Меню Рубрики

Анализ обобщающих показателей как статистический метод

После изучения главы 4 студент должен: знать

  • • сущность обобщающих статистических показателей;
  • • основы построения и расчета статистических показателей; уметь
  • • исчислять различные статистические показатели (абсолютные, относительные, средние);

• методами расчета статистических показателей.

После проведения статистического наблюдения, сводки и группировки статистических данных переходят к следующему этапу статистического исследования — вычислению и анализу обобщающих показателей.

Тема статистических показателей имеет исключительно большое значение, так как любая исследовательская и аналитическая работа базируется на использовании различных систем статистических показателей.

Статистический показатель — это качественно определенная переменная величина, количественно характеризующая объект исследования или его свойства. Качественную определенность обеспечивает набор признаков, содержащихся в его определении. Количественная определенность показателя связана с признаками места и времени. В процессе развития экономики показатели видоизменяются, появляются новые показатели, ликвидируются ранее действующие.

Учитывая сложный взаимосвязанный характер социально-экономических явлений, их нельзя охарактеризовать с помощью одного или нескольких разрозненных статистических показателей. Необходима система взаимоувязанных статистических показателей, представляющих собой статистическую модель экономики и общества.

Система статистических показателей — совокупность статистических показателей, отражающих взаимосвязи, которые существуют между явлениями.

В отличие от признака, статистический показатель получается расчетным путем.

Необходима классификация статистических показателей. Статистические показатели делятся на однородные группы по различным признакам. Таким образом, существуют различные классификации статистических показателей, основанные на различных методологических принципах.

В зависимости от применяемых единиц измерения различают показатели натуральные, стоимостные и трудовые.

В международной практике используются такие натуральные единицы измерения, как тонны, килограммы, квадратные, кубические и простые метры, мили, километры, галлоны, литры, штуки и т.д.

В группу натуральных также входят условно-натуральные измерители, используемые в тех случаях, когда какой-либо продукт имеет несколько разновидностей и общий объем можно определить только исходя из общего для всех разновидностей потребительского свойства.

В условиях рыночной экономики наибольшее значение и применение имеют стоимостные единицы измерения, позволяющие получить денежную оценку социально-экономических явлений и процессов.

К трудовым единицам измерения, позволяющим учитывать как общие затраты труда на предприятии, так и трудоемкость отдельных операций технологического процесса, относятся человеко-дни, человеко-часы, нормо-часы.

Рассмотрим применение различных единиц измерения на примере оценки готовой продукции предприятия. Готовой считается продукция, которая прошла полную обработку, сборку и укомплектование, отвечает требованиям стандартов, условиям договора, принята отделом технического контроля и сдана на склад готовой продукции или передана покупателю. В состав готовой продукции могут входить детали, узлы и полуфабрикаты, если они отправляются покупателям как запасные части или комплектующие изделия.

Каковы же единицы измерения продукции? В учете продукция отражается в натуральных, условно-натуральных единицах и в стоимостном исчислении. В качестве натуральных единиц измерения используются штуки, литры, тонны и др. С их помощью ведется аналитический учет и исчисляется количество, объем и масса продукции по ее видам, сортам, размерам и т.д.

Наряду с натуральными в ряде производств используют условно-натуральные измерители для получения обобщенных данных по выпуску однородной продукции. Пересчет продукции в условно-натуральные измерители производится с помощью коэффициентов, исчисляемых в зависимости от содержания полезного вещества в продуктах, длительности производственного цикла, трудоемкости их изготовления и т.д. Условнонатуральные единицы используются, например, в черной металлургии (пересчет всего выплавленного чугуна в передельный), на консервных предприятиях (выпуск продукции в тысячах условных банок) и др.

Наряду с натуральными и условно-натуральными измерителями используется стоимостный измеритель. С помощью стоимостного измерителя ведется аналитический и синтетический учет, определяются показатели выпуска продукции, объем выручки и финансовый результат от продажи продукции. При формировании стоимостных показателей продукция оценивается по нормативной (плановой) и фактической себестоимости, по продажным ценам.

Также объем продукции, работ, услуг может быть измерен в трудовых единицах (нормо-часах).

На рис. 4.1 представлены разновидности показателей выработки продукции.

Рис. 4.1. Разновидности показателей выработки продукции

По степени охвата совокупности различают индивидуальные и сводные (обобщающие) показатели.

Индивидуальные показатели характеризуют отдельный объект или отдельную единицу совокупности. Примерами индивидуальных абсолютных показателей могут служить численность промышленно-производственного персонала предприятия, прибыль от продаж или объем реализованной продукции торговой фирмы, стоимость основных фондов предприятия, выработка одного продавца за конкретный период и др.

На основе соотнесения двух индивидуальных абсолютных показателей, характеризующих один и тот же объект или единицу, получают индивидуальный относительный показатель. Так, при соотнесении прибыли от продаж и выручки от продаж торговой фирмы получают рентабельность продаж данной фирмы, являющуюся индивидуальным относительным показателем. В статистике рассчитываются и индивидуальные средние показатели, но только во временном измерении (среднегодовая стоимость основных фондов предприятия).

Сводные показатели характеризуют группу единиц, представляющую собой часть статистической совокупности или всю совокупность в целом. Сводные показатели подразделяются на объемные и расчетные.

Объемные показатели получают путем сложения значений признака отдельных единиц совокупности. Полученная величина, называемая объемом признака, может выступать в качестве объемного абсолютного показателя (например, стоимость основных фондов предприятий отрасли). Также эта величина может сравниваться с другой объемной абсолютной величиной (например, со стоимостью произведенной продукции за отчетный период предприятиями отрасли), и в этом случае получают объемный относительный показатель (в данном примере — фондоемкость). Также могут рассчитываться и объемные средние показатели. В этом случае величина, полученная путем сложения значений признака отдельных единиц совокупности (в нашем примере — стоимость основных фондов предприятий отрасли), сравнивается с объемом совокупности (в данном примере — с числом предприятий). Полученная в результате средняя стоимость основных фондов является средним объемным показателем.

Расчетные показатели, вычисляемые по различным формулам, служат для решения отдельных статистических задач анализа — измерения вариации, характеристики структурных сдвигов, оценки взаимосвязи и т.д. Они также делятся на абсолютные, относительные и средние.

Обобщающие показатели играют важную роль в статистическом исследовании, которая определяется тем, что они:

  • • дают сводную характеристику единиц изучаемых общественных явлений;
  • • выражают существующие между явлениями связи и зависимости;
  • • характеризуют происходящие в явлениях изменения, складывающиеся закономерности их развития, т.е. выполняют экономико-статистический анализ изучаемых явлений, в том числе и на основе разложения самих обобщающих величин на составляющие их части, определяющие их факторы.

В зависимости от сферы применения различают общетерриториальные, характеризующие изучаемый объект или явление в целом по стране, региональные и местные (локальные) показатели, относящиеся только к какой- либо части территории или отдельному объекту.

По точности отражаемого явления различают ожидаемые, предварительные и окончательные величины показателей.

