Меню Рубрики

Дисперсию какой переменной исследует дисперсионный анализ мти

Курсовая работа по дисциплине: «Системный анализ»

Исполнитель студент гр. 99 ИСЭ-2 Жбанов В.В.

Оренбургский государственный университет

Факультет информационных технологий

Кафедра прикладной информатики

Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации /1/.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ 2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают задачи более общего характера – задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.

Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы /2/.

1.1 Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами — моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

— перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

— иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является «робастной». Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ 2 . Она является мерой вариации частных средних по группам

nj — число единиц в j-ой группе;

источник

Метод дисперсионного анализа создан английским статистиком Фишером.

Дисперсионный анализ – это статистический метод изучения различий между выборочными средними для трех и более совокупностей [5, С.349].

Слово «дисперсионный» в названии указывает на то, что в процессе анализа сопоставляются компоненты дисперсии изучаемой переменной. Общая изменчивость переменной раскладывается на составляющие: межгрупповую (факторную), обусловленную различием групп (средних значений), и внутригрупповую (остаточную), обусловленную случайными причинами. Чем больше частное от деления межгрупповой и внутригрупповой изменчивости (F-отношение) тем больше различаются средние значения сравниваемых выборок и тем выше статистическая значимость этого различия.

Дисперсионный анализ используется для обработки экспериментальных данных, результатов опроса, данных наблюдений.

В практике маркетинговых исследований дисперсионный анализ применяют с целью установления влияния некоторого категориального фактора F, имеющего несколько уровней (F1, F2, …, Fp) на зависимую переменную X. Категориальный фактор выступает в роли независимой переменной, влияющей на зависимую переменную.

Обязательным условием применения дисперсионного анализа является метрический характер зависимой переменной (шкала интервальная или шкала отношений) и неметрический характер независимых переменных (шкала наименований или порядка).

В маркетинговых исследованиях под фактором F (независимой переменной) чаще всего принимают:

· социально-демографические, поведенческие и прочие характеристики потребителей (пол, возраст, социальное положение, доход, степень осведомленности о продукте и прочее);

· отдельные элементы комплекса маркетинга (цена, ассортимент, интенсивность рекламной кампании, интенсивность комплекса мер по стимулированию сбыта, варианты упаковки товара, виды рекламных роликов и прочее).

Зависимой переменной X может выступать объем покупок, частота покупок, предпочтение товара или торговой марки, имидж фирмы, оценка потребительских намерений приобретения товара, вероятность покупки товара и другие переменные.

Количество независимых и зависимых переменных определяют вид дисперсионного анализа.

Виды дисперсионного анализа:

1. Одномерный дисперсионный анализ — вид дисперсионного анализа, при помощи которого исследуется влияние одной или нескольких независимых переменных на одну зависимую переменную (ANOVA: Analysis of Variance). Он включает в себя:

· однофакторный дисперсионный анализ – вид дисперсионного анализа, при помощи которого исследуется влияние одной независимой переменной, имеющей несколько уровней, на одну зависимую переменную. Пример постановки вопросов однофакторного дисперсионного анализа: какой из трех (или более) рекламных роликов имеет лучшую запоминаемость? Влияет ли тип рекламы (плакаты, реклама по радио и др.) на число посетителей в кинотеатре?

· многофакторный дисперсионный анализ – вид дисперсионного анализа, при помощи которого исследуется влияние нескольких (двух и более) независимых переменных, каждая из которых имеет несколько уровней, на одну зависимую переменную.

Пример постановки вопросов двухфакторного дисперсионного анализа: влияет ли на выбор потребителя уровень образования (высшее, среднее, неполное среднее) и возраст?

Как осведомленность о магазине (высокая, средняя, низкая) и представление о нем (позитивное, нейтральное, негативное) влияют на предпочтения потребителей?

Пример постановки вопроса трехфакторного дисперсионного анализа: как меняется намерение потребителей купить товар при различных уровнях цен, каналах распределения и интенсивности рекламной кампании?

Главным преимуществом многофакторного дисперсионного анализа является возможность исследовать эффект взаимодействия факторов. Взаимодействие имеет тогда, когда эффект одного фактора на зависимую переменную зависит от уровня других факторов. Например, многофакторный дисперсионный анализ позволяет ответить на вопрос: усиливают ли друг друга реклама по радио и мероприятия прямого маркетинга, проводимые в торговом центре?

2. Многомерный дисперсионный анализ — вид дисперсионного анализа, при помощи которого исследуется влияние нескольких независимых переменных на несколько зависимых переменных (МANOVA: Multiple Analysis of Variance). Например: как интенсивность рекламы (высокая, средняя, низкая) и уровень цены (высокий, средний, низкий) одновременно влияют на объем продаж и имидж магазина?

В основе техники проведения дисперсионного анализа лежит разложение полной дисперсии зависимой переменной Х на составляющие: межгрупповую (факторную), обусловленную воздействием фактора на зависимую переменную, и внутригрупповую (остаточную), обусловленную случайными причинами. Чем больше частное от деления межгрупповой и внутригрупповой дисперсий (F-отношение) тем больше различаются средние значения сравниваемых выборок и тем выше статистическая значимость этого различия.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8511 — | 7378 — или читать все.

источник

Эконометрика 1 модуль
1. В каком законе выяснялись закономерности спроса на основе соотношений между урожаем зерновых и ценами на зерно?
в законе Кинга
2. Как называется мера разброса случайной величины?
дисперсия
3. При исследований каких моделей эконометрическое исследование может включать в себя выявление трендов, лагов, циклической компоненты?
моделей временных рядов
4. Какая из перечисленных шкал не относится к основным шкалам качественных признаков?
шкала отношений
5. Кто основал журнал «Эконометрика»?
Р. Фриш
6. Что из перечисленного может включать эконометрическое исследование на современном этапе развития при исследовании моделей по независимым неупорядоченным наблюдениям?
оценку параметров модели
7. В какой шкале есть естественная единица измерения, но нет естественного начала отсчета?
в шкале разностей
8. Кто из ученых создал теорию интегрированных моделей авторегрессии ¾ скользящего среднего?
Дж. Бокс и Г. Дженкинс
9. В какой системе каждая объясняемая переменная рассматривается как функция одного и того же набора факторов?
в системе независимых уравнений
10. Какая шкала измерений относится к шкалам количественных признаков?
шкала интервалов
11. Какие эконометрические модели разработали в 80 — в начале 90-х гг. Р.Э. Игл, Т. Боллеслев и Нельсон?
модели авторегрессионной условной гетероскедастичности
12. Какие шкалы измерений являются наиболее распространенными и удобными?
шкалы отношений
13. Какому ученому в 1980 г. присуждена Нобелевская премия за применение эконометрических моделей к анализу экономических колебаний и в экономической политике?
Л. Клейну
14. В какой стране было создано первое международное эконометрическое общество?
в США
15. Что из перечисленного является постоянной составляющей случайной величины?
среднеарифметическое значение
16. Что является целью эконометрики как науки? (по Э. Маленво)
эмпирический анализ экономических законов
17. Кто из исследователей придавал широкое толкование эконометрике, интерпретируя ее как любое применение математики или статистических методов к изучению экономических явлений?
Э. Маленво
18. Какие компоненты входят в состав случайных величин в процессе анализа?
постоянная и случайная компоненты
19. Чему равно среднее случайной компоненты, или остатка?
0
20. Кто впервые ввел термин «эконометрия»?
П. Цьемпа
21. Кто из отечественных ученых на союзном уровне описал динамику урожайности зерновых культур уравнениями с малым числом параметров?
В. Обухов
22. Какие разделы содержит эконометрика?
моделирование данных, неупорядоченных во времени, и теория временных рядов
23. Какие характеристики экономики невозможно измерить непосредственно?
латентные характеристики
24. Кто из ученых занимался проблемой цикличности?
К. Жюгляр
25. Кто является автором первой книги по эконометрике «Законы заработной платы : эссе по статистической экономике»?
Г. Мур

2 модуль
1. Если регрессия значима, то
Fнабл>Fкрит
2. Что показывает величина коэффициента регрессии?
среднее изменение результата с изменением фактора на одну единицу
3. Что означает совпадение среднего от выборочной оценки с искомой неизвестной величиной соответствующего параметра для генеральной совокупности?
несмещенность
4. Какой является регрессия, если k= 2?
множественной
5. Чем характеризуется рассеяние (отклонение) точек наблюдения относительно кривой регрессии?
остаточной регрессией
6. Какой коэффициент является показателем тесноты связи?
линейный коэффициент корреляции
7. Какая величина равна просто средней от суммы квадратов остатков (отклонений)?
остаточная регрессия
8. Каким выражением определяется коэффициент корреляции, являющийся мерой линейной связи между случайными величинами x и y?
r(x, y)=…
9. Какого значения не должна превышать средняя ошибка аппроксимации?
7-8%
10. Кто ввел термин «регрессия»?
Ф. Гальтон
11. Какой коэффициент в функции потребления используется для расчета мультипликатора?
коэффициент регрессии
12. С помощью какого коэффициента определяется качество подбора линейной функции?
с помощью коэффициента детерминации
13. Каким выражением определяется выборочный коэффициент корреляции?
r(x,y) с квадратами
14. Что называют результативным признаком в регрессионном анализе?
зависимую переменную
15. Дисперсию какой переменной исследует дисперсионный анализ?
зависимой переменной
16. Какая регрессия характеризуется прозрачной интерпретацией параметров модели?
линейная регрессия
17. Какой коэффициент характеризует долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака y?
коэффициент детерминации
18. Какой коэффициент показывает, на сколько процентов в среднем по совокупности изменится результат y от своей средней величины при изменении фактора x на 1% от его (фактора x) среднего значения?
коэффициент эластичности
19. Чему равна величина остаточной дисперсии, если фактические значения результативного признака совпадают с теоретическими или расчетными значениями?
0
20. Какой метод применяют для оценки параметров a, b уравнения регрессии?
метод наименьших квадратов (МНК)
21. Какой метод основан на требовании минимизации суммы квадратов отклонений фактических значений результативного признака от расчетных?
метод наименьших квадратов
22. При каком значении k регрессия называется парной?
k= 1
23. Что из перечисленного не относится к нелинейным регрессиям по оцениваемым параметрам?
показательная функция
24. Суть какой теоремы в том, что если случайная величина является общим результатом взаимодействия большого числа других случайных величин, ни одна из которых не оказывает преобладающего влияния на общий результат, то такая результирующая случайная величина будет описываться приблизительно нормальным распределением?
центральной предельной теоремы
25. Каким уравнением описывается линейная регрессия?
y = a + bx + ε
(3 ошибки)

