчиков. Дети, как правило, выше среднего и имеют небольшое снижение IQ по сравнению с членами семьи. Наличие второй Y-хромосомы в большинстве случаев не ведёт к каким-либо физическим отклонениям. В младшем возрасте могут быть расстройства поведения, гиперактивность, нарушение внимания и расстройства обучения. Взрослые мужчины часто импульсивны, эмоционально незрелы, могут казаться неуклюжими.

Синдром Клайнфелтера — наиболее распространенное расстройство половой хромосомы, встречающееся примерно у 1 из 500 новорождённых мальчиков. Чаще всего он возникает из-за наличия дополнительной копии Х-хромосомы в каждой клетке (47, XXY). В 60% случаев дополнительная Х-хромосома — материнская. Часто это препятствует нормальному функционированию яичек и приводит к снижению уровня андрогенов. Мужчины с этим синдромом, как правило, высокие с непропорционально длинными руками и ногами. У 70% из них развивается гинекомастия (увеличение грудных желез). Половое созревание обычно происходит в срок или с небольшой задержкой, но часто плохо растут усы и борода. Дети с синдромом Клайнфелтера часто имеют трудности с обучением и задержку развития речи. Они могут быть как спокойны, чувствительны и ненавязчивы, так и, наоборот, агрессивными, склонными к асоциальному поведению. По сравнению со здоровыми мужчинами у взрослых с этим синдромом имеется повышенный риск развития рака молочной железы, системной красной волчанкой и легочных заболеваний. Развитие яичек варьируется от полностью нефункциональных канальцев до некоторого производства сперматозоидов; часто повышается экскреция фолликулостимулирующего гормона с мочой. Примерно в 15% случаев наблюдается мозаицизм, который сопровождается менее выраженной клиникой, дает лучший прогноз в отношении фертильности и психосоциальной адаптации. Встречаются мужчины с синдромом Клайнфелтера, у которых есть 3, 4 и даже 5 Х хромосом. По мере увеличения количества хромосом X возрастает также выраженность умственной отсталости и пороков развития. Каждый дополнительный X связан с сокращением IQ на 15-16 единиц, с речевыми нарушениями. Диагноз «синдром Клайнфелтера» подозревается при физическом осмотре подростка с маленькими яичками и гинекомастией. У многих мужчин он диагностируется во время оценки бесплодия (вероятно, все немозаичные 47, XXY мужчины бесплодны).

Для чего используется исследование?

  • Для диагностики генетических нарушений половых хромосом.
Читайте также:  Какие анализы нужно принести гастроэнтерологу

Когда назначается исследование?

  • При бесплодии.
  • При привычном невынашивании плода.
  • При измененном кариотипе абортивного материала.
  • При множественных неудачных попытках ЭКО.
  • При предимплантационной генетической диагностике (ПГД) в рамках ЭКО.
  • Если во время классического кариотипирования возникли подозрения, требующие уточнения.
  • Пренатальная диагностика при подозрении на наличие отклонений в развитии плода (например, отклонения от нормы во время УЗИ).
  • При возможном влиянии мутагенных факторов во время беременности.
  • Постнатальная диагностика генетической патологии у ребенка при наличии соответствующих клинических признаков.
  • При планировании последующих беременностей, если в семье есть ребенок с хромосомной аномалией.

В норме двадцать третья пара хромосом (половая) — это XY у мужчины и ХХ у женщины.

При исследовании эякулята в каждом сперматозоиде должен быть один сигнал половой хромосомы (либо X, либо Y).

В настоящее время 56% морфологически нормальных эмбрионов женщин после 35 имеют хромосомные аномалии.

Что может влиять на результат?

Во время пренатальной диагностики есть риск «засорения» образца материнскими клетками, что может повлиять на результат исследования.

  • FISH-тест часто используется совместно с другими методами молекулярной и цитогенетической диагностики. Важно не забывать о таком явлении, как мозаицизм — сочетание в тканях индивидуума двух и более популяций клеток с разным генотипом. Причем клетки с аномальным и нормальным кариотипом могут наличествовать как во всех тканях организма (генерализованная форма), так и в отдельных тканях (ограниченная форма).
  • Исследование можно проводить начиная с 10-12-й недели беременности.
  • Высокая информативность и точность (99,9%) метода позволяет выявлять патологию на уровне фрагментов хромосом, что важно для постановки правильного диагноза, выработки дальнейшей тактики ведения беременной и прогноза для ребенка.
[40-006] Беременность — Пренатальный скрининг трисомий I триместра беременности (синдром Дауна) [16-001] Исследование кариотипа

Кто назначает исследование?