Важным классификационным признаком является также временной фактор. Социально-экономические процессы и явления могут находить свое отражение в статистических показателях либо по состоянию на определенный момент времени, как правило, на определенную дату, начало или конец месяца, года (стоимость основных фондов, дебиторская и кредиторская задолженности, наличие товарных остатков и др.), либо за определенный период — день, неделю, месяц, квартал, год (производство продукции, выручка (нетто) от продажи товаров, валовая или чистая прибыль и т.д.). В первом случае показатели являются моментными, во втором — интервальными.

В зависимости от принадлежности к одному или двум объектам изучения различают одиообьектиые и межобъектные показатели. Если первые характеризуют только один объект, то вторые получают в результате сопоставления двух величин, относящихся к разным объектам (соотношение численности трудовых ресурсов двух населенных пунктов, соотношение текущих продаж фирмы на региональном рынке и емкости рынка, соотношение годового выпуска продукции и среднегодовой стоимости основных средств (показатель фондоотдачи) и т.п.). Межобъектные показатели выражаются в форме относительных величин.

В зависимости от методов расчета показатели могут быть выражены абсолютными, относительными или средними величинами. Рассмотрим далее показатели исходя из данной классификации.

источник

Деятельность людей во множестве случаев предполагает работу с данными, а она в свою очередь может подразумевать не только оперирование ими, но и их изучение, обработку и анализ. Например, когда нужно уплотнить информацию, найти какие-то взаимосвязи или определить структуры. И как раз для аналитики в этом случае очень удобно пользоваться не только разными техниками мышления, но и применять статистические методы.

Особенностью методов статистического анализа является их комплексность, обусловленная многообразием форм статистических закономерностей, а также сложностью процесса статистических исследований. Однако мы хотим поговорить именно о таких методах, которые может применять каждый, причем делать это эффективно и с удовольствием.

Статистическое исследование может проводиться посредством следующих методик:

  • Статистическое наблюдение;
  • Сводка и группировка материалов статистического наблюдения;
  • Абсолютные и относительные статистические величины;
  • Вариационные ряды;
  • Выборка;
  • Корреляционный и регрессионный анализ;
  • Ряды динамики.

Далее мы рассмотрим каждый из них более подробно. Но отметим, что представим лишь основные характеристики без подробного описания алгоритмов действий. Впрочем, понять их не составит никакого труда.

Статистическое наблюдение является планомерным, организованным и в большинстве случаев систематическим сбором информации, направленным, главным образом, на явления социальной жизни. Реализуется данный метод через регистрацию предварительно определенных наиболее ярких признаков, цель которой состоит в последующем получении характеристик изучаемых явлений.

Статистическое наблюдение должно выполняться с учетом некоторых важных требований:

  • Оно должно полностью охватывать изучаемые явления;
  • Получаемые данные должны быть точными и достоверными;
  • Получаемые данные должны быть однообразными и легкосопоставимыми.

Также статистическое наблюдение может иметь две формы:

  • Отчетность – это такая форма статистического наблюдения, где информация поступает в конкретные статистические подразделения организаций, учреждений или предприятий. В этом случае данные вносятся в специальные отчеты.
  • Специально организованное наблюдение – наблюдение, которое организуется с определенной целью, чтобы получить сведения, которых не имеется в отчетах, или же для уточнения и установления достоверности информации отчетов. К этой форме относятся опросы (например, опросы мнений людей), перепись населения и т.п.

Кроме того, статистическое наблюдение может быть категоризировано на основе двух признаков: либо на основе характера регистрации данных, либо на основе охвата единиц наблюдения. К первой категории относятся опросы, документирование и прямое наблюдение, а ко второй – наблюдение сплошное и несплошное, т.е. выборочное.

Для получения данных при помощи статистического наблюдения можно применять такие способы как анкетирование, корреспондентская деятельность, самоисчисление (когда наблюдаемые, например, сами заполняют соответствующие документы), экспедиции и составление отчетов.

Говоря о втором методе, в первую очередь следует сказать о сводке. Сводка представляет собой процесс обработки определенных единичных фактов, которые образуют общую совокупность данных, собранных при наблюдении. Если сводка проводится грамотно, огромное количество единичных данных об отдельных объектах наблюдения может превратиться в целый комплекс статистических таблиц и результатов. Также такое исследование способствует определению общих черт и закономерностей исследуемых явлений.

С учетом показателей точности и глубины изучения можно выделить простую и сложную сводку, но любая из них должна основываться на конкретных этапах:

  • Выбирается группировочный признак;
  • Определяется порядок формирования групп;
  • Разрабатывается система показателей, позволяющих охарактеризовать группу и объект или явление в целом;
  • Разрабатываются макеты таблиц, где будут представлены результаты сводки.

Важно заметить, что есть и разные формы сводки:

  • Централизованная сводка, требующая передачи полученного первичного материала в вышестоящий центр для последующей обработки;
  • Децентрализованная сводка, где изучение данных происходит на нескольких ступенях по восходящей.

Выполняться же сводка может при помощи специализированного оборудования, например, с использованием компьютерного ПО или вручную.

Что же касается группировки, то этот процесс отличается разделением исследуемых данных на группы по признакам. Особенности поставленных статистическим анализом задач влияют на то, какой именно будет группировка: типологической, структурной или аналитической. Именно поэтому для сводки и группировки либо прибегают к услугам узкопрофильных специалистов, либо применяют конкретные техники мышления.

Абсолютные величина считаются самой первой формой представления статистических данных. С ее помощью удается придать явлениям размерные характеристики, например, по времени, по протяженности, по объему, по площади, по массе и т.д.

Если требуется узнать об индивидуальных абсолютных статистических величинах, можно прибегнуть к замерам, оценке, подсчету или взвешиванию. А если нужно получить итоговые объемные показатели, следует использовать сводку и группировку. Нужно иметь в виду, что абсолютные статистические величины отличаются наличием единиц измерения. К таким единицам относят стоимостные, трудовые и натуральные.

А относительные величины выражают количественные соотношения, касающиеся явлений социальной жизни. Чтобы их получить, одни величины всегда делятся на другие. Показатель, с которым сравнивают (это знаменатель), называют основанием сравнения, а показатель, которой сравнивают (это числитель), называют отчетной величиной.

Относительные величины могут быть разными, что зависит от их содержательной части. Например, существуют величины сравнения, величины уровня развития, величины интенсивности конкретного процесса, величины координации, структуры, динамики и т.д. и т.п.

Чтобы изучить какую-то совокупность по дифференцирующимся признакам, в статистическом анализе применяются средние величины – обобщающие качественные характеристики совокупности однородных явлений по какому-либо дифференцирующемуся признаку.

Крайне важным свойством средних величин является то, что они говорят о значениях конкретных признаков во всем их комплексе единым числом. Невзирая на то, что у отдельных единиц может наблюдаться количественная разница, средние величины выражают общие значения, свойственные всем единицам исследуемого комплекса. Получается, что при помощи характеристики чего-то одного можно получить характеристику целого.