3 модуль ()1 ошибка
1. Как проверяется гетероскедастичность моделей в асимптотическом тесте Бреуша и Пагана?
по критерию c2(r)
2. Какой критерий позволяет выбирать наилучшую модель из множества различных спецификаций и численно построен так, чтобы учесть влияние на качество подгонки модели двух противоположных тенденций?
критерий Шварца
3. По какой величине судят о качестве модели?
по средней относительной ошибке аппроксимации
4. Каким выражением описывается условие однородности (гомоскедастичности) наблюдений?
s2(yu) =s2(hu+eu) =s2(eu) =s2
5. Какой метод применим при условии диагональности матрицы ковариаций вектора ошибок?
метод наименьших квадратов
6. Каким выражением определяется абсолютная ошибка аппроксимации?
yi-y1i=e
7. Что понимается под мультиколлинеарностью?
высокая степень коррелированности объясняющих переменных
8. Какие переменные представляют собой исходные переменные, из которых вычитаются соответствующие средние, а полученная разность делится на стандартное отклонение?
стандартизованные переменные
9. Какая ошибка на контрольной выборке свидетельствует о хорошем качестве построенной модели?
4-9%
10. Каким методом может быть проведена оценка значимости мультиколлинеарности факторов?
методом испытания гипотезы о независимости переменных
11. Какая переменная должна выражаться в виде линейной функции от неизвестной переменной?
замещающая переменная
12. Дисперсии и ковариации ошибок наблюдений в обобщенной линейной модели множественной регрессии
могут быть произвольными
13. В чем заключается второй подход к решению проблемы гетероскедастичности?
в построении моделей, учитывающих гетероскедастичность ошибок наблюдений
14. Чем в простейшем случае парной регрессии является стандартизованный коэффициент регрессии?
линейным коэффициентом корреляции
15. Что из перечисленного используют для проверки гипотезы, если исследователь предполагает, что за время наблюдений произошли резкие структурные изменения в виде связей между зависимой и независимыми переменными?
тест Чоу
16. Чему равен определитель матрицы, если между факторами имеется полная линейная зависимость и все коэффициенты корреляции равны 1?
0
17. По какой формуле производят расчет коэффициентов модели при использовании метода гребневой регрессии?
bгр= (XTX+DгрIk+ 1)-1XTY
18. По какой формуле, согласно теореме Айткена, производится оценка коэффициентов модели?
b= (X¢W-1X)-1X¢W-1Y
19. Какой из перечисленных тестов не требует предположения о нормальности распределения регрессионных остатков?
тест ранговой корреляции Спирмена
20. Как называют переменную, которая должна быть в модели согласно правильной теории?
существенной
21. Чем ближе к единице значение определителя матрицы межфакторной корреляции, тем
меньше мультиколлинеарность факторов
22. Какой критерий используется для оценки значимости уравнения регрессии в целом?
F-критерия Фишера
23. Какой показатель фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов?
показатель детерминации
24. Какие коэффициенты позволяют исключать из модели дублирующие факторы?
коэффициенты интеркорреляции
25. Чему равно число степеней свободы остаточной суммы квадратов при линейной регрессии?
n- 2
Модуль 4
1. Какие этапы включает в себя процесс структурного моделирования?
все перечисленные этапы
2. Суть какого метода заключается в частичной замене непригодной объясняющей переменной на такую переменную, которая не коррелирована со случайным членом?
метода инструментальных переменных
3. Что представляет переменная x, входящая в выражение ?
возмущающий процесс
4. При каком условии общее решение разностного уравнения вида носит «взрывной» характер?
при |a1|> 2
5. Как называются взаимозависимые переменные, которые определяются внутри модели (внутри самой системы) и обозначаются у?
эндогенными переменными
6. В какой модели на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента?
в сверхидентифицируемой
7. Какие коэффициенты называются структурными коэффициентами модели?
коэффициенты при эндогенных и экзогенных переменных в структурной форме модели
8. Какой метод при ограниченной информации, называется методом наименьшего дисперсионного отношения?
метод максимального правдоподобия
9. Как называются переменные, относящиеся к предыдущим моментам времени?
лаговыми переменными
10. Если набор чисел X связан с другим набором чисел Y зависимостью Y= 4X, то дисперсия Y должна быть
в 16 раз больше, чем дисперсия X
11. Какой метод применяется для решения идентифицируемой системы?
косвенный метод наименьших квадратов
12. Какие переменные понимаются под предопределенными переменными?
экзогенные переменные и лаговые эндогенные переменные
13. Какой метод используют, если нужно всего лишь уточнить характер связей переменных?
метод путевого анализа
14. Что позволяет сделать построение моделей корреляционной структуры?
проверить гипотезу о том, что матрица корреляции имеет определенный вид
15. Какой является модель, если все ее структурные коэффициенты однозначно определяются по коэффициентам приведенной формы модели и при этом число параметров в обеих формах модели одинаково?
идентифицируемой
16. Каким выражением определяется зависимость потребления в год с номером t от дохода в предыдущий период y(t- 1)?
C(t) =b+cy(t- 1)
17. Как называются независимые переменные, которые определяются вне системы и обозначаются как х?
экзогенными переменными
18. При каком условии вся модель считается идентифицируемой?
если идентифицируемо хотя бы одно уравнение системы
19. В каком случае модель является неидентифицируемой?
если число приведенных коэффициентов меньше числа структурных коэффициентов
20. Какие переменные часто приходится вводить для учета влияния качественных факторов?
фиктивные переменные
21. Что позволяет сделать построение моделей структуры средних?
исследовать структуру средних одновременно с анализом дисперсий и ковариаций
22. Какие переменные могут включать в себя причинные модели?
явные и латентные переменные
23. При каком условии уравнение неидентифицируемо?
если число предопределенных переменных, отсутствующих в уравнении, но присутствующих в системе, увеличенное на единицу, меньше числа эндогенных переменных в уравнении
24. При решении выражения способом движения «назад» ошибки ei
накапливаются
25. Что позволяет сделать моделирование ковариационной структуры?
проверить гипотезу о том, что матрица ковариации имеет определенный вид

4 модуль
1. О чем свидетельствуют большие значения, близкие к 1, величины (1 -а1) модели корректировки ошибок (МКО)?
о том, что экономические факторы сильно изменяют результат
2. На какое количество участков разбивается последовательность для проверки условия стационарности ряда?
на два участка
3. Для уменьшения амплитуды колебаний у сглаженного ряда Y(t)необходимо
увеличивать ширину интервала сглаживания m
4. Какое предположение является одним из априорных предположений при применении параметрических тестов для проверки стационарности?
предположение о нормальном законе распределения значений временного ряда
5. Что называется временным рядом?
последовательность значений признака, принимаемых в течение нескольких последовательных моментов времени или периодов
6. Как изменяется дисперсия сглаженного по квадратичному полиному ряда Y(t) при увеличении числа m уравнений?
уменьшается
7. Какие тренды коррелируют между собой?
временные
8. Что из перечисленного используют для проверки стационарности временного ряда?
сериальный критерий стационарности
9. Как называют корреляционную зависимость между последовательными уровнями временного ряда?
автокорреляцией уровней ряда
10. Как называется случайная переменная с переменной дисперсией?
гетероскедастической
11. При каком условии сглаживание ряда называется центрированным?
при k=l
12. Каким путем может быть исключен временной тренд из результирующей переменной?
путем построения регрессии этой переменной по времени и перехода к остаткам, которые образуют новую стационарную переменную, уже свободную от тренда
13. По какой формуле рассчитываются коэффициенты,если в качестве сглаживающего многочлена взять прямую?
ar= 1/m
14. Какая компонента объясняет отклонения от тренда с периодичностью от 2 до 10 лет?
циклическая компонента
15. Что в выражении обозначают параметром L?
функцию правдоподобия
16. Какая последовательность является белым шумом?
если каждая случайная величина последовательности имеет нулевое среднее и некоррелирована с другими элементами последовательности
17. К какому классу принадлежит ряд, если он содержит единичные корни и интегрируем с порядком d?
I(d)
18. Как называется стохастическая переменная с постоянной дисперсией?
гомоскедастическая переменная
19. Какой принцип разработки прогнозов предполагает соответствие, максимальное приближение теоретических моделей к реальным производственно-экономическим процессам?
адекватность прогнозирования
20. Как называется число значений исходного ряда, одновременно участвующих в сглаживании?
шириной интервала сглаживания
21. Что относится к основным принципам разработки прогнозов?
системность, адекватность, альтернативность
22. Для чего применяется сериальный критерий стационарности?
для проверки стационарности временного ряда
23. Как называется модель вида ?
авторегрессионной условной гетероскедастической моделью (АРУГ-моделью)
24. Что представляет уравнение ?
АРСС-процесс для -последовательности
25. Какие переменные используются в процессе случайного блуждания?
некоррелированные нестационарные переме

источник

Глава 3. Методы проверки статистических гипотез. Дисперсионный и

Регрессионный анализы

Дисперсионный анализ (Analysis Of Variance или сокращенно ANOVA) применяется для

исследования влияния одной или нескольких качественных переменных (факторов) на одну

зависимую количественную переменную.

В основе дисперсионного анализа лежит предположение о том, что одни переменные могут

Читайте также:  Как сделать анализы на дому

рассматриваться как причины (факторы, независимые переменные), а другие как следствия

(зависимые переменные). Таким образом, исходя из этого, при описании результатов ANOVA

мы будем говорить о наличие зависимости между зависимой и независимой переменной.

Основной целью ANOVA является исследование значимости различия между средними с

помощью сравнения дисперсий. Разделение общей дисперсии на несколько источников,

позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией,

вызванной внутригрупповой изменчивостью. Сравнивая компоненты дисперсии друг с другом

посредством F-критерия Фишера, можно определить, какая доля общей вариативности

результативного признака обусловлена действием регулируемых факторов.

Исходя из вышесказанного, целью дисперсионного анализа является проверка статистической

значимости различия между средними (для групп или переменных). Эта проверка проводится с

помощью разбиения суммы квадратов на компоненты, т.е. с помощью разбиения общей

дисперсии на части, одна из которых обусловлена случайной ошибкой (то есть

внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя

компонента дисперсии затем используется для анализа статистической значимости различия

между средними значениями. Если это различие значимо, то принимается гипотеза о

существовании различия между средними.

Исходным материалом для дисперсионного анализа служат данные исследования трех и более

выборок, которые могут быть как равными, так и неравными по численности, как связными, так

Типичная схема эксперимента сводится к изучению влияния независимой переменной (одной

или нескольких) на зависимую переменную.

Обязательным условием ANOVA является то, чтоб зависимая переменная была представлена в

шкале отношений, интервалов или порядка, а влияющие (независимые) переменные имели бы

нечисловую природу (номинальная или категориальная шкала). Зависимая переменная

рассматривается как изменяющаяся под влиянием независимых переменных. Независимая

переменная представляет собой качественно определенный (номинальный) признак, имеющий

две и более градаций. Каждой градации независимой переменной соответствует выборка

объектов, для которых определены значения зависимой переменной.

Выделяют однофакторный ANOVA, многофакторный ANOVA, ANOVA с повторными

измерениями и многомерный ANOVA (или MANOVA).

Тема 14. Дисперсионный анализ (Часть 2)

Глава 3. Методы проверки статистических гипотез. Дисперсионный и

Регрессионный анализы

Однофакторный ANOVA

Этот вид дисперсионного анализа позволяет проверить гипотезу о существовании влияния

изучаемого фактора на зависимую переменную.