Педиатр, врач-генетик, эндокринолог, невролог, репруктолог.

  • Lynn B. Jorde,John C. Carey,Michael J. Bamshad. Medical Genetics. 4th edition. Philadelphia : Mosby/Elsevier, c2010.
  • Tartaglia NR, Howell S, Sutherland A, Wilson R, Wilson L (2010). «A review of trisomy X (47,XXX)». Orphanet J Rare Dis 5: 8. DOI:10.1186/1750-1172-5-8.
  • Maureen A. Leehey. Fragile X-associated Tremor/Ataxia Syndrome (FXTAS): Clinical Phenotype, Diagnosis and Treatment. J Investig Med. 2009 Dec; 57(8): 830–836. doi: 10.231/JIM.0b013e3181af59c4.
  • Visootsak J, Aylstock M, Graham JM Jr. Klinefelter syndrome and its variants: an update and review for the primary pediatrician. Clin Pediatr (Phila). 2001 Dec;40(12):639-51.
  • The Turner Syndrome Society of the United States: 1-800-365-9944.
  • Berry-Kravis E, Grossman AW, Crnic LS, Greenough WT. Understanding fragile X syndrome. Curr Paediatr. 2002;12(4):316–324.

источник

Для оценки качества генетического материала будущего ребенка существует специальный анализ − кариотипирование супругов.

Хромосома – это нить, на которую, как бусины, нанизаны гены (индивидуальная программа развития организма). Эти структуры связывает между собой ДНК. Каждая клетка человеческого организма несет в себе одинаковую генетическую информацию – стандартный набор хромосом (44 штуки) и пару полученных от родителей (Х − от материнской яйцеклетки, Y − от отцовского сперматозоида). Это и есть кариотип. В норме формула женского – 46ХХ, мужского – 46ХY.

Судьба будущего эмбриона всецело зависит от того, насколько правильно произойдет слияние половых клеток и от состояния участвующих в этом хромосом. Нарушения чреваты замершей беременностью, патологиями развития плода, хромосомными аномалиями ребенка (синдромы Дауна, Клайнфельтера). Явные отклонения в здоровье мужчины или женщины сразу настораживают врачей, но существуют также и скрытые дефекты. Они не проявляются при обычной диагностике, вовсе не беспокоят человека, пока он не решит зачать собственного ребенка.

Носитель дефектных хромосом (мужчина или женщина) может быть совершенно здоров (при сбалансированных хромосомных аномалиях), но при слиянии его генетического материала с материалом партнера возникнут проблемы с развитием эмбриона (патологии плода, бесплодие). Пары длительно и безрезультатно лечатся, тратя впустую время и деньги. Кариотипирование помогает определить причину подобных проблем путем подсчета хромосом и оценки их качества в венозной крови отца и матери.

Что можно определить с помощью хромосомного анализа:

  • Наличие дефектных хромосом и характер их влияния на зачатие и развитие ребенка;
  • Предрасположенность будущего ребенка к тяжелым патологиям (муковисцидоз, сахарный диабет, инфаркт миокарда);
  • Являются ли дефектные хромосомы причиной выкидышей и бесплодия.

Хромосомными аномалиями спровоцировано 65% ранних выкидышей. Аномальный кариотип фиксируется у одного человека из 700 – это немало.

Кариотипирование также позволяет оценить качество генов. Например, можно выявить генные мутации, из-за которых нарушается формирование плаценты и происходит выкидыш. Если присутствует генная мутация Y-хромосомы, то придется использовать сперму донора.

В каких случаях при планировании рекомендуется сдавать анализ крови на кариотип:

  1. Будущие родители старше 35 лет. С возрастом риск повреждения хромосом повышается.
  2. При наличии хромосомных аномалий у ближайших родственников.
  3. Бесплодие неясного генеза.
  4. Гормональные расстройства у женщин.
  5. Плохая спермограмма, не улучшающаяся после лечения.
  6. Если кто-либо из пары подвергался воздействию вредных факторов.

Кариотипирование необходимо и в том случае, если пара планирует второго ребенка, а первенец имеет отклонения в развитии.