Следует иметь в виду, что одним из самых важных условий применения средних величин, если проводится статистический анализ социальных явлений, считается однородность их комплекса, для которого и нужно узнать среднюю величину. А от такого, как именно будут представлены начальные данные для исчисления средней величины, будет зависеть и формула ее определения.

В некоторых случаях данных о средних показателях тех или иных изучаемых величин может быть недостаточно, чтобы провести обработку, оценку и глубокий анализ какого-то явления или процесса. Тогда во внимание следует брать вариацию или разброс показателей отдельных единиц, который тоже представляет собой важную характеристику исследуемой совокупности.

На индивидуальные значения величин могут воздействовать многие факторы, а сами изучаемые явления или процессы могут быть очень многообразны, т.е. обладать вариацией (это многообразие и есть вариационные ряды), причины которой следует искать в сущности того, что изучается.

Вышеназванные абсолютные величины находятся в непосредственной зависимости от единиц измерения признаков, а значит, делают процесс изучения, оценки и сравнения двух и более вариационных рядов более сложным. А относительные показатели нужно вычислять в качестве соотношения абсолютных и средних показателей.

Смысл выборочного метода (или проще – выборки) состоит в том, что по свойствам одной части определяются численные характеристики целого (это называется генеральной совокупностью). Основной выборочного метода является внутренняя связь, объединяющая части и целое, единичное и общее.

Метод выборки отличается рядом существенных преимуществ перед остальными, т.к. благодаря уменьшению количества наблюдений позволяет сократить объемы работы, затрачиваемые средства и усилия, а также успешно получать данные о таких процессах и явлениях, где либо нецелесообразно, либо просто невозможно исследовать их полностью.

Соответствие характеристик выборки характеристикам изучаемого явления или процесса будет зависеть от комплекса условий, и в первую очередь от того, как вообще будет реализовываться выборочный метод на практике. Это может быть как планомерный отбор, идущий по подготовленной схеме, так и непланомерный, когда выборка производится из генеральной совокупности.

Но во всех случаях выборочный метод должен быть типичным и соответствовать критериям объективности. Данные требования нужно выполнять всегда, т.к. именно от них будет зависеть соответствие характеристик метода и характеристик того, что подвергается статистическому анализу.

Таким образом, перед обработкой выборочного материала необходимо провести его тщательную проверку, избавившись тем самым от всего ненужного и второстепенного. Одновременно с этим, составляя выборку, в обязательном порядке нужно обходить стороной любую самодеятельность. Это означает, что ни в коем случае не следует делать выборку только из вариантов, кажущихся типичными, а все другие – отбрасывать.

Эффективная и качественная выборка должна составляться объективно, т.е. производить ее нужно так, чтобы были исключены любые субъективные влияния и предвзятые побуждения. И чтобы это условие было соблюдено должным образом, требуется прибегнуть к принципу рандомизации или, проще говоря, к принципу случайного отбора вариантов из всей их генеральной совокупности.

Представленный принцип служит основой теории выборочного метода, и следовать ему нужно всегда, когда требуется создать эффективную выборочную совокупность, причем случаи планомерного отбора исключением здесь не являются.

Корреляционный анализ и регрессионный анализ – это два высокоэффективных метода, позволяющие проводить анализ больших объемов данных для изучения возможной взаимосвязи двух или большего количества показателей.

В случае с корреляционным анализом задачами являются:

  • Измерить тесноту имеющейся связи дифференцирующихся признаков;
  • Определить неизвестные причинные связи;
  • Оценить факторы, в наибольшей степени воздействующие на окончательный признак.

А в случае с регрессионным анализом задачи следующие:

  • Определить форму связи;
  • Установить степень воздействия независимых показателей на зависимый;
  • Определить расчетные значения зависимого показателя.

Чтобы решить все вышеназванные задачи, практически всегда нужно применять и корреляционный и регрессионный анализ в комплексе.

Посредством этого метода статистического анализа очень удобно определять интенсивность или скорость, с которой развиваются явления, находить тенденцию их развития, выделять колебания, сравнивать динамику развития, находить взаимосвязь развивающихся во времени явлений.

Ряд динамики – это такой ряд, в котором во времени последовательно расположены статистические показатели, изменения которых характеризуют процесс развития исследуемого объекта или явления.

Ряд динамики включает в себя два компонента:

  • Период или момент времени, связанный с имеющимися данными;
  • Уровень или статистический показатель.

В совокупности эти компоненты представляют собой два члена ряда динамики, где первый член (временной период) обозначается буквой «t», а второй (уровень) – буквой «y».

Исходя из длительности временных промежутков, с которыми взаимосвязаны уровни, ряды динамики могут быть моментными и интервальными. Интервальные ряды позволяют складывать уровни для получения общей величины периодов, следующих один за другим, а в моментных такой возможности нет, но этого там и не требуется.

Ряды динамики также существуют с равными и разными интервалами. Суть же интервалов в моментных и интервальных рядах всегда разная. В первом случае интервалом является временной промежуток между датами, к которым привязаны данные для анализа (удобно использовать такой ряд, например, для определения количества действий за месяц, год и т.д.). А во втором случае – временной промежуток, к которому привязана совокупность обобщенных данных (такой ряд можно использовать для определения качества тех же самых действий за месяц, год и т.п.). Интервалы могут быть равными и разными, независимо от типа ряда.

Естественно, чтобы научиться грамотно применять каждый из методов статистического анализа, недостаточно просто знать о них, ведь, по сути, статистика – это целая наука, требующая еще и определенных навыков и умений. Но чтобы она давалась проще, можно и нужно тренировать свое мышление и улучшать когнитивные способности.

В остальном же исследование, оценка, обработка и анализ информации – очень интересные процессы. И даже в тех случаях, когда это не приводит к какому-то конкретному результату, за время исследования можно узнать множество интересных вещей. Статистический анализ нашел свое применение в огромном количестве сфер деятельности человека, а вы можете использовать его в учебе, работе, бизнесе и других областях, включая развитие детей и самообразование.

источник

Виды и значение обобщающих статистических показателей.

Абсолютные статистические величины.

Виды и значение обобщающих статистических показателей.

Обобщающие статистические показатели отражают количественную сторону изучаемой совокупности общественных явлений, представляют собой их величину, выраженную соответствующей единицей измерения. Эти статистические величины характеризуют объемы изучаемых процессов, их уровни, соотношение и т.д.

Показатели, которыми статистика характеризует совокупности единиц, соединенных в группы или в целом, называются обобщающими показателями.

Статистические показатели, отображая экономические категории, имеют взаимосвязанные количественную и качественные стороны. Качественная сторона показателя отражается в его содержании без привязки к размеру признака. Количественная сторона статистического показателя – это его числовое значение.

Статистические показатели выполняют следующие функции:

познавательную – характеризуют состояние и развитие изучаемых явлений, направление и интенсивность процессов.

управленческую – является важнейшим элементом процесса управления на всех его уровнях.