Математическая модель однофакторного ANOVA предполагает выделение в общей

изменчивости зависимой переменной двух ее составляющих: межгрупповая составляющая

изменчивости обусловлена различием средних значений под влиянием фактора;

внутригрупповая составляющая изменчивости обусловлена влиянием неучтенных причин.

Соотношение этих двух составляющих изменчивости и есть основной показатель,

определяющий статистическую значимость влияния фактора.

При выявлении уровня ошибки выше или равно 5% (т.е. р≥0,05), подтверждается гипотеза о

равенстве средних значений. А при уровне ошибки меньше 5% (т.е. р

Здесь все зависит от Вас самих, какой метод множественного сравнения Вам использовать.

методы Шеффе и LSD Фишера. Здесь необходимо учитывать то, что критерий Шеффе является

грубым критерием и особенно пригоден в тех случаях, когда имеется подозрение о неравенстве

дисперсий выборок между собой, а при использовании критерия LSD Фишера возникает

вероятность ошибки первого рода (т.е. ложноположительный результат, выявление различий,

даже если их нет). Та же ситуация с увеличением ошибки первого рода наблюдается и с

использованием метода Tukey HSD. Метод Бонферрони работает, если число сравнений

невелико, обычно не больше 8. При большем числе сравнений критерий Ньюмана-Кеулса и

Тьюки дают более точную оценку вероятности альфа. Критерий Дункана, как и критерий

Ньюмена-Кеулса, основан на статистике размаха. Соответственно, если Вы используете в

анализе неравные выборки, тогда выбрать можно метод HSD для неравных размеров выборок.

Многофакторный ANOVA

Данный дисперсионный анализ предназначен для изучения влияния нескольких независимых

факторов (переменных) на зависимую переменную. Отличительной особенностью

многофакторного ANOVA от однофакторного является возможность оценить не только

влияние каждой независимой переменной в отдельности, но и взаимодействие факторов –

зависимость влияния одних факторов от уровней других факторов.

Таким образом, в результате мы получаем влияние 1-ой независимой переменной, влияние 2-ой

независимой переменной, …., взаимовлияние независимых переменных.

При использовании многофакторного анализа порой получаются достаточно интересные

результаты, которые невозможно было бы получить с помощью предыдущего дисперсионного

Ограничениями метода выступают однородность дисперсий и выборки не должны заметно

различаться по численности.

Дата добавления: 2016-10-30 ; просмотров: 923 | Нарушение авторских прав

источник

Дисперсионный анализ – анализ изменчивости результативного признака под влиянием каких-либо контролируемых переменных факторов. (В зарубежной литературе именуется ANOVA – «Analisis of Variance»).

Результативный признак называют также зависимым признаком, а влияющие факторы – независимыми признаками.

Ограничение метода: независимые признаки могут измеряться по номинальной, порядковой или метрической шкале, зависимые – только по метрической. Для проведения дисперсионного анализа выделяют несколько градаций факторных признаков, а все элементы выборки группируют в соответствии с этими градациями.

Формулировка гипотез в дисперсионном анализе.

Нулевая гипотеза: «Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».

Альтернативная гипотеза: «Средние величины результативного признака в разных условиях действия фактора различны».

Дисперсионный анализ можно подразделить на несколько категорий в зависимости:

от количества рассматриваемых независимых факторов;

от количества результативных переменных, подверженных действию факторов;

от характера, природы получения и наличия взаимосвязи сравниваемых выборок значений.

При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:

Анализ несвязанных (то есть – различных) выборок. Например, одна группа респондентов решает задачу в условиях тишины, вторая – в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)

Анализ связанных выборок, то есть, двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй – сходная задача – в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, — шуму.)

В случае если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки.

Если же воздействию факторов подвержено несколько переменных, — речь идет о многомерном анализе. Проведение многомерного дисперсионного анализа предпочтительнее одномерного только в том случае, когда зависимые переменные не являются независимыми друг от друга и коррелируют между собой.

Обобщенно задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака выделить три частные вариативности:

вариативность, обусловленную действием каждой из исследуемых независимых переменных (факторов).

вариативность, обусловленную взаимодействием исследуемых независимых переменных.

вариативность случайную, обусловленную всеми неучтенными обстоятельствами.

Для оценки вариативности, обусловленной действием исследуемых переменных и их взаимодействием вычисляется отношение соответствующего показателя вариативности и случайной вариативности. Показателем этого соотношения является F – критерий Фишера.

;

;

.

Чем в большей степени вариативность признака обусловлена действием влияющих факторов или их взаимодействием, тем выше эмпирические значения критерия .

В формулу расчета критерия входят оценки дисперсий, и, следовательно, этот метод относится к разряду параметрических.

Непараметрическим аналогом однофакторного дисперсионного анализа для независимых выборок является критерий Краскела-Уоллеса. Он подобен критерию Манна-Уитни для двух независимых выборок, за тем исключением, что он суммирует ранги для каждой из групп.

Кроме этого, в дисперсионном анализе может быть применен медианный критерий. При его использовании для каждой группы определяются число наблюдений, которые превышают медиану, вычисленную по всем группам, и число наблюдений, которые меньше медианы, после чего строится двумерная таблица сопряженности.

Критерий Фридмана является непараметрическим обобщением парного t-критерия для случая выборок с повторными измерениями, когда количество сравниваемых переменных больше двух.

В отличие от корреляционного анализа, в дисперсионном анализе исследователь исходит из предположения, что одни переменные выступают как влияющие (именуемые факторами или независимыми переменными), а другие (результативные признаки или зависимые переменные) – подвержены влиянию этих факторов. Хотя такое допущение и лежит в основе математических процедур расчета, оно, однако, требует осторожности при выводах о причине и следствии.

Например, если мы выдвигаем гипотезу о зависимости успешности работы должностного лица от фактора Н (социальной смелости по Кэттелу), то не исключено обратное: социальная смелость респондента как раз и может возникнуть (усилиться) вследствие успешности его работы – это с одной стороны. С другой: следует отдать себе отчет в том, как именно измерялась «успешность»? Если за ее основу взяты были не объективные характеристики (модные нынче «объемы продаж» и проч.), а экспертные оценки сослуживцев, то имеется вероятность того, что «успешность» может быть подменена поведенческими или личностными характеристиками (волевыми, коммуникативными, внешними проявлениями агрессивности etc.).

источник

Различия между значениями отдельных элементов статистической совокупности складываются под влиянием множества отдельных факторов. Степень влияния факторов на изменение величины признака неодинакова. Одни факторы в большей степени, а другие — в меньшей оказывают влияние на вариацию признака. В этой связи различают вариации систематическую и случайную (рис. 10.3).

Рис. 103. Виды вариаций

В дисперсионном анализе общая вариация подразделяется на составляющие, и производится их сравнение. Целью дисперсионного анализа является исследование влияния тех или иных факторов на изменчивость средних значений изучаемого признака. Для этого производится разложение дисперсии наблюдаемой совокупности на составляющие, порождаемые независимыми факторами.

Общая дисперсия раскладывается на факторную (межгрупповую) дисперсию, связанную с группировочным признаком, и остаточную (внутригрупповую) дисперсию, не связанную с группировочным признаком. Факторная дисперсия объясняет вариацию результативного признака под влиянием изучаемого фактора; остаточная дисперсия — вариацию результативного признака, обусловленную влиянием прочих факторов (за исключением влияния изучаемого фактора). Таким образом, дисперсионный анализ представляет собой процесс мысленного и практического разложения общей дисперсии на составные части и сопоставления между собой этих частей, что в результате позволяет исследовать влияние тех или иных факторов на изменчивость средних значений изучаемого признака.

Сущность дисперсионного анализа заключается в сопоставлении межгрупиовой и внутригрупповой дисперсий и формировании на основе этого соотношения суждения о влиянии и роли научаемого фактора. При исследовании статистической значимости различия между средними двух (или нескольких) групп сравнивают выборочные дисперсии. Фундаментальная концепция дисперсионного анализа была предложена Р. Фишером в 1920 г.

Различают дисперсионный анализ: а) однофакторный; б) двухфакторный; в) многофакторный (рис. 10.4).

Рис. 10.4. Виды дисперсионного анализа

Однофакторный дисперсионный анализ проводится на основе выделения групп изучаемого признака по одному фактору. Двухфакторный дисперсионный анализ осуществляется с использованием выделения групп изучаемого признака но двум факторам. Многофакторный дисперсионный анализ осуществляется с использованием выделения групп изучаемого признака но трем факторам и более. Процессы однофакторного, двухфакторного и многофакторного дисперсионных анализов различны. Обычно в социально-экономических исследованиях используются одно- или двухфакторные комплексы. Многофакторные комплексы можно исследовать, последовательно выделяя из статистической совокупности одно- или двухфакторные комплексы.

Таким образом, дисперсионный анализ позволяет устанавливать не только степень одновременного влияния на признак нескольких факторов и каждого в отдельности, но также их суммарное влияние в любых комбинациях и дополнительный эффект от сочетания разных факторов. При этом следует учитывать, что при исследовании может оставаться неучтенным некоторое количество факторов, однако методика дисперсионного анализа тем не менее позволяет оценить долю их влияния на общую изменчивость признака, и исследователь обычно имеет возможность выделить несколько важнейших факторов и изучать именно их воздействие на изменчивость признаков.

Необходимыми условиями применения одиофакторного дисперсионного анализа являются:

  • 1) соответствие распределения анализируемых групп генеральным совокупностям, имеющим нормальный закон распределения или близкий к нему;
  • 2) независимость (несвязанность) распределения наблюдений в группах;

3) наличие частоты (повторяемости) наблюдений.

Дисперсионный анализ целесообразно применять совместно с аналитической группировкой, когда статистические данные подразделяются на группы по значениям признака-фактора, вычисляются значения средних величин результативного признака в группах. При этом полагают, что различия в их значениях определяются различиями в значениях фактора. Осуществляется оценка существенности различий между средними значениями результативного признака в группах.

Испытуемая гипотеза заключается в том, что если данные каждой группы изучаемой статистической совокупности представляют случайную выборку из нормально распределенной генеральной совокупности, то величины всех частных дисперсий должны быть пропорциональны своим степеням свободы и каждую из них можно рассматривать как оценку генеральной дисперсии.

Испытуемая гипотеза может быть записана как гипотеза о средних величинах

Эта гипотеза является нулевой гипотезой альтернативная гипотеза (рис. 10.5)

Рис. 10.5. Формулировка гипотез в дисперсионном анализе

В дисперсионном анализе дисперсией называют сумму квадратов отклонений индивидуальных значений признака от их средней арифметической. Сначала определяют общую дисперсию, обусловленную влиянием вариации всех признаков, затем факторную и остаточную дисперсии.

Определение общей дисперсии, обусловленной влиянием на вариацию у всех признаков, производится но формуле

где г/,- — отдельные значения результативного признака; уобщ — общая средняя; / — число единиц совокупности в каждой группе.

Факторная дисперсия представляет собой сумму квадратов отклонений частных (групповых) средних от общей средней, умноженных на число единиц в каждой группе:

где уур — групповые средние значения результативного признака; г/общ — общая средняя; fi — число единиц совокупности в каждой группе.