Результат анализа на кариотипирование отражает состояние каждого звена исследуемых хромосом, каждая из которых выполняет свою роль в развитии и дальнейшей жизни человека.

Типичным примером нарушения структуры генетического материала является транслокация (t) – это патологическая перестройка, заключающаяся в обмене участками, перемещении фрагмента одной хромосомы на другую. Наглядно процесс изображен ниже:

Транслокация хромосом

  1. Трисомия – к паре хромосом добавляется одна лишняя (синдром лишней хромосомы). В результате каждая клетка имеет по три копии какой-либо хромосомы вместо положенных двух. Трисомия по 4 хромосоме приводит к нежизнеспособности плода, выкидышам на ранних сроках.
  2. Моносомия – недостаток одной хромосомы.
  3. Делеция (del) – выпадение целого участка хромосомы. Часто становится причиной плохой спермограммы, а также врожденных патологий плода.
  4. Дупликация (dup) – задвоение одного из участков.
  5. Инверсия (inv) – один из участков повернут на 180˚.

Такие перестройки называются аберрациями, которые могут быть регулярными и нерегулярными. В первом случае нарушения встречаются в большом количестве клеток и носят врожденный характер. Во втором – приобретаются вследствие воздействия негативных факторов.

Кариотипирование может быть простым и расширенным. В первом случае исследуют 12-15 клеток. Генетик оценивает не только структуру хромосом, но и процесс их деления. Отдельные участки фотографируют, фото комбинируют в линии.

Для описания структуры хромосомы используют специальные обозначения, которые можно встретить в заключении к анализу: q – длинное плечо, p – короткое плечо (длинное – нижние «ножки», короткое – верхние). Внешний вид изображен ниже. Например, формула 5p15.2 означает вторую полосу пятнадцатого участка короткого плеча пятой хромосомы.

Графическое изображение кариотипа (систематизированный кариотип)

На рисунке представлен патологический кариотип мужчины, формула 46 ХY t(1;3)(p21;q21)del(9)q22. Это означает перенос части 1 хромосомы на 3 (транслокация 21 секторов короткого и длинного плеч), потерю сектора у 9 хромосомы (делеция 22 сектора длинного плеча).

Такой анализ называется кариотипированием без аберраций (пример результата на фото).

Результат стандартного анализа на кариотипирование (лишняя хромосома)

Данный тип исследования недостаточно информативен. При бесплодии и невынашивании следует сдавать расширенный анализ − на кариотипирование с аберрациями. Исследуется около 100 клеток, рассчитывается процент аномальных делений. Кариотипирование с аберрацией позволяет выявить приобретенные (нерегулярные) дефекты хромосом, а без аберраций – только врожденные (нерегулярные).

Примеры болезней, спровоцированных хромосомными аномалиями, перечислены в таблице 1.

Таблица 1. Хромосомные патологии

За две недели до сдачи венозной крови на кариотипирование нельзя принимать алкоголь и лекарства (особенно антибиотики). Голодать перед процедурой не нужно, наоборот, желательно быть сытым. Если пациент болен ОРВИ или у него началось обострение хронического заболевания, то сдача крови возможна только через две недели после излечения. Анализ без аберраций делают один раз в жизни, поскольку хромосомный набор на всем ее протяжении остается неизменным. А вот приобретенные (нерегулярные) дефекты могут добавляться.

В списке услуг анализ называется «исследование кариотипа по лимфоцитам периферической крови». Используются именно лимфоциты, поскольку не все кровяные клетки содержат ядро с хромосомами.

Результат будет известен через 2-4 недели. Такое время обусловлено подготовкой материала, поскольку в ядре зрелой клетки хромосомный набор рассмотреть невозможно, он заметен только в период деления (митоза). Полученную культуру лимфоцитов помещают в питательную среду на 72 часа (три клеточных цикла) и при помощи специальных веществ стимулируют деление клеток. Процесс осложнится или замедлится, если пациент не соблюдал правила подготовки.

В определенный момент роста клеток, когда хромосомы видны лучше всего, препарат обрабатывают веществом, фиксирующим текущее состояние. Задача генетика – выбрать момент, извлечь хромосомный набор из ядра, поместить его на предметное стекло. Процесс занимает около 5 часов. Затем выжидают еще 2-3 дня перед прокраской (хромосомы необходимо «состарить» иначе они не прокрасятся).