Показатели, рассчитываемые в статистике можно подразделить на группы по следующим признакам:

по сущности изучаемых явлений:

объемные – характеризующие размеры социально-экономических процессов;

качественные – выражающие количественные соотношения, типичные свойства изучаемых совокупностей.

по степени агрегирования данных:

индивидуальные – характеризующие единичные процессы;

обобщающие – отражающие совокупность в целом или ее части.

в зависимости от характера изучаемых явлений:

интервальные – выражают развитие явлений за отдельные периоды времени;

моментные – отражают состояние явления на определенную дату.

Первоначальным видом обобщающих показателей являются абсолютные величины. Их получают непосредственно в результате сводки статистического материала. На основе таких абсолютных величин исчисляют относительные и средние величины, которые дополняют абсолютные величины.

Абсолютные статистические величины.

бсолютные статистические величины, выражающие размеры явлений и процессов, получают в результате статистического наблюдения и сводки исходной информации.Абсолютные величины как обобщающие показатели в статистике являются суммарными величинами.

В их составе следует различать такие показатели, как численность совокупности и объем признака. Показатели объема признаков используют для характеристики совокупности средними величинами.

Абсолютные статистические величины выражают либо уровни, характеризующие состояние явления на определенный момент, либо результаты процессов за определенный период.

По способу выражения размеров изучаемых явлений абсолютные величины подразделяются на индивидуальные и суммарные, которые представляют собой одни из видов обобщающих показателей. Первые из них характеризуют размеры количественных признаков у отдельных единиц.

Абсолютные величины всегда именованные, имеющие определенную размерность, единицы измерения. Эти единицы измерения могут быть натуральными или денежными.

Натуральные единицы измеренияв большинстве своем соответствуют природным или потребительским свойствам предмета и выражаются в физических мерах веса, длинны и т.д. Натуральные единицы измерения могут быть простыми и составными: количество потребленной энергии (киловатт-час); объем перевезенных грузов (тонно-километр); трудовые затраты (человеко-часы).

В статистике применяют и условно-натуральные единицы измерения при суммировании количества различных товаров, продуктов. Такие единицы получают, приводя различные натуральные единицы к одному, принятому за основу эталону.

В консервной промышленности емкость банки, равной 353,4 см 3 , принята за условную. Если завод выпустил 200 тыс. банок емкостью 858,0 см 3 , то объем производства в пересчете на условную банку равен 480 тыс. (858,0 : 353,4 х 200).

Денежные (стоимостные) единицы измерения характеризуют рассматриваемую совокупность в ценах, как правило в сопоставимых или неизменных.

В практической деятельности при отсутствии необходимой информации абсолютные величины получают расчетным путем:

разность валового и оптового товарооборотов равна розничному обороту;

можно для этих целей использовать и балансовую взаимосвязь показателей товарооборота: Зн + П = Р + Зк;

применяют так же расчет объема признака по данным о его среднем значении и численности совокупности. (Средний вес мешка картофеля 50 кг. Было завезено 150 мешков, что составило 7500 кг.)

зучая экономические явления, статистика не может ограничиваться расчетом только абсолютных величин. В анализе статистической информации важное место занимают производные обобщающие показатели – средние и относительные величины.

Анализ – это, прежде всего, сравнение, сопоставление статистических данных. В результате сравнения получают качественную оценку экономических явлений, которая выражается в виде относительных величин.

Относительная величина в статистике – это обобщающий показатель, который представляет собой частное от деления двух статистических величин и характеризует количественное соотношение между ними.

Основным условием правильного расчета относительных показателей выступает сопоставимость сравниваемых величин в части методологии сбора, обработки статистической информации; в длительности периодов времени, за которые рассчитаны сравниваемые показатели и др.

При расчете относительных величин следует иметь в виду, что в числителе всегда находится показатель, отражающий то явление, которое изучается, то есть сравниваемый показатель, а в знаменателе – показатель, с которым производится сравнение, принимаемый за базу или основание сравнения. В зависимости от того, какое числовое значение имеет база сравнения, результат отношения может быть выражен в следующих формах:

коэффициенты – значение базы принимается за единицу;

проценты – база сравнения принята за 100 (%);

промилле – база сравнения взята за 1000(‰);

децимилле – база сравнения принята за 10000.

По своему познавательному значению относительные величины подразделяются на следующие виды:

выполнение договорных обязательств;

Относительная величина выполнения договорных обязательств (ОВДО) – показатель, характеризующий уровень выполнения предприятием своих обязательств, предусмотренных в договорах. Расчет этих показателей производится путем соотношения объема фактически выполненных обязательств (ДО1) и объема обязательств, предусмотренных в договоре (ДО). Выражаются в коэффициентах или процентах.

Пример: АОЗТ «ДМЗ» имеет следующие показатели по выпуску продукции за 1квартал текущего года (тыс. тонн):

источник

* метод обобщающих показателей .

Статистическое наблюдение заключается в сборе первичного статистического материала, в научно организованной регистрации всех существенных фактов, относящихся к рассматриваемому объекту. Это первый этап всякого статистического исследования.

Метод группировок даёт возможность все собранные материалы в результате массового статистического наблюдения факты подвергать систематизации и классификации. Это второй этап статистического исследования.

Метод обобщающих показателей позволяет характеризовать изучаемые процессы при помощи статистических величин — абсолютных, относительных и средних. На этом этапе статистического исследования выявляются взаимосвязи и масштабы явлений, определяются закономерности их развития, даются прогнозируемые оценки вариантов развития.

Собирая факты и регистрируя признаки каждой единицы совокупности, статистика имеет целью путём их сводки, группировки и характеристики обобщающими показателями выявить закономерности развития изучаемых общественных явлений.

Так как статистика изучает массовые явления, для неё большое значение имеет закон больших чисел. Суть, которого состоит в том, что при изучении большой массы явлений случайные отклонения взаимно погашаются и выявляются закономерности, присущие совокупности в целом. Если для выявления закономерностей, присущих совокупности в целом изучается лишь часть её, то для оценки надежности полученных данных, размеров допускаемой погрешности исчисленных средних и относительных величин используется математическая теория вероятностей.

Таким образом, совокупность массовых наблюдений, группировка и исчисление обобщающих показателей составляют диалектический метод исследования статистики.

В процессе развития статистики как науки обособились в качестве самостоятельных дисциплин:

* общая теория статистики, которая освещает теорию статистической методологии, общую для всех отраслевых статистик;

* экономическая статистика, содержанием которой является раскрытие сущности и методологии исчисления показателей, используемых при статистическом изучении народного хозяйства в целом;

* отраслевые статистики, в которых освещаются сущность и методология показателей, используемых при изучении соответствующей отрасли.

Именно общая теория статистики освещает приёмы и методы сбора и обработки статистической информации с целью:

* изучения структуры совокупности и соотношения, отдельных её частей между собой;

* изучения особенностей распределения единиц совокупности по отдельным признакам;

* определения среднего значения того или иного признака и его вариации;

* изучения взаимосвязи между отдельными показателями, изучения динамики тех или иных показателей;

* изучение методов проведения статистического наблюдения и группировки и всё остальное связанное с данными процессами можно считать задачей науки «общая теория статистики».