Остаточная дисперсия (случайная) есть сумма групповых сумм квадратов отклонений всех вариант результативного признака в группах от средних значений признака в них:

Далее производится оценка достоверности влияния факторного признака на результативный. Для этого определяется число степеней свободы вариации V. Различают степени свободы факторной и остаточной дисперсий. Число степеней свободы для факторной дисперсии равно количеству групп минус единица. Эта величина показывает, что в такой выборочной совокупности (любая выборка имеет ограниченный объем) каждая варианта свободна принимать любые значения, кроме одного, определяемого разностью между суммой всех остальных вариант и объемом выборки, т.е. одна варианта не имеет степени свободы вариации. Если выборочная совокупность достаточно велика, то разница между N и Л’ — 1 несущественна, поэтому не оказывает влияния на результат расчетов. Число степеней свободы для остаточной дисперсии равно разности между количеством индивидуальных значений признака и числом групп.

Затем рассчитываются дисперсии на одну степень свободы вариации (такая дисперсия может быть обозначена как О*). В этом случае дисперсии выступают как показатели, позволяющие сравнивать группы с разной численностью. Далее осуществляется проверка правильности расчетов числа степеней свободы вариации.

Отношение факторной и остаточной дисперсий, рассчитанных на одну степень свободы, позволяет определить /’-критерий:

где ?)ф — факторная дисперсия на одну степень свободы; /)* — остаточная дисперсия на одну степень свободы.

Данный /’-критерий назван в честь английского статистика Р. Фишера (1890—1969) критерием Фишера. Критерий представляет собой отношение выборочных дисперсий, которые рассматриваются как оценки одной и той же генеральной дисперсии. В числителе /’-критерия находится большая дисперсия, в знаменателе — меньшая. Минимальное значение = 1, максимальное значение ^тах —> °° .

Фишером было установлено распределение отношений дисперсий, а также разработаны специальные таблицы теоретических значений /’-критерия при двух вероятностях: 0,05 и 0,01, поэтому критические значения /’-критерия берутся из таблиц /’-распределения, /’-распределение зависит от уровня значимости и от числа степеней свободы сравниваемых дисперсий с1/ и , *асч как отношение остаточной дисперсии на одну степень свободы к факторной дисперсии на одну степень свободы:

Рис. 10.6. Принципиальная схема однофакторного дисперсионного анализа

Теоретическое значение Е-критерия в данном случае определяют при заданном уровне значимости по таблицам на пересечении строки и столбца, соответствующих двум степеням свободы дисперсий: по строке — факторной, по столбцу — остаточной. Если Трасч > /’.;а6.|, то статистическое наблюдение достоверно доказывает отсутствие влияния фактора на результативный признак.

Принципиальная схема однофакторного дисперсионного анализа представлена на рис. 10.6.

В случае выделения групп по одному фактору осуществляется однофакторный дисперсионный анализ. Разложение дисперсии при этом проводится в соответствии с правилом сложения дисперсий (см. параграф 10.1):

где у1> значение результативного признака у /-й единицы в у-й группе; г — номер единицы, г = 1, п>] — номер группы; п> численность у-й группы; г/; — средняя величина результативного признака в у-й группе; у — общая средняя результативного признака.

Обозначив суммы квадратов отклонений буквой Д получим равенство:

На основе разложения дисперсии в соответствии с гипотезой отсутствия различий между группами могут быть получены три оценки генеральной дисперсии, пропорциональные степени свободы: на основе общей вариации, межгрупповой (факторной) и внутрегрупповой (остаточной). Число степеней свободы равно:

• для общей вариации

• для межгрупповой вариации

• для внутригрупповой вариации

Числа степеней свободы связаны между собой равенством или

Деление сумм квадратов отклонений на соответствующее число степеней свободы дает три оценки генеральной дисперсии а 2 :

Поскольку Ц,)акт измеряет вариацию результативного признака, связанную с изменением фактора, по которому проведена группировка, а Вост вариацию, связанную с изменением всех прочих факторов, сравнение этих величин, рассчитанных на одну степень свободы, дает возможность оценить существенность влияния признака-фактора на результативный признак с помощью /•’-критерия.

Если Ефакх > Етабл (а, с1/2), можно утверждать, что нулевая

гипотеза не соответствует фактическим данным, влияние признака-фактора является существенным и статически значимым.

Процесс однофакторного дисперсионного анализа представлен в табл. 10.9.

Рассмотрим практическое применение однофакторного дисперсионного анализа. Анализ формирования чистой прибыли необходим как внутренним пользователям с целью определения резервов ее повышения, так и внешним пользователям для оценки организации как потенциального заемщика или делового партнера.

источник

В этом разделе мы рассмотрим основные методы, предположения и терминологию дисперсионного анализа.

Отметим, что в англоязычной литературе дисперсионный анализ обычно называется анализом вариации. Поэтому, для краткости, ниже мы иногда будем использовать термин ANOVA (Analysis of variation) для обычного дисперсионного анализа и термин MANOVA для многомерного дисперсионного анализа. В этом разделе мы последовательно рассмотрим основные идеи дисперсионного анализа (ANOVA), ковариационного анализа (ANCOVA), многомерного дисперсионного анализа (MANOVA) и многомерного ковариационного анализа (MANCOVA). После краткого обсуждения достоинств анализа контрастов и апостериорных критериев рассмотрим предположения, на которых основаны методы дисперсионного анализа. Ближе к концу этого раздела поясняются преимущества многомерного подхода для анализа повторных измерений по сравнению с традиционным одномерным подходом.

Цель дисперсионного анализа. Основной целью дисперсионного анализа является исследование значимости различия между средними. Глава Элементарные понятия статистики (глава 8) содержит краткое введение в исследование статистической значимости. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный tкритерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или tкритерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений). Если вы не достаточно знакомы с этими критериями, рекомендуем обратиться к вводному обзору главы Основные статистики и таблицы (глава 9).

Откуда произошло название Дисперсионный анализ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними, мы на самом деле анализируем дисперсии.

Для выборки объема n выборочная дисперсия вычисляется как сумма квадратов отклонений от выборочного среднего, деленная на n-1 (объем выборки минус единица). Таким образом, при фиксированном объеме выборки n дисперсия есть функция суммы квадратов (отклонений), обозначаемая, для краткости, SS (от английского Sum of Squares – Сумма Квадратов). В основе дисперсионного анализа лежит разделение (или разбиение) дисперсии на части. Рассмотрим следующий набор данных:

Группа 1 Группа 2
Наблюдение 1 2 6
Наблюдение 2 3 7
Наблюдение 3 1 5
Среднее 2 6
Сумма квадратов (SS) 2 2
Общее среднее 4
Общая сумма квадратов 28

Средние двух групп существенно различны (2 и 6 соответственно). Сумма квадратов отклонений внутри каждой группы равна 2. Складывая их, получаем 4. Если теперь повторить эти вычисления без учета групповой принадлежности, то есть, если вычислить SS исходя из общего среднего этих двух выборок, то получим 28. Иными словами, дисперсия (сумма квадратов), основанная на внутригрупповой изменчивости, приводит к гораздо меньшим значениям, чем при вычислении на основе общей изменчивости (относительно общего среднего). Причина этого, очевидно, заключается в существенной разнице между средними значениями, и это различие между средними и объясняет существующее различии между суммами квадратов. В самом деле, если использовать для анализа приведенных данных модуль Дисперсионный анализ, будут получены следующие результаты:

Как видно из таблицы, общая сумма квадратов SS=28 разбита на сумму квадратов, обусловленную внутригрупповой изменчивостью (2+2=4; см. вторую строку таблицы) и сумму квадратов, обусловленную различием средних значений. (28-(2+2)=24; см первую строку таблицы).

SS ошибок и SS эффекта. Внутригрупповая изменчивость (SS) обычно называется дисперсией ошибки. Это означает, что обычно при проведении эксперимента она не может быть предсказана или объяснена. С другой стороны, SS эффекта (или межгрупповую изменчивость) можно объяснить различием между средними значениями в изучаемых группах. Иными словами, принадлежность к некоторой группе объясняет межгрупповую изменчивость, т.к. нам известно, что эти группы обладают разными средними значениями.

Проверка значимости. Основные идеи проверки статистической значимости обсуждаются в главе Элементарные понятия статистики (глава 8). В этой же главе объясняются причины, по которым многие критерии используют отношение объясненной и необъясненной дисперсии. Примером такого использования является сам дисперсионный анализ. Проверка значимости в дисперсионном анализе основана на сравнении дисперсии, обусловленной межгрупповым разбросом (называемой средним квадратом эффекта или MSэффект) и дисперсии, обусловленной внутригрупповым разбросом (называемой средним квадратом ошибки или MSошибка). Если верна нулевая гипотеза (равенство средних в двух популяциях), то можно ожидать сравнительно небольшое различие в выборочных средних из-за случайной изменчивости. Поэтому при нулевой гипотезе внутригрупповая дисперсия будет практически совпадать с общей дисперсией, подсчитанной без учета группой принадлежности. Полученные внутригрупповые дисперсии можно сравнить с помощью Fкритерия, проверяющего, действительно ли отношение дисперсий значимо больше 1. В рассмотренном выше примере Fкритерий показывает, что различие между средними статистически значимо.

Читайте также:  Как сделать анализ анкетирования пример

Основная логика дисперсионного анализа. Подводя итоги, можно сказать, что целью дисперсионного анализа является проверка статистической значимости разницы между средними (для групп или переменных). Эта проверка проводится с помощью анализа дисперсии, т.е. с помощью разбиения общей дисперсии (вариации) на части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо, нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Зависимые и независимые переменные. Переменные, значения которых определяется с помощью измерений в ходе эксперимента (например, балл, набранный при тестировании), называются зависимыми переменными. Переменные, которыми можно управлять при проведении эксперимента (например, методы обучения или другие критерии, позволяющие разделить наблюдения на группы) называются факторами или независимыми переменными. Более подробно эти понятия описаны в главе Элементарные понятия статистики (глава 8).

В рассмотренном выше простом примере вы могли бы сразу вычислить t-критерий для независимых выборок, используя соответствующую опцию модуля Основные статистики и таблицы. Полученные результаты, естественно, совпадут с результатами дисперсионного анализа. Однако дисперсионный анализ содержит гибкие и мощные технические средства, которые могут быть использованы для гораздо более сложных исследований.

Множество факторов. Мир по своей природе сложен и многомерен. Ситуации, когда некоторое явление полностью описывается одной переменной, чрезвычайно редки. Например, если мы пытаемся научиться выращивать большие помидоры, следует рассматривать факторы, связанные с генетической структурой растений, типом почвы, освещенностью, температурой и т.д. Таким образом, при проведении типичного эксперимента приходится иметь дело с большим количеством факторов. Основная причина, по которой использование дисперсионного анализа предпочтительнее повторного сравнения двух выборок при разных уровнях факторов с помощью tкритерия, заключается в том, что дисперсионный анализ более эффективен и, для малых выборок, более информативен.