Различные участки хромосомы по-разному реагируют на краситель, за счет чего на них появляются полоски (процесс называется banding). Окрашенный материал исследуется под микроскопом. У всех людей окрашенные хромосомы выглядят одинаково, поэтому полученный препарат можно сравнить с оптимальным по качеству образцом. Полученное изображение анализируется компьютерной программой. Врач тратит на один анализ по 5-6 часов. Рассматривается каждая полоска.

При удачном раскладе результат будет готов через неделю, но порой анализ может занимать длительное время. Причина в том, что хромосомный фермент у некоторых работает нестабильно, краситель «не берется», тогда врачу приходится готовить новое стекло.

Существует также FISH-метод. Основные преимущества:

  1. Более точный (позволяет выявить малейшие дефекты хромосомы).
  2. Результат не зависит от опыта генетика.
  3. Быстрый: занимает один день, поскольку исследуемые клетки не обязательно должны находиться в процессе деления.

Из недостатков – дороговизна и сложность исполнения.

Стоимость кариотипирования зависит от клиники. Цены в сетевых лабораториях и клиниках (с аберрациями):

  • «Хеликс»: 6290 руб.
  • «Инвитро»: 7090 руб.
  • «СитиЛаб»: 6700 руб.
  • KDL: 6688 руб.
  • Next Generation Clinic: 4800 руб.
  • Лаборатории ЦИР: 6800 руб.
  • Центральный НИИ эпидемиологии (Москва): 6750 руб.

Пациентам выдают не только заключение, но и распечатку (кариограмму), на которой наглядно представлен хромосомный набор и его состояние.

Дальнейшие действия будущих родителей зависят от характера отклонений в хромосомах. Оценку может дать только врач-цитогенетик. Он расскажет, насколько опасны обнаруженные дефекты и что можно сделать. Генетические и хромосомные аномалии не лечатся, поэтому ответственность за выбор метода зачатия полностью ложится на пару.

Если поломанные хромосомы есть только у одного родителя, то они могут компенсироваться здоровым генетическим материалом другого. Если дефекты есть у обоих, то шансов на естественное зачатие здорового потомства нет.

Если нарушения несущественные (процент «поломок» в допустимых пределах), то врач назначает антимутагенную терапию: антигипоксанты, актопротекторы, флавоноиды, стимуляторы интерферона (иммунного белка), витамины и дает рекомендации по образу жизни и питанию.

В большинстве случаев даже при наличии дефектов у пары есть шанс стать родителями здорового ребенка, но для исключения рисков передачи аномалий плоду применяют репродуктивные технологии (читайте подробнее о методах ЭКО, ИКСИ). Изменить кариотип генетического материала или повлиять на процесс закладки эмбриона в утробе матери современная медицина не в силах, но можно проверить хромосомный набор эмбриона, созданного в пробирке.

Методы искусственного оплодотворения

К сожалению, даже полное отсутствие нарушений в генетическом материале родителей не защищает будущего ребенка от хромосомных аномалий. Анализ на кариотип покажет только те, которые он может потенциально получить. Выявить все возможные патологии заранее можно только при помощи предварительной генетической диагностики плода.

Елена, 33 года: «После двух неудачных попыток ЭКО назначили анализ на кариотип, мы его сделали, все вроде в порядке, без аномалий. Однако врач сказала, что не тот, надо с аберрацией. Якобы только он позволяет давать прогнозы на беременность».

Анастасия, 30 лет: «Нашлась причина бесплодия: кариотипирование показало 46,X[delXp–] – подозрение на синдром Шерешевского-Тернера. Это означает, что без донорской яйцеклетки никак. При этом внешних проявлений никаких нет, я здорова».

Олег, 41 год: «По результатам кариотипирования врач сразу предложил ЭКО с предимплантационной диагностикой плода, поскольку нарушения серьезные. У меня 45 хромосом, причем 13 и 14 сплелись между собой. Высокий риск рождения ребенка с синдромом Дауна, замершей беременности».

К кариотипированию многие пары до сих пор относятся настороженно. Некоторые считают этот анализ лишней выкачкой денег. Однако есть пары, которым исследование помогло предотвратить бессмысленную потерю здоровья, времени и финансов. В ряде случаев целесообразнее воспользоваться донорскими генетическими материалами, чем годами пытаться использовать неполноценный собственный.

источник