Таким образом, общая теория статистики является методологической наукой освещающей приемы сбора и обработки информации с целью выявления различного рода статистических закономерностей применимых не только в общественных явлениях, но и других (естественных и пр.), где выводы строятся на основе массового наблюдения, где имеет место вариация признака у отдельных единиц наблюдения, где общие закономерности проявляются через взаимопогашение случайностей у отдельных единиц.

3. Организация статистики в России

3.1 Единая система учёта и статистики

В условиях современного экономически развитого общества система учёта и статистики требуют единства методологии и подхода к организации, поскольку учёт есть первооснова статистических исследований дающий цифровой материал для их осуществления.

Различают два вида учёта — бухгалтерский и оперативно-технический учёт.

Бухгалтерский учёт осуществляется на предприятиях и в организациях в целях изучения источников образования средств и их использования. Он показывает наличие, прирост или уменьшение хозяйственных средств, а также операции, которые могут получить денежное выражение.

Оперативно-технический учёт даёт сведения производственно-технического характера, отражающие сам ход производства и других явлений: об использовании рабочего времени, оборудования, изготовлении отдельных изделий, изменения численности и структуры населения и трудовых ресурсов и т.д.

3.2 Организация государственной статистики в России

В соответствии со ст. 71 Конституции Российской Федерации руководство статистикой в стране осуществляет Госкомстат как Федеральный орган исполнительной власти.

Госкомстат Российской Федерации, его органы в республиках, краях, областях, автономных областях и округах, в городах Москве и Санкт-Петербурге, других городах и районах, а также подведомственные им организации, учреждения и учебные заведения составляют единую систему государственной статистики страны.

Формы и методы сбора и обработки статистических данных, методология расчёта статистических показателей, установленные Госкомстатом, являются статистическими стандартами Российской Федерации. В основе деятельности Госкомстата лежат Федеральные статистические программы, которые финансируются из госбюджета. Все остальные исследования ведутся за счёт средств заказчиков.

В соответствии с положением о Государственном комитете Российской Федерации по статистике (Госкомстате России), которое было утверждено постановлением правительства № 834 от 9 июля 1994 г., его основными задачами являются:

· предоставление официальной статистической информации Президенту, правительству, Федеральному собранию Российской Федерации, федеральным органам исполнительной власти, общественности, международным органам;

· разработка научно обоснованной статистической методологии, соответствующей потребностям общества на современном этапе и международным стандартам;

· координация статистической деятельности в государстве;

· разработка экономико-статистической информации, её анализ, составление национальных счетов, проведение необходимых балансовых расчётов;

· гарантирование полноты и научной обоснованности официальной статистической информации, обеспечение равного доступа к её изучению всем пользователям.

Основные функции Госкомстата России состоят в следующем:

· организация проведения государственных статистических наблюдений по разработанным им или согласованным с ним программам, формам и методикам;

· обеспечение функционирования ЕГРПО (Единого государственного регистра предприятий и организаций);

· обеспечивать сбор, обработку, хранение и защиту статистической информации, соблюдение государственной и коммерческой тайны, необходимую конфиденциальность данных (конфиденциальный — секретный, доверительный);

· сопоставлять основные социально-экономические показатели России с аналогичными показателями других стран, совместно с Центробанком составлять платёжный баланс страны;

· проводить единую техническую политику в области сбора, обработки и передачи статистической информации, в разработке и формировании федеральных программ порученных Госкомстату;

· определять в рамках выделенных средств перечень важнейших научно-исследовательских работ;

· созывать в установленном порядке совещания по кругу проблем, входящих в компетенцию Госкомстата (т.е. в круг его полномочий и прав);

· Вносить в установленном порядке предложения по совершенствованию законодательства в области статистики.

источник

Позволяет характеризовать изучаемые явления и процессы при помощи статистических величин – абсолютных, относительных и средних. На этом этапе статистического исследования выявляются взаимосвязи и масштабы явлений, определяются закономерности их развития, даются прогнозные оценки.

Результаты статистического наблюдения регистрируются прежде всего в форме первичных абсолютных величин. Так, основная масса народнохозяйственных абсолютных показателей фиксируется в первичных учетных документах. Абсолютная величина отражает уровень развития явления.

В статистике все абсолютные величины являются именованными, измеряются в конкретных единицах и, в отличие от математического понятия абсолютной величины, могут быть как положительными, так и отрицательными (убытки, убыль, потери и т.п.).

Натуральные единицы измерения могут быть простыми (тонны, штуки, метры, литры) и сложными, являющимися комбинацией нескольких разноименных величин (грузооборот железнодорожного транспорта выражается в тонно-километрах, производство электроэнергии – в киловатт-часах). В статистике применяют и абсолютные показатели, выраженные в условно-натуральных единицах измерения (например, различные виды топлива пересчитываются в условное топливо).

Стоимостные единицы измерения используются, например, для выражения объема разнородной продукции в стоимостной (денежной) форме – рублях. При использовании стоимостных измерителей принимают во внимание изменения цен с течением времени. Этот недостаток стоимостных измерителей преодолевают применением «неизменных» или «сопоставимых» цен одного и того же периода.

В трудовых единицах измерения (человеко-днях, человеко-часах) учитываются общие затраты труда на предприятии, трудоемкость отдельных операций.

С точки зрения конкретного исследования совокупность абсолютных величин можно рассматривать как состоящую из показателей индивидуальных, характеризующих размер признака у отдельных единиц совокупности, и суммарных, характеризующих итоговое значение признака по определенной части совокупности.

Читайте также:  Географический язык какие анализы сдать

Поскольку абсолютные показатели – это основа всех форм учета и приемов количественного анализа, то следует разграничивать моментные и интервальные абсолютные величины. Первые показывают фактическое наличие или уровень явления на определенный момент, дату (например, наличие запасов материалов или оборотных средств, величина незавершенного производства, численность проживающих и т.д.). Вторые – итоговый накопленный результат за период в целом (объем произведенной продукции за месяц или год, прирост населения за определенный период, величина валового сбора зерна за год и за пятилетку и т.п.).

Сама по себе абсолютная величина не дает полного представления об изучаемом явлении, не показывает его структуру, соотношение между отдельными частями, развитие во времени. В ней не выявлены соотношения с другими абсолютными показателями. Эти функции выполняют определяемые на основе абсолютных величин относительные показатели.

Относительная величина в статистике – это обобщающий показатель, который дает числовую меру соотношения двух сопоставляемых абсолютных величин. Так как многие абсолютные величины взаимосвязаны, то и относительные величины одного типа в ряде случаев могут определяться через относительные величины другого типа.