Управление факторами. Предположим, что в рассмотренном выше примере анализа двух выборок мы добавим еще один фактор, например, ПолGender. Пусть каждая группа состоит из 3 мужчин и 3 женщин. План этого эксперимента можно представить в виде таблицы 2 на 2:

Эксперимент. Группа 1 Эксперимент. Группа 2
Мужчины 2 6
3 7
1 5
Среднее 2 6
Женщины 4 8
5 9
3 7
Среднее 4 8

До проведения вычислений, можно заметить, что в этом примере общая дисперсия имеет, по крайней мере, три источника:

(1) случайная ошибка (внутригрупповая дисперсия),

(2) изменчивость, связанная с принадлежностью к экспериментальной группе, и

(3) изменчивость, обусловленная полом объектов наблюдения.

(Отметим, что существует еще один возможный источник изменчивости – взаимодействие факторов, который мы обсудим позднее). Что произойдет, если мы не будем включать полgenderкак фактор при проведении анализа и вычислим обычный t-критерий? Если мы будем вычислять суммы квадратов, игнорируя пол –gender(т.е., объединяя объекты разного пола в одну группу при вычислении внутригрупповой дисперсии, получив при этом сумму квадратов для каждой группы равную SS =10, и общую сумму квадратов SS = 10+10 = 20), то получим большее значение внутригрупповой дисперсии, чем при более точном анализе с дополнительным разбиением на подгруппы по полу — gender (при этом внутригрупповые средние будут равны 2, а общая внутригрупповая сумма квадратов равна SS = 2+2+2+2 = 8). Это различие связано с тем, что среднее значение для мужчинmales меньше, чем среднее значение для женщин – female, и это различие в средних значениях увеличивает суммарную внутригрупповую изменчивость, если фактор пола не учитывается. Управление дисперсией ошибки увеличивает чувствительность (мощность) критерия.

На этом примере видно еще одно преимущество дисперсионного анализа по сравнению с обычным t-критерием для двух выборок. Дисперсионный анализ позволяет изучать каждый фактор, управляя значениями остальных факторов. Это, в действительности, и является основной причиной его большей статистической мощности (для получения значимых результатов требуются меньшие объемы выборок). По этой причине дисперсионный анализ даже на небольших выборках дает статистически более значимые результаты, чем простой tкритерий.

Существует еще одно преимущество применения дисперсионного анализа по сравнению с обычным tкритерием: дисперсионный анализ позволяет обнаружить взаимодействие между факторами и, следовательно, позволяет изучать более сложные модели. Для иллюстрации рассмотрим еще один пример.

Главные эффекты, попарные (двухфакторные) взаимодействия. Предположим, что имеется две группы студентов, причем психологически студенты первой группы настроены на выполнение поставленных задач и более целеустремленны, чем студенты второй группы, состоящей из более ленивых студентов. Разобьем каждую группу случайным образом пополам и предложим одной половине в каждой группе сложное задание, а другой — легкое. После этого измерим, насколько напряженно студенты работают над этими заданиями. Средние значения для этого (вымышленного) исследования показаны в таблице:

Целеустремленные Ленивые
Задание
Трудное 10 5
Легкое 5 10

Какой вывод можно сделать из этих результатов? Можно ли заключить, что: (1) над сложным заданием студенты трудятся более напряженно; (2) целеустремленные студенты работают упорнее, чем ленивые? Ни одно из этих утверждений не отражает сущность систематического характера средних, приведенных в таблице. Анализируя результаты, правильнее было бы сказать, что над сложными заданиями работают упорнее только целеустремленные студенты, в то время как над легкими заданиями только ленивые работают упорнее. Другими словами характер студентов и сложность задания взаимодействуя между собой влияют на затрачиваемое усилие. Это пример парного взаимодействия между характером студентов и сложностью задания. Отметим, что утверждения 1 и 2 описывают главные эффекты.

Взаимодействия высших порядков. В то время как объяснить попарные взаимодействия еще сравнительно легко, взаимодействия высших порядков объяснить значительно сложнее. Представим себе, что в рассматриваемый выше пример, введен еще один фактор полGenderи мы получили следующую таблицу средних значений:

Женщины
Целеустремленные Ленивые
Задание
Трудное 10 5
Легкое 5 10
Мужчины
Целеустремленные Ленивые
Задание
Трудное 1 6
Легкое 6 1

Какие теперь выводы можно сделать из полученных результатов? Графики средних позволяют легко интерпретировать сложные эффекты. Модуль дисперсионного анализа позволяет строить эти графики практически одним щелчком мышки.

Изображение на графиках внизу представляет собой изучаемое трехфакторное взаимодействие.

Глядя на графики, можно сказать, что у женщин существует взаимодействие между характером и сложностью теста: целеустремленные женщины работают над трудным заданием более напряженно, чем над легким. У мужчин это же взаимодействие носит обратный характер. Видно, что описание взаимодействия между факторами становится более запутанным.

Общий способ описания взаимодействий. В общем случае взаимодействие между факторами описывается в виде изменения одного эффекта под воздействием другого. В рассмотренном выше примере двухфакторное взаимодействие можно описать как изменение главного эффекта фактора, характеризующего сложность задачи, под воздействием фактора, описывающего характер студента. Для взаимодействия трех факторов из предыдущего параграфа можно сказать, что взаимодействие двух факторов (сложности задачи и характера студента) изменяется под воздействием полаGender. Если изучается взаимодействие четырех факторов, можно сказать, что взаимодействие трех факторов, изменяется под воздействием четвертого фактора, т.е. существуют различные типы взаимодействий на разных уровнях четвертого фактора. Оказалось, что во многих областях взаимодействие пяти или даже большего количества факторов не является чем-то необычным.

При сравнении двух различных групп обычно используется tкритерий для независимых выборок (из модуля Основные статистики и таблицы). Когда сравниваются две переменные на одном и том же множестве объектов (наблюдений), используется t-критерий для зависимых выборок. Для дисперсионного анализа также важно зависимы или нет выборки. Если имеются повторные измерения одних и тех же переменных (при разных условиях или в разное время) для одних и тех же объектов, то говорят о наличии фактора повторных измерений (называемого также внутригрупповым фактором, поскольку для оценки его значимости вычисляется внутригрупповая сумма квадратов). Если сравниваются разные группы объектов (например, мужчины и женщины, три штамма бактерий и т.п.), то разница между группами описывается межгрупповым фактором. Способы вычисления критериев значимости для двух описанных типов факторов различны, но общая их логика и интерпретации совпадает.

Меж- и внутригрупповые планы. Во многих случаях эксперимент требует включение в план и межгруппового фактора, и фактора повторных измерений. Например, измеряются математические навыки студентов женского и мужского пола (где пол –Gender-межгрупповой фактор) в начале и в конце семестра. Два измерения навыковкаждого студента образуют внутригрупповой фактор (фактор повторных измерений). Интерпретация главных эффектов и взаимодействий для межгрупповых факторов и факторов повторных измерений совпадает, и оба типа факторов могут, очевидно, взаимодействовать между собой (например, женщины приобретают навыки в течение семестра, а мужчины их теряют).

Во многих случаях можно пренебречь эффектом взаимодействия. Это происходит или когда известно, что в популяции эффект взаимодействия отсутствует, или когда осуществление полного факторного плана невозможно. Например, изучается влияние четырех добавок к топливу на расход горючего. Выбираются четыре автомобиля и четыре водителя. Полный факторный эксперимент требует, чтобы каждая комбинация: добавка, водитель, автомобиль — появились хотя бы один раз. Для этого нужно не менее 4 x 4 x 4 = 64 групп испытаний, что требует слишком больших временных затрат. Кроме того, вряд ли существует взаимодействие между водителем и добавкой к топливу. Принимая это во внимание, можно использовать план Латинские квадраты, в котором содержится лишь16 групп испытаний (четыре добавки обозначаются буквами A, B, C и D):

Автомобиль
1 2 3 4
Водитель 1 A B C D
Водитель 2 B C D A
Водитель 3 C D A B
Водитель 4 D A B C

Латинские квадраты описаны в большинстве книг по планированию экспериментов (например, Hays, 1988; Lindman, 1974; Milliken and Johnson, 1984; Winer, 1962), и здесь они не будут детально обсуждаться. Отметим, что латинские квадраты это неnолные планы, в которых участвуют не все комбинации уровней факторов. Например, водитель 1 управляет автомобилем 1 только с добавкой А, водитель 3 управляет автомобилем 1 только с добавкой С. Уровни фактора добавок (A, B, C и D) вложены в ячейки таблицы автомобиль x водитель – как яйца в гнезда. Это мнемоническое правило полезно для понимания природы гнездовых или вложенных планов. Модуль Дисперсионный анализ предоставляет простые способы анализ планов такого типа.

В разделе Основные идеи кратко обсуждалась идея управления факторами и то, каким образом включение аддитивных факторов позволяет уменьшать сумму квадратов ошибок и увеличивать статистическую мощность плана. Все это может быть распространено и на переменные с непрерывным множеством значений. Когда такие непрерывные переменные включаются в план в качестве факторов, они называются ковариатами.

Предположим, что сравниваются математические навыки двух групп студентов, которые обучались по двум различным учебникам. Предположим также, что имеются данные о коэффициенте интеллекта (IQ) для каждого студента. Можно предположить, что коэффициент интеллекта связан с математическими навыками, и использовать эту информацию. Для каждой из двух групп студентов можно вычислить коэффициент корреляции между IQ и математическими навыками. Используя этот коэффициент корреляции, можно выделить долю дисперсии в группах, объясняемую влиянием IQ и необъясняемую долю дисперсии (см. также Элементарные понятия статистики (глава 8) и Основные статистики и таблицы (глава 9)). Оставшаяся доля дисперсии используется при проведении анализа как дисперсия ошибки. Если имеется корреляция между IQ и математическими навыками, то можно существенно уменьшить дисперсии ошибки SS/(n-1).

Влияние ковариат на F-критерий. F-критерий оценивает статистическую значимость различия средних значений в группах, при этом вычисляется отношение межгрупповой дисперсии (MSeffect) к дисперсии ошибок (MSerror). Если MSerror уменьшается, например, при учете фактора IQ, значение F увеличивается.

Множество ковариат. Рассуждения, использованные выше для одной ковариаты (IQ), легко распространяются на несколько ковариат. Например, кроме IQ, можно включить измерение мотивации, пространственного мышления и т.д. Вместо обычного коэффициента корреляции при этом используется множественный коэффициент корреляции.

Когда значение F-критерия уменьшается. Иногда введение ковариат в план эксперимента уменьшает значение F-критерия. Обычно это указывает на то, что ковариаты коррелированы не только с зависимой переменной (например, математическими навыками), но и с факторами (например, с разными учебниками). Предположим, что IQ измеряется в конце семестра, после почти годового обучения двух групп студентов по двум разным учебникам. Хотя студенты разбивались на группы случайным образом, может оказаться, что различие учебников настолько велико, что и IQ и математические навыки в разных группах будут сильно различаться. В этом случае, ковариаты не только уменьшают дисперсию ошибок, но и межгрупповую дисперсию. Другими словами, после контроля за разностью IQ в разных группах, разность в математических навыках уже будет несущественной. Можно сказать иначе. После “исключения” влияния IQ, неумышленно исключается и влияние учебника на развитие математических навыков.