Основное условие правильного расчета относительной величины – сопоставимость сравниваемых показателей и наличие реальных связей между изучаемыми явлениями. Таким образом, по способу получения относительные показатели – всегда величины производные, определяемые в форме коэффициентов, процентов, промилле и т.п. Однако нужно помнить, что этим безразмерным по форме показателям может быть, в сущности, приписана конкретная, и иногда довольно сложная, единица измерения. Так, например, относительные показатели естественного движения населения, относительная величина эффективности использования рабочего времени – это количество продукции в расчете на один отработанный человеко-час и т.д.

Средняя величина это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Остановимся на некоторых общих принципах применения средних величин.

1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.

3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.

4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

При изучении явления во времени перед исследователем встает проблема описания интенсивности изменения и расчета средних показателей динамики. Решается она путем построения соответствующих показателей. Для характеристики интенсивности изменения во времени такими показателями будут:

4) абсолютное значение одного процента прироста.

Каждый используемый метод позволяет понять, как и почему изменяется предмет исследования и что нужно сделать, чтобы решить поставленную вами проблему.

Ожидаемые результаты исследования заключаются в получении дополнительной информации и разработке мероприятий, которые будут способствовать решению поставленной проблемы и достижению цели исследования.

источник

Обобщающие статистические показатели отражают количественную сторону изучаемой совокупности общественных явлений. Они представляют собой статистическую величину, выраженную соответствующей единицей измерения. Обобщающие показатели характеризуют объемы изучаемых процессов, их уровни, соотношение и т. д.

В обобщающих показателях отражаются результаты познания количественной стороны изучаемых явлений.

Построение статистических показателей – это одна из самых важнейших задач статистической науки.

Статистический показатель – это количественная характеристика социально–экономических процессов и явлений.

Статистические показатели имеют взаимосвязанные количественную и качественную стороны. Качественная сторона статистического показателя отражается в его содержании безотносительно к конкретному размеру признака. Количественная сторона показателя – это его числовое значение.

Ряд функций, которые выполняют статистические показатели, – это прежде всего познавательная, управленческая (контрольно–организаторская) и стимулирующая функции.

Статистические показатели в познавательной функции характеризуют состояние и развитие исследуемых явлений, направление и интенсивность развития процессов, происходящих в обществе.

Обобщающие показатели – это база анализа и прогнозирования социально–экономического развития отдельных районов, областей. регионов и страны в целом. Количественная сторона явлений помогает проанализировать качественную сторону объекта и проникает в его сущность.

Управленческая функция является одним из самых важнейших элементов процесса управления на всех его уровнях.

Показатели, применяемые для изучения статистической практики и науки, подразделяют на группы по следующим признакам:

1) по сущности изучаемых явлений – это объемные, характеризующие размеры процессов, и качественные, которые выражают количественные соотношения, типичные свойства изучаемых совокупностей;

2) по степени агрегирования явлений – это индивидуальные, которые характеризуют единичные процессы, и обобщающие, отображающие совокупность в целом или ее части;

3) в зависимости от характера изучаемых явлений – интервальные и моментные. Данные, отображающие развитие явлений за определенные периоды времени, называют интервальными показателями, т. е. это статистический показатель, который характеризуют процесс изменения признаков. К моментным показателям относят показатели, которые отражают состояние явления на определенную дату (момент);

4) в зависимости от пространственной определенности различают показатели: федеральные – характеризуют изучаемый объект в целом по стране; региональные и местные – эти показатели относятся к определенной части территории или отдельному объекту;

5) в зависимости от свойств конкретных объектов и формы выражений статистические показатели делятся на относительные, абсолютные и средние, данные показатели будут рассмотрены ниже.

Для правильности отражения в статистических показателях изучаемых явлений или протекающих процессов необходимо выполнять следующие требования:

1) при построении статистических показателей необходимо опираться на положения экономической теории, статистическую методологию и опыт статистических работ управления торговлей; стремиться к тому, чтобы показатели выражали сущность изучаемых явлений и давали им точную количественную оценку;

2) необходимо получать полную статистическую информацию как по охвату единиц изучаемого объекта, так и по комплексному отображению всех сторон протекаемого статистического процесса;

3) обеспечивать сравнимость статистических показателей посредством единообразия исходных данных в пространственном и временном отношениях, а также применяя одинаковые единицы измерения;

4) степень точности получаемой информации, на основе которой будут исчисляться показатели, должна быть повышенной. Статистические показатели взаимозависимы, поэтому они рассматриваются в определенной связи, поскольку по одному показателю, характеризующему одну или несколько сторон статистического явления, нельзя составить полное представление об изучаемом процессе.

Для разработки системы показателей нужно глубоко изучить сущность анализируемого объекта и точно сформулировать целевую установку процесса исследования с выделением главного звена во всей изучаемой совокупности статистических показателей.

Систему статистических показателей образует совокупность взаимосвязанных показателей, которые имеют одноуровневую или многоуровневую структуру. Система статистических показателей нацелена на решение конкретной задачи.

Системы статистических показателей имеют разный масштаб Например, они характеризуют деятельность магазина, ассоциации, торговли района, области и т. д. Выделяются подсистемы показателей, с их помощью изучают определенные сферы деятельности предприятий отрасли, например, подсистема показателей по труду, материальным ресурсам, финансовым средствам и др.

Статистические данные, полученные при наблюдении, в результате сводки, группировки, почти всегда являются абсолютными величинами, т. е. величинами, которые выражены в натуральных единицах и получены в результате счета или непосредственного измерения. Абсолютные величины отражают численность единиц изучаемых совокупностей, размеры или уровни признаков зарегистрированных у отдельных единиц совокупности, и общий объем количественно выраженного признака как результат суммирования всех его отдельных значений.

Абсолютные величины имеют большое познавательное значение.

Абсолютные величины выражают размеры (уровни, объемы) социально–экономических явлений и процессов, их получают в результате статистического наблюдения и сводки исходной информации. Абсолютные величины используют в практике торговли, применяют в анализе и прогнозировании коммерческой деятельности. На основе этих величин в коммерческой деятельности составляют хозяйственные договоры, оценивают объем спроса на конкретные изделия и т. д. Абсолютными величинами измеряются все стороны общественной жизни.

Абсолютные величины по способу выражения размеров изучаемых процессов подразделяются на: индивидуальные и суммарные, они в свою очередь относятся к одному из видов обобщающих величин. Размеры количественных признаков у каждой статистической единицы характеризуют индивидуальные абсолютные величины, а также они являются базой при статистической сводке для соединения отдельных единиц статистического объекта в группы. На их основе получают абсолютные величины, в которых можно выделить показатели объема признаков совокупности и показатели численности совокупности. Если заняться исследованием развития торговли и ее состояния в определенном районе, то определенное количество фирм можно отнести к индивидуальным величинам, а объем товарооборота и число работников, работающих в фирме, относят к суммарным.

Абсолютные величины бывают экономически простыми (численность магазинов, работников) и экономически сложными (объем товарооборота, размер основных фондов).

Абсолютные величины – всегда числа именованные, имеют определенную размерность, единицы измерения. В статистической науке применяются натуральные, денежные (стоимостные) и трудовые единицы измерения.