Скорректированные средние. Когда ковариата влияет на межгрупповой фактор, следует вычислять скорректированные средние, т.е. такие средние, которые получаются после удаления всех оценок ковариат.

Взаимодействие между ковариатами и факторами. Также как исследуется взаимодействие между факторами, можно исследовать взаимодействие между ковариатами и между группами факторов. Предположим, что один из учебников особенно подходит для умных студентов. Второй учебник для умных студентов скушен, а для менее умных студентов этот же учебник труден. В результате имеется положительная корреляция между IQ и результатом обучения в первой группе (более умные студенты, лучше результат) и нулевая или небольшая отрицательная корреляция во второй группе (чем умнее студент, тем менее вероятно приобретение математических навыков из второго учебника). В некоторых исследованиях эта ситуация обсуждается как пример нарушения предположений ковариационного анализа. Однако так как в модуле Дисперсионный анализ используются самые общие способы ковариационного анализа, можно, в частности, оценить статистическую значимость взаимодействия между факторами и ковариатами.

В то время как фиксированные ковариаты обсуждаются в учебниках достаточно часто, переменные ковариаты упоминаются намного реже. Обычно, при проведении экспериментов с повторными измерениями, нас интересуют различия в измерениях одних и тех же величин в разные моменты времени. А именно, нас интересует значимость этих различий. Если одновременно с измерениями зависимых переменных проводится измерение ковариат, можно вычислить корреляцию между ковариатой и зависимой переменной.

Например, можно изучать интерес к математике и математические навыки в начале и в конце семестра. Интересно было бы проверить, коррелированы ли между собой изменения в интересе к математике с изменением математических навыков.

Модуль Дисперсионный анализ в STATISTICA автоматически оценивает статистическую значимость изменения ковариат в тех планах, где это возможно.

Все рассматриваемые ранее примеры включали только одну зависимую переменную. Когда одновременно имеется несколько зависимых переменных, возрастает лишь сложность вычислений, а содержание и основные принципы не меняются.

Например, проводится исследование двух различных учебников. При этом изучаются успехи студентов в изучении физики и математики. В этом случае имеются две зависимые переменные и нужно выяснить, как влияют на них одновременно два разных учебника. Для этого можно воспользоваться многомерным дисперсионным анализом (MANOVA). Вместо одномерного Fкритерия, используется многомерный F критерий (l-критерий Уилкса), основанный на сравнении ковариационной матрицы ошибок и межгрупповой ковариационной матрицы.

Если зависимые переменные коррелированы между собой, то эта корреляция должна учитываться при вычислении критерия значимости. Очевидно, если одно и то же измерение повторяется дважды, то ничего нового получить при этом нельзя. Если к имеющемуся измерению добавляется коррелированное с ним измерение, то получается некоторая новая информация, но при этом новая переменная содержит избыточную информацию, которая отражается в ковариации между переменными.

Интерпретация результатов. Если общий многомерный критерий значим, можно заключить, что соответствующий эффект (например, тип учебника) значим. Однако встают следующие вопросы. Влияет ли тип учебника на улучшение только математических навыков, только физических навыков, или одновременно на улучшение тех и других навыков. В действительности, после получения значимого многомерного критерия, для отдельного главного эффекта или взаимодействия исследуется одномерный F критерий. Другими словами, отдельно исследуются зависимые переменные, которые вносят вклад в значимость многомерного критерия.

Если измеряются математические и физические навыки студентов в начале семестра и в конце, то это и есть повторные измерения. Изучение критерия значимости в таких планах это логическое развитие одномерного случая. Заметим, что методы многомерного дисперсионного анализа обычно также используются для исследования значимости одномерных факторов повторных измерений, имеющих более чем два уровня. Соответствующие применения будут рассмотрены позднее в этой части.

и многомерный дисперсионный анализ

Даже опытные пользователи одномерного и многомерного дисперсионного анализа часто приходят в затруднение, получая разные результаты при применении многомерного дисперсионного анализа, например, для трех переменных, и при применении одномерного дисперсионного анализа к сумме этих трех переменных, как к одной переменной.

Идея суммирования переменных состоит в том, что каждая переменная содержит в себе некоторую истинную переменную, которая и исследуется, а также случайную ошибку измерения. Поэтому при усреднении значений переменных, ошибка измерения будет ближе к 0 для всех измерений и усредненное значений будет более надежным. На самом деле, в этом случае применение дисперсионного анализа к сумме переменных разумно и является мощным методом. Однако если зависимые переменные по своей природе многомерны, суммирование значений переменных неуместно.

Например, пусть зависимые переменные состоят из четырех показателей успеха в обществе. Каждый показатель характеризует совершенно независимую сторону человеческой деятельности (например, профессиональный успех, преуспеваемость в бизнесе, семейное благополучие и т.д.). Сложение этих переменных подобно сложению яблока и апельсина. Сумма этих переменных не будет подходящим одномерным показателем. Поэтому с такими данными нужно обходится как с многомерными показателями в многомерном дисперсионном анализе.

Обычно гипотезы относительно экспериментальных данных формулируются не просто в терминах главных эффектов или взаимодействий. Примером может служить такая гипотеза: некоторый учебник повышает математические навыки только у студентов мужского пола, в то время как другой учебник примерно одинаково эффективен для обоих полов, но все же менее эффективен для мужчин. Можно предсказать, что эффективность учебника взаимодействует с полом студента. Однако этот прогноз касается также природы взаимодействия. Ожидается значительное различие между полами для обучающихся по одной книге и практически не зависимые от пола результаты для обучающихся по другой книге. Такой тип гипотез обычно исследуется с помощью анализа контрастов.

Если говорить коротко, то анализ контрастов позволяет оценивать статистическую значимость некоторых линейных комбинаций эффектов сложного плана. Анализ контрастов главный и обязательный элемент любого сложного плана дисперсионного анализа. Модуль Дисперсионный анализ имеет достаточно разнообразные возможности анализа контрастов, которые позволяют выделять и анализировать любые типы сравнений средних.

Иногда в результате обработки эксперимента обнаруживается неожиданный эффект. Хотя в большинстве случаев творческий исследователь сможет объяснить любой результат, это не дает возможностей для дальнейшего анализа и получения оценок для прогноза. Эта проблема является одной из тех, для которых используются апостериорные критерии, то есть критерии, не использующие априорные гипотезы. Для иллюстрации рассмотрим следующий эксперимент. Предположим, что на 100 карточках записаны числа от 1 до 10. Опустив все эти карточки в шапку, мы случайным образом выбираем 20 раз по 5 карточек, и вычисляем для каждой выборки среднее значение (среднее чисел, записанных на карточки). Можно ли ожидать, что найдутся две выборки, у которых средние значения значимо отличаются? Это очень правдоподобно! Выбирая две выборки с максимальным и минимальным средним, можно получить разность средних, сильно отличающуюся от разности средних, например, первых двух выборок. Эту разность можно исследовать, например, с помощью анализа контрастов. Если не вдаваться в детали, то существует несколько, так называемых апостериорных критериев, которые основаны в точности на первом сценарии (взятие экстремальных средних из 20 выборок), т. е. эти критерии основаны на выборе наиболее отличающихся средних для сравнения всехсредних значений в плане. Эти критерии применяются для того, чтобы чисто случайно не получить искусственный эффект, например, обнаружить значимое различие между средними, когда его нет. Модуль Дисперсионный анализ предлагает широкий выбор таких критериев. Когда в эксперименте, связанном с несколькими группами, встречаются неожиданные результаты, то используются апостериорные процедуры для исследования статистической значимости полученных результатов.

Существует тесная взаимосвязь между методом многомерной регрессии и дисперсионным анализом (анализом вариаций). И в том и в другом методе исследуется линейная модель. Если говорить коротко, то практически все планы эксперимента можно исследовать с помощью многомерной регрессии. Рассмотрим следующий простой межгрупповой 2 x 2 план.

DV A B AxB
3 1 1 1
4 1 1 1
4 1 -1 -1
5 1 -1 -1
6 -1 1 -1
6 -1 1 -1
3 -1 -1 1
2 -1 -1 1

Столбцы А и В содержат коды, характеризующие уровни факторов А и В, столбец АxВ содержит произведение двух столбцов А и В. Мы можем анализировать эти данные с помощью многомерной регрессии. Переменная DV определяется как зависимая переменная, переменные от A до AxB как независимые переменные. Исследование значимости для коэффициентов регрессии будет совпадать с вычислениями в дисперсионном анализе значимости главных эффектов факторов A и B и эффекта взаимодействия AxB.

При вычислении корреляционной матрицы для всех переменных, например, для данных, изображенных выше, можно заметить, что главные эффекты факторов A и B и эффект взаимодействия AxB некоррелированы. Это свойство эффектов называют также ортогональностью. Говорят, что эффекты A и Bортогональны или независимы друг от друга. Если все эффекты в плане ортогональны друг другу, как в приведенном выше примере, то говорят, что план сбалансирован.

Сбалансированные планы обладают “хорошим свойством”. Вычисления при анализе таких планов очень просты. Все вычисления сводятся к вычислению корреляции между эффектами и зависимыми переменными. Так как эффекты ортогональны, частные корреляции (как в полной многомерной регрессии) не вычисляются. Однако в реальной жизни планы не всегда сбалансированы.

Рассмотрим реальные данные с неравным числом наблюдений в ячейках.

Фактор A Фактор B
B1 B2
A1 3 4, 5
A2 6, 6, 7 2

Если закодировать эти данные как выше и вычислить корреляционную матрицу для всех переменных, то окажется, что факторы плана коррелированы друг с другом. Факторы в плане теперь не ортогональны и такие планы называются несбалансированными. Заметим, что в рассматриваемом примере, корреляция между факторами полностью связана с различием частот 1 и -1 в столбцах матрицы данных. Другими словами, планы экспериментов с неравными объемами ячеек (точнее, непропорциональными объемами) будут несбалансированными, это означает, что главные эффекты и взаимодействия будут смешиваться. В этом случае для вычисления статистической значимости эффектов нужно полностью вычислять многомерную регрессию. Здесь имеется несколько стратегий.

Читайте также:  Как собрать анализ мочи беременной

Сумма квадратов типа I и III. Для изучения значимости каждого фактора в многомерной модели можно вычислять частную корреляцию каждого фактора, при условии, что все другие факторы уже учтены в модели. Можно также вводить факторы в модель пошаговым способом, фиксируя все факторы, уже введенные в модель и игнорируя все остальные факторы. Вообще, в этом и состоит различие между типом III и типом I суммы квадратов (эта терминология была введена в SAS, см. например, SAS, 1982; подробное обсуждение можно также найти в Searle, 1987, стр. 461; Woodward, Bonett, and Brecht, 1990, стр. 216; или Milliken and Johnson, 1984, стр. 138).

Сумма квадратов типа II. Следующая “промежуточная” стратегия формирования модели состоит: в контроле всех главных эффектов при исследовании значимости отдельного главного эффекта; в контроле всех главных эффектов и всех попарных взаимодействий, когда исследуется значимость отдельного попарного взаимодействия; в контроле всех главных эффектов всех попарных взаимодействий и всех взаимодействий трех факторов; при исследовании отдельного взаимодействия трех факторов и т.д. Суммы квадратов для эффектов, вычисляемые таким способом, называются типом II суммы квадратов. Итак, тип II суммы квадратов контролирует все эффекты того же порядка и ниже, игнорируя все эффекты более высокого порядка.

Сумма квадратов типа IV. Наконец, для некоторых специальных планов с пропущенными ячейками (неполными планами) можно вычислять, так называемые, типа IV суммы квадратов. Этот метод будет обсуждаться позднее в связи с неполными планами (планами с пропущенными ячейками).

Сумму квадратов типа III легче всего интерпретировать. Напомним, что суммы квадратов типа III исследуют эффекты после контроля всех других эффектов. Например, после нахождения статистически значимого типа III эффекта для фактора A в модуле Дисперсионный анализ, можно сказать, что существует единственный значимый эффект фактора A, после введения всех других эффектов (факторов) и соответственно интерпретировать этот эффект. Вероятно в 99% всех приложений дисперсионного анализа именно этот тип критерия интересует исследователя. Этот тип суммы квадратов обычно вычисляется в модуле Дисперсионный анализ по умолчанию, независимо от того выбрана опция Регрессионный подход или нет (стандартные подходы принятые в модуле Дисперсионный анализ обсуждаются ниже).

Значимые эффекты, полученные с помощью сумм квадратов типа или типа II суммы квадратов интерпретировать не так легко. Лучше всего их интерпретировать в контексте пошаговой многомерной регрессии. Если при использовании суммы квадратов типа I главный эффект фактора В оказался значим (после включения в модель фактора А, но перед добавлением взаимодействия между А и В), можно заключить, что существует значимый главный эффект фактора В, при условии, что нет взаимодействия между факторами А и В. (Если при использовании критерия типа III, фактор В также оказался значимым, то можно заключить, что существует значимый главный эффект фактора B, после введения в модель всех других факторов и их взаимодействий).

В терминах маргинальных средних гипотезы типа I и типа II обычно не имеют простой интерпретации. В этих случаях говорят, что нельзя интерпретировать значимость эффектов, рассматривая только маргинальные средние. Скорее представленные p значений средних имеют отношение к сложной гипотезе, которая комбинирует средние и объем выборки. Например, тип II гипотезы для фактора А в простом примере плана 2 x 2, рассматриваемом ранее будут (см. Woodward, Bonett, and Brecht, 1990, стр. 219):

nij — число наблюдений в ячейке

uij — среднее значение в ячейке

n.j — маргинальное среднее

Если не вдаваться в детали (более подробно см. Milliken and Johnson, 1984, глава 10), то ясно, что это не простые гипотезы и в большинстве случаев ни одна из них не представляет особенного интереса у исследователя. Однако существуют случаи, когда гипотезы типа I могут быть интересны.

По умолчанию, если не отмечена опция Регрессионный подход, модуль Дисперсионный анализ использует модель средних по ячейкам. Для этой модели характерно, что суммы квадратов для разных эффектов вычисляются для линейных комбинаций средних значений по ячейкам. В полном факторном эксперименте это приводит к суммам квадратов, которые совпадают с суммами квадратов, обсуждаемыми ранее как тип III. Однако в опции Спланированные сравнения (в окне Результаты дисперсионного анализа), пользователь может проверять гипотезу относительно любой линейной комбинации взвешенных или невзвешенных средних по ячейкам. Таким образом, пользователь может проверять не только гипотезы типа III, но гипотезы любого типа (включая тип IV). Этот общий подход особенно полезен, когда исследуются планы с пропущенными ячейками (так называемые неполные планы).

Для полных факторных планов этот подход полезно также использовать в тех случаях, когда хотят анализировать взвешенные маргинальные средние. Например, предположим, что в рассматриваемом ранее простом 2 x 2 плане, нужно сравнить взвешенные (по уровням фактора B) маргинальные средние для фактора А. Это бывает полезным, когда распределение наблюдений по ячейкам не готовилось экспериментатором, а строилось случайно, и эта случайность отражается в распределении числа наблюдений по уровням фактора B в совокупности.

Например, имеется фактор — возраст вдов. Возможная выборка респондентов разбита на две группы: моложе 40 лет и старше 40 (фактор В). Второй фактор (фактор А) в плане — получали или нет социальную поддержку вдовы в некотором агентстве (при этом одни вдовы были выбраны случайно, другие служили в качестве контроля). В этом случае распределение вдов по возрастам в выборке отражает действительное распределение вдов по возрастам в совокупности. Оценке эффективности группы социальной поддержки вдов по всем возрастам будет соответствовать взвешенное среднее для двух возрастных групп (с весами соответствующими числу наблюдений в группе).

Заметим, что сумма введенных коэффициентов контрастов не обязательно равна 0 (нулю). Вместо этого программа будет автоматически вносить поправки, чтобы соответствующие гипотезы не смешивались с общим средним.

Для иллюстрации этого вернемся опять к простому 2 x 2 плану, рассмотренному ранее. Напомним, что числа наблюдений в ячейках этого несбалансированного плана -1, 2, 3, и 1. Предположим, что мы хотим сравнить взвешенные маргинальные средние для фактора А (взвешенные с частотой уровней фактора В). Можно ввести коэффициенты контраста:

Заметим, что эти коэффициенты не дают в сумме 0. Программа будет устанавливать коэффициенты так, что в сумме они будут давать 0, и при этом будут сохраняться их относительные значения, т. е.:

Эти контрасты будут сравнивать взвешенные средние для фактора А.

Гипотезы о главном среднем. Гипотеза, о том, что не взвешенное главное среднее равно 0 может исследоваться с помощью коэффициентов:

Гипотеза о том, что взвешенное главное среднее равно 0 проверяется с помощью:

Ни в одном случае программа не производит корректировки коэффициентов контрастов.

Факторные планы, содержащие пустые ячейки (обработка комбинаций ячеек, в которых нет наблюдений) называются неполными. В таких планах некоторые факторы обычно не ортогональны и некоторые взаимодействия не могут быть вычислены. Вообще не существует лучшего метода анализа таких планов.

В некоторых старых программах, которые основаны на анализе планов дисперсионного анализа с помощью многомерной регрессии, факторы в неполных планах по умолчанию задаются обычным образом (как будто план полный). Затем производится многомерный регрессионный анализ для этих фиктивно закодированных факторов. К несчастью, этот метод приводит к результатам, которые очень трудно, или даже невозможно, интерпретировать, так как неясно, как каждый эффект участвует в линейной комбинации средних значений. Рассмотрим следующий простой пример.

Фактор A Фактор B
B1 B2
A1 3 4, 5
A2 6, 6, 7 Пропущено

Если будет выполняться многомерная регрессия вида Зависимая переменная = Константа + Фактор A + Фактор B, то гипотеза о значимости факторов A и B в терминах линейных комбинаций средних выглядит так:

Фактор A: Ячейка A1,B1 = Ячейка A2,B1

Фактор B: Ячейка A1,B1 = Ячейка A1,B2

Этот случай прост. В более сложных планах невозможно фактически определить, что точно будет исследоваться.

Подход, который рекомендуется в литературе и который кажется предпочтительнее — исследование осмысленных (с точки зрения исследовательских задач) априорных гипотез о средних, наблюдаемых в ячейках плана. Подробное обсуждение этого подхода можно найти в Dodge (1985), Heiberger (1989), Milliken and Johnson (1984), Searle (1987), или Woodward, Bonett, and Brecht (1990). Суммы квадратов, ассоциированные с гипотезами о линейной комбинации средних в неполных планах, исследующие оценки части эффектов, называются также суммами квадратов IV.

Автоматическая генерация гипотез типа IV. Когда многофакторные планы имеют сложный характер пропущенных ячеек, желательно определить ортогональные (независимые) гипотезы, исследование которых эквивалентно исследованию главных эффектов или взаимодействий. Были развиты алгоритмические (вычислительные) стратегии (основанные на псевдообратной матрице плана) для генерирования подходящих весов для таких сравнений. К сожалению, окончательные гипотезы определяются не единственным образом. Конечно, они зависят от порядка, в котором эффекты были определены и редко допускают простую интерпретацию. Поэтому рекомендуется внимательно изучить характер пропущенных ячеек, затем формулировать гипотезы типа IV, которые наиболее содержательно соответствуют целям исследования. Затем исследовать эти гипотезы, используя опцию Спланированные сравнения в окне Результаты. Самый легкий путь задать сравнения в этом случае — требовать введения вектора контрастов для всех факторов вместе в окне Спланированные сравнения. После вызова диалогового окна Спланированные сравнения будут показаны все группы текущего плана и помечены те, которые пропущены.

Существует несколько типов планов, в которых расположение пропущенных ячеек не случайно, но тщательно спланировано, что позволяет проводить простой анализ главных эффектов не затрагивая другие эффекты. Например, когда необходимое число ячеек в плане недоступно, часто используются планы Латинские квадраты для оценивания главных эффектов нескольких факторов с большим числом уровней. Например, 4 x 4 x 4 x 4 факторный план требует 256 ячеек. В то же время можно использовать Греко-латинский квадрат для оценки главных эффектов, имея только 16 ячеек в плане (глава Планирование эксперимента, том IV, содержит детальное описание таких планов). Неполные планы, в которых главные эффекты (и некоторые взаимодействия) могут быть оценены с помощью простых линейных комбинаций средних, называются сбалансированными неполными планами.

В сбалансированных планах стандартный (по умолчанию) метод генерирования контрастов (весов) для главных эффектов и взаимодействий будет затем производить анализ таблицы дисперсий, в которой суммы квадратов для соответствующих эффектов не смешиваются друг с другом. Опция Специфический эффекты окна Результаты будет генерировать пропущенные контрасты, записывая ноль в пропущенные ячейки плана. Сразу после того, как будет запрошена опция Специфический эффекты для пользователя, изучающего некоторую гипотезу, появляется таблица результатов с фактическими весами. Заметим, что в сбалансированном плане, суммы квадратов соответствующих эффектов вычисляются только, если эти эффекты ортогональны (независимы) всем другим главным эффектам и взаимодействиям. В противном случае нужно воспользоваться опцией Спланированные сравнения для изучения содержательных сравнений между средними.

Если опция Регрессионное подход в стартовой панели модуля Дисперсионный анализ не выбрана, то при вычислении суммы квадратов для эффектов будет использоваться модель средних по ячейкам (установка по умолчанию). Если план не сбалансирован, то при объединении неортогональных эффектов (см. выше обсуждение опции Пропущенные ячейки и специфический эффект) можно получить сумму квадратов, состоящую из неортогональных (или перекрывающихся) компонент. Полученные при этом результаты, обычно не интерпретируемы. Поэтому нужно быть очень осторожным при выборе и реализации сложных неполных экспериментальных планов.

Существует много книг с детальным обсуждением планов разного типа. (Dodge, 1985; Heiberger, 1989; Lindman, 1974; Milliken and Johnson, 1984; Searle, 1987; Woodward and Bonett, 1990), но такого рода информация лежит вне границ этого учебника. Тем не менее, позднее в этом разделе будет продемонстрирован анализ различного типа планов.

Предположим, что зависимая переменная измерена в числовой шкале. Предположим также, что зависимая переменная имеет нормальное распределение внутри каждой группы. Дисперсионный анализ содержит широкий набор графиков и статистик для обоснования этого предположения.

Эффекты нарушения. Вообще F критерий очень устойчив к отклонению от нормальности (подробные результаты см. в работе Lindman, 1974). Если эксцесс больше 0, то значение статистики F может стать очень маленьким. Нулевая гипотеза при этом принимается, хотя она может быть и не верна. Ситуация меняется на противоположную, когда эксцесс меньше 0. Асимметрия распределения обычно незначительно влияет на F статистику. Если число наблюдений в ячейке достаточно большое, то отклонение от нормальности не имеет особого значения в силу центральной предельной теоремы, в соответствии с которой, распределение среднего значения близко к нормальному, независимо от начального распределения. Подробное обсуждение устойчивости F статистики можно найти в Box and Anderson (1955), или Lindman (1974).

Предположения. Предполагается, что дисперсии разных групп плана одинаковы. Это предположение называется предположением об однородности дисперсии. Вспомним, что в начале этого раздела, описывая вычисление суммы квадратов ошибок, мы производили суммирование внутри каждой группы. Если дисперсии в двух группах отличаются друг от друга, то сложение их не очень естественно и не дает оценки общей внутригрупповой дисперсии (так как в этом случае общей дисперсии вообще не существует). Модуль Дисперсионный анализ —ANOVA/MANOVA содержит большой набор статистических критериев обнаружения отклонения от предположений однородности дисперсии.

Эффекты нарушения. Линдман (Lindman 1974, стр. 33) показывает, что F критерий вполне устойчив относительно нарушения предположений однородности дисперсии (неоднородность дисперсии, см. также Box, 1954a, 1954b; Hsu, 1938).

Специальный случай: коррелированность средних и дисперсий. Бывают случаи, когда F статистика может вводить в заблуждение. Это бывает, когда в ячейках плана средние значения коррелированы с дисперсией. Модуль Дисперсионный анализ позволяет строить диаграммы рассеяния дисперсии или стандартного отклонения относительно средних для обнаружения такой корреляции. Причина, по которой такая корреляция опасна, состоит в следующем. Представим себе, что имеется 8 ячеек в плане, 7 из которых имеют почти одинаковое среднее, а в одной ячейке среднее намного больше остальных. Тогда F критерий может обнаружить статистически значимый эффект. Но предположим, что в ячейке с большим средним значением и дисперсия значительно больше остальных, т.е. среднее значение и дисперсия в ячейках зависимы (чем больше среднее, тем больше дисперсия). В этом случае большое среднее значение ненадежно, так как оно может быть вызвано большой дисперсией данных. Однако Fстатистика, основанная на объединенной дисперсии внутри ячеек, будет фиксировать большое среднее, хотя критерии, основанные на дисперсии в каждой ячейке, не все различия в средних будут считать значимыми.

Такой характер данных (большое среднее и большая дисперсия) — часто встречается, когда имеются резко выделяющиеся наблюдения. Одно или два резко выделяющихся наблюдений сильно смещают среднее значение и очень увеличивают дисперсию.

Предположения. В многомерных планах, с многомерными зависимыми измерениями, также применяются предположение об однородности дисперсии, описанные ранее. Однако так как существуют многомерные зависимые переменные, то требуется так же чтобы их взаимные корреляции (ковариации) были однородны по всем ячейкам плана. Модуль Дисперсионный анализ предлагает разные способы проверки этих предположений.

Эффекты нарушения. Многомерный аналог Fкритерия — λ-критерий Уилкса. Не так много известно об устойчивости (робастности) λ-критерия Уилкса относительно нарушения указанных выше предположений. Тем не менее, так как интерпретация результатов модуля Дисперсионный анализ основывается обычно на значимости одномерных эффектов (после установления значимости общего критерия), обсуждение робастности касается, в основном, одномерного дисперсионного анализа. Поэтому должна быть внимательно исследована значимость одномерных эффектов.

Специальный случай: ковариационный анализ. Особенно серьезные нарушения однородности дисперсии/ковариаций могут происходить, когда в план включаются ковариаты. В частности, если корреляция между ковариатами и зависимыми измерениями различна в разных ячейках плана, может последовать неверное истолкование результатов. Следует помнить, что в ковариационном анализе, в сущности, проводится регрессионный анализ внутри каждой ячейки для того, чтобы выделить ту часть дисперсии, которая соответствует ковариате. Предположение об однородности дисперсии/ковариации предполагает, что этот регрессионный анализ проводится при следующем ограничении: все регрессионные уравнения (наклоны) для всех ячеек одинаковы. Если это не предполагается, то могут появиться большие ошибки. Модуль Дисперсионный анализ имеет несколько специальных критериев для проверки этого предположения. Можно посоветовать использовать эти критерии, для того, чтобы убедиться, что регрессионные уравнения для различных ячеек примерно одинаковы.

Сферичность и сложная симметрия: причины использования многомерного подхода к повторным измерениям в дисперсионном анализе

В планах, содержащих факторы повторных измерений с более чем двумя уровнями, применение одномерного дисперсионного анализа требует дополнительных предположений: предположения о сложной симметрии и предположения о сферичности. Эти предположения редко выполняются (см. ниже). Поэтому в последние годы многомерный дисперсионный анализ завоевал популярность в таких планах (оба подхода совмещены в модуле Дисперсионный анализ).

Предположение о сложной симметрии Предположение о сложной симметрии состоит в том, что дисперсии (общие внутригрупповые) и ковариации (по группам) для различных повторных измерений однородны (одинаковы). Это достаточное условие для того, чтобы одномерный F критерий для повторных измерений был обоснованным (т.е. выданные F-значения в среднем соответствовали F-распределению). Однако в данном случае это условие не является необходимым.

Предположение о сферичности. Предположение о сферичности является необходимым и достаточным условием того, чтобы F-критерий был обоснованным. Оно состоит в том, что внутри групп все наблюдения независимы и одинаково распределены. Природа этих предположений, а также влияние их нарушений обычно не очень хорошо описаны в книгах по дисперсионному анализу — эта будет описано в следующих параграфах. Там же будет показано, что результаты одномерного подхода могут отличаться от результатов многомерного подхода, и будет объяснено, что это означает.

Необходимость независимости гипотез. Общий способ анализа данных в дисперсионном анализе – это подгонка модели. Если относительно модели, соответствующей данным, имеются некоторые априорные гипотезы, то дисперсия разбивается для проверки этих гипотез (критерии главных эффектов, взаимодействий). С точки зрения вычислений, этот подход генерирует некоторое множество контрастов (множество сравнений средних в плане). Однако если контрасты не независимы друг от друга, разбиение дисперсий становится бессодержательным. Например, если два контраста A и B тождественны и выделяется соответствующая им часть из дисперсии, то одна и та же часть выделяется дважды. Например, глупо и бессмысленно выделять две гипотезы: “среднее в ячейке 1 выше среднего в ячейке 2” и “среднее в ячейке 1 выше среднего в ячейке 2”. Итак, гипотезы должны быть независимы или ортогональны.

Независимые гипотезы при повторных измерениях. Общий алгоритм, реализованный в модуле Дисперсионный анализ, будет пытаться для каждого эффекта генерировать независимые (ортогональные) контрасты. Для фактора повторных измерений эти контрасты задают множество гипотез относительно разностей между уровнями рассматриваемого фактора. Однако если эти разности коррелированы внутри групп, то результирующие контрасты не являются больше независимыми. Например, в обучении, где обучающиеся измеряются три раза за один семестр, может случиться, что изменения между 1 и 2 измерением отрицательно коррелируют с изменением между 2 и 3 измерениями субъектов. Те, кто большую часть материала освоил между 1 и 2 измерениями, осваивают меньшую часть в течение того времени, которое прошло между 2 и 3 измерением. В действительности, для большинства случаев, где дисперсионный анализ используются при повторных измерениях, можно предположить, что изменения по уровням коррелированы по субъектам. Однако когда это случается, предположение о сложной симметрии и предположения о сферичности не выполняются и независимые контрасты не могут быть вычислены.

Влияние нарушений и способы их исправления. Когда предположения о сложной симметрии или о сферичности не выполняются, дисперсионный анализ может выдать ошибочные результаты. До того, как были достаточно разработаны многомерные процедуры, было предложено несколько предположений для компенсации нарушений этих предположений. (см., например, работы Greenhouse & Geisser, 1959 и Huynh & Feldt, 1970). Эти методы до сих пор широко используются (поэтому они представлены в модуле Дисперсионный анализ).

Подход многомерного дисперсионного анализа к повторным измерениям. В целом проблемы сложной симметрии и сферичности относятся к тому факту, что множества контрастов, включенных в исследование эффектов факторов повторных измерений (с числом уровней большим, чем 2) не независимы друг от друга. Однако им не обязательно быть независимыми, если используется многомерный критерий для одновременной проверки статистического значимости двух или более контрастов фактора повторных измерений. Это является причиной того, что методы многомерного дисперсионного анализа стали чаще использоваться для проверки значимости факторов одномерных повторных измерений с более чем 2 уровнями. Этот подход широко распространен, так как он, в общем случае, не требует предположения о сложной симметрии и предположения о сферичности.

Случаи, в которых подходмногомерного дисперсионного анализа не может быть использован. Существуют примеры (планы), когда подход многомерного дисперсионного анализа не может быть применен. Обычно это случаи, когда имеется небольшое количество субъектов в плане и много уровней в факторе повторных измерений. Тогда для проведения многомерного анализа может быть слишком мало наблюдений. Например, если имеется 12 субъектов, p = 4 фактора повторных измерений, и каждый фактор имеет k = 3 уровней. Тогда взаимодействие 4-х факторов будет “расходовать”(k-1)P = 2 4 = 16 степеней свободы. Однако имеется лишь 12 субъектов, следовательно, в этом примере многомерный тест не может быть проведен. Модуль Дисперсионный анализ самостоятельно обнаружит эти наблюдения и вычислит только одномерные критерии.

Различия в одномерных и многомерных результатах. Если исследование включает большое количество повторных измерений, могут возникнуть случаи, когда одномерный подход дисперсионного анализа к повторным измерениям дает результаты, сильно отличающиеся от тех, которые были получены при многомерном подходе. Это означает, что разности между уровнями соответствующих повторных измерений коррелированы по субъектам. Иногда этот факт представляет некоторый самостоятельный интерес.

В последние годы моделирование структурных уравнений стало популярным, как альтернатива многомерному анализу дисперсии (см. например, Bagozzi and Yi, 1989; Bagozzi, Yi, and Singh, 1991; Cole, Maxwell, Arvey, and Salas, 1993). Этот подход позволяет проверять гипотезы не только о средних в разных группах, но так же и о корреляционных матрицах зависимых переменных. Например, можно ослабить предположения об однородности дисперсии и ковариаций и явно включить в модель для каждой группы дисперсии и ковариации ошибки. Модуль STATISTICA Моделирование структурными уравнениями (SEPATH) (см. том III) позволяет проводить такой анализ.

источник