Единицы измерения называют натуральными, если они будут соответствовать потребительским или природным свойствам предмета, товара и будут выражены в физических весах, мерах длины и т. п. В статистической практике натуральные единицы измерения могут быть составными. Применяют условно–натуральные единицы измерения при суммировании количества разнородных товаров, продуктов.

Трудовые единицы измерения (человеко–дни, человеко–часы) используются для определения затрат труда на производства продукции, выполнение работы и т.д.

Абсолютные величины измеряются в стоимостных единицах – ценах. В стоимостных единицах измеряют доходы населения, валовой выпуск продукции и др.

Одних абсолютных статистических величин недостаточно для характеристики изучаемых объектов. Чтобы отразить состояние рост, развитие явлений, соотношение их во времени и пространстве в статистике широко пользуются относительными величинами.

Показатели, полученные в результате сравнения абсолютных величин, в статистике называют относительными величинами.

Относительные величины дают представление, во сколько раз одна абсолютная величина больше другой или какую часть одна абсолютная величина составляет от другой, или сколько единиц одной совокупности приходится на единицу другой.

Относительные величины – это показатель, который представляет собой частное от деления двух статистических величин и характеризует количественное соотношение между ними.

Для расчета относительных величин в числитель ставится сравниваемый показатель, который будет отражать изучаемое явление а в знаменателе отражается показатель, с которым и будет производиться это сравнение, он является основанием или базой для сравнения. База сравнения – это своеобразный измеритель. Основание имеет результат отношения в зависимости от количественного (числового) значения, который выражается в: коэффициенте, процентах, промилле или децимилле.

Если база сравнения принимается за единицу, то относительная величина является коэффициентом и показывает, во сколько раз изучаемая величина больше основания. Если базу сравнения принять за 100%, то результат вычисления относительной величины будет выражен в процентах.

Если базу сравнения принимают за 1000, то результат сравнения выражается в промилле (%0). Относительные величины могут быть выражены и децимилле, если основание отношения равно 10 000.

Форма выражения зависит от: количественного соотношения сравниваемых величин; смыслового содержания полученного результата сравнения. Если сравниваемый показатель больше основания, тогда относительная величина выражается в коэффициенте или в проценте, но если сравниваемый показатель меньше основания, тогда относительную величину лучше выразить только в проценте.

Если показатели, которые сравниваются, являются сопоставимыми, то расчет относительных величин может быть правильным.

В зависимости от цели статистического исследования относительные величины подразделяются на следующие виды: выполнение договорных обязательств; относительные величины, характеризующие структуру совокупности; относительные величины динамики; сравнения; координации; относительные величины интенсивности.

Относительная величина выполнения договорных обязательств – это показатель, характеризующий уровень выполнения предприятием своих обязательств, предусмотренных в договорах.

Расчет показателя производится путем соотношения объема фактически выполненных обязательств и объема обязательств, предусмотренных в договоре. Выражается он в форме коэффициентов или в процентах.

Относительные показатели планового задания (ОППЗ) используются для перспективного планирования деятельности субъекта финансово–хозяйственной сферы и т.д.

ОППЗ рассчитывается следующей формулой:

Относительные величины структуры – это показатели, характеризующие долю от состава изучаемых совокупностей. Относительная величина структуры определяется отношением абсолютной величины отдельного элемента статистической совокупности к абсолютной величине всей совокупности, т. е. как отношение части к общему (целому), и характеризует удельный вес части в целом, в форме процента.

В анализе коммерческой деятельности торговли и сферы услуг относительные величины дают возможность изучить весь состав товарооборота по его ассортименту, состав работников фирмы – по определенным признакам (стажу работы, полу, возрасту), состав расходов предприятия и другие факторы, влияющие на коммерческую деятельность предприятия.

Относительные показатели структуры (ОПС) = уровень части совокупности / суммарный уровень совокупности в целом

Относительные величины динамики характеризуют изменение изучаемого явления во времени, выявляют направление развития, измеряют интенсивность развития. Рассчитывается относительная величина динамики как отношение уровня признака в определенный период или момент времени к уровню того же признака в предшествующий период или момент времени, т. е характеризует изменение уровня определенного явления во времени. Относительные величины динамики называются темпами роста:

Относительные величины сравнения характеризуют количественное соотношение одноименных показателей, относящихся к различным объектам статистического наблюдения.

Для сопоставления уровня цен на один и тот же товар, реализуемый через государственные магазины и на рынке, используются относительные величины сравнения. За базу сравнения принимается государственная цена. Относительные величины координации – это разновидность показателей сравнения. Они применяются для характеристики соотношения между отдельными частями статистической совокупности. Относительные величины координации характеризуют структуру изучаемой совокупности. Относительные величины интенсивности демонстрируют, насколько широко распространено исследуемое явление в определенной среде характеризуются соотношением разноименных и взаимосвязанных между собой абсолютных величин.

Именованные величины выражаются в относительных величинах интенсивности:

Относительная величина интенсивности = абсолютная величина изучаемого явления / абсолютная величина, характеризующая объем среды, в которой распространяется явление

Относительная величина демонстрирует, сколько единиц одной статистической совокупности приходится на единицу другой статистической совокупности.

Условием правильного использования обобщающих показателей является изучение абсолютных и относительных величин в их единстве. Комплексное использование абсолютных и относительных величин дает всестороннюю характеристику изучаемого явления.

Относительные показатели координации (ОПК) – это соотношение одной части совокупности к другой части этой же совокупности:

ОПК = уровень, характеризующий i – ую часть совокупности / уровень, характеризующий часть совокупности, выбранную в качестве базы сравнения

В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.

Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.

Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.

Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.

В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623—1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.

Применял средние и относительные величины английский ученый Г. Кинг (1648—1712) при анализе данных о населении Англии.

Теоретические разработки бельгийского статистика А. Кетле (1796—1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.

Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.

Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.

А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX—XX вв.

Известный русский статистик Ю. Э. Янсон (1835—1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.

Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837—1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии.

Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».

А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу.

с помощью немногих простых чисел. Статистические данные должны быть упрощены, сгруппированы и приведены к средним Эти взгляды: разделяли Р. Фишер (1890—1968 гг.), Дж. Юл (1871 – 1951 гг.), Фредерик С. Миллс (1892 г) и др.

В 30—е гг. XX в. и последующие годы средняя величина рассматривается как социально значимая характеристика, информативность которой зависит от однородности данных.

Виднейшие представители итальянской школы Р. Бенини (1862—1956 гг.) и К. Джини (1884—1965 гг.), считая статистику отраслью логики, расширили область применения статистической индукции, но познавательные принципы логики и статистики они связывали с природой изучаемых явлений, следуя традициям социологической трактовки статистики.

В работах К. Маркса и В. И. Ленина средним величинам отводится особая роль.

К. Маркс утверждал, что в средней величине погашаются индивидуальные отклонения от общего уровня и средний уровень становится обобщающей характеристикой массового явления Такой характеристикой массового явления средняя величина становится лишь при условии, если взято значительное число единиц и эти единицы качественно однородны. Маркс писал, чтобы находимая средняя величина была средней «…многих различных индивидуальных величин одного и того же вида».

Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.

Средние величины являются обобщающими показателями, в которых находят выражение действие общих условий, закономерность изучаемого явления.

Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.

Средняя величина абстрактна, так как характеризует значение абстрактной единицы.

От разнообразия признака у отдельных объектов абстрагируется средняя. Абстракция – ступень научного исследования. В средней величине осуществляется диалектическое единство отдельного и общего.

Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.

Средняя отображает что–то общее, которое складывается в определенном единичном объекте.

Для выявления закономерностей в массовых общественных процессах средняя величина имеет большое значение.

Отклонение индивидуального от общего – проявление процесса развития.

В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.

Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.

Объективное свойство статистического процесса или явления отражает средняя величина.

Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны. Средняя величина индивидуальных значений одного вида – продукт необходимости, который является результатом совокупного действия всех единиц совокупности, проявляющийся в массе повторяющихся случайностей.

Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.

Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.

Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.

В жизни происходит непрерывный процесс создания чего–то нового. Носителем нового качества являются единичные объекты, далее количество этих объектов возрастает, и новое становится массовым, типичным.

Средняя величина характеризует изучаемую совокупность только по одному признаку. Для полного и всестороннего представления изучаемой совокупности по ряду определенных признаков необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.

Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.

В изучении средних величин применяются следующие показатели и обозначения.

Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как х1 , х 2 , х 3 ,… х п ; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.

Средняя арифметическая

Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.

Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.

Формула средней арифметической взвешенной выглядит следующим образом:

Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.

Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).

Свойства средней арифметической:

1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если хi = уi+zi, то.

Данное свойство показывает в каких случаях можно суммировать средние величины.

2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону:

Это правило демонстрирует, что средняя является равнодействующей.

3) если все варианты ряда увеличить или уменьшить на одно и тоже число α, то средняя увеличится или уменьшится на это же число α:

4) если все варианты ряда увеличить или уменьшить в А раз, то средняя также увеличится или уменьшится в А раз:

5) пятое свойство средней показывает нам, что она не зависит от размеров весов, но зависит от соотношения между ними. В качестве весов могут быть взяты не только относительные, но и абсолютные величины.

Если все частоты ряда разделить или умножить на одно и тоже число d, то средняя не изменится.

Средняя гармоническая. Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.

Допустим, известны индивидуальные значения признака х и произведения х/, а частоты f неизвестны, тогда, чтобы рассчитать среднюю, обозначим произведение = х/; откуда:

Далее преобразуем формулу средней арифметической так, чтобы по существующим данным хи м исчислить среднюю. Выразив в формуле средней арифметической / через х и м, получим:

Средняя в этой форме называется средней гармонической взвешенной и обозначается х гарм. взв.

Соответственно, средняя гармоническая тождественна средней арифметической. Она применима, когда неизвестны действительные веса f, а известно произведение = z

Когда произведения одинаковы или равны единицы (м = 1) применяется средняя гармоническая простая, вычисляемая по формуле:

где х – отдельные варианты;

Средняя геометрическая

Если имеется n коэффициентов роста, то формула среднего коэффициента:

Это формула средней геометрической.

Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Если осреднению подлежат величины, выраженные в виде квадратных функций, применяется средняя квадратическая. Например, с помощью средней квадратической можно определить диаметры труб, колес и т. д.

Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.

Средняя квадратическая взвешенная равна:

Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.

Мода (Мо) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.

Мода представляет наиболее часто встречающееся или типичное значение.

Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.

В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).

В пределах интервала надо найти то значение признака, которое является модой.

где хо – нижняя граница модального интервала;

н – величина модального интервала;

– частота модального интервала;

—1 – частота интервала, предшествующего модальному;

+1 – частота интервала, следующего за модальным.

Мода зависит от величины групп, от точного положения границ групп.

Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).

Медиана (Ме – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.

Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.

Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.

Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:

где хме– нижняя граница медианного интервала;

iMe – величина медианного интервала;

f/2 – полусумма частот ряда;

SMe—1 – сумма накопленных частот, предшествующих медианному интервалу;

fMe – частота медианного интервала.

Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов (условий), которые по–разному сочетаются в каждом отдельном случае.

Колебания отдельных значений характеризуют показатели вариации.

Термин «вариация» произошел от лат. variatio – «изменение, колеблемость, различие». Под вариацией понимают количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.

Систематическая вариация помогает оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов.

Абсолютные и средние показатели вариации и способы их расчета

Для характеристики колеблемости признака используется ряд показателей, такие как размах вариации, определяемый как разность между наибольшим (х мах ) и наименьшим (х т щ) значениями вариантов:

Среднее линейное отклонение исчисляют для того, чтобы дать обобщающую характеристику распределению отклонений, которое учитывает различия всех единиц изучаемой статистической совокупности. Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней без учета знака этих отклонений:

На практике меру вариации более объективно отражает показатель дисперсии ( 2 – средний квадрат отклонений), определяемый как средняя из отклонений, возведенных в квадрат (х – х1)2 :

Корень квадратный из дисперсии 2 среднего квадрата отклонений представляет собой среднее квадратическое отклонение σ2 и σ– общепринятые меры вариации признака.

Среднее квадратическое отклонение – это мерило надежности средней.

Свойства дисперсии (доказываемые в математической статистике), которые позволяют упростить расчеты:

1) если из всех значений вариант отнять какое–то постоянное число А2 , то средний квадрат отклонений от этого не изменится;

2) если все значения вариант разделить на какое–то постоянное число А, то средний квадрат отклонений уменьшится от этого в А2 раз, а среднее квадратическое отклонение – в А раз.

3) если исчислить средний квадрат отклонений от любой величины А, которая в той или иной степени отличается от средней арифметической х, то он всегда будет больше среднего квадрата отклонений σ2 , исчисленного от средней арифметической.

Показатели относительного рассеивания

Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах, которые позволяют сравнивать характер рассеивания в различных распределениях. Расчет показателей меры относительного рассеивания осуществляют отношением абсолютного показателя рассеивания к средней арифметической и умножают на 100%. Виды дисперсий и закон сложения дисперсий При помощи группировок, подразделив изучаемую совокупность на группы, однородные по признаку–фактору, можно определить три показателя колеблемости признака в совокупности: общую дисперсию, межгрупповую дисперсию и среднюю из внут–ригрупповых дисперсий.

Общая дисперсия характеризует вариацию признака, зависящую от всех условий в изучаемой статистической совокупности. Исчисляется общая дисперсия по формуле:

где х0 – общая средняя для всей изучаемой совокупности.

С помощью рядов распределения решается важнейшая задача статистики – характеристика и измерение показателей колеблемости для варьирующих признаков.

В вариационных рядах существует определенная связь в изменении частот и значений варьирующего признака: с увеличением варьирующего признака величина частот вначале возрастает до определенной величины, а затем уменьшается. Такого рода изменения называются закономерностями распределения.

Положение кривой распределения на оси абсцисс и ее рассеивание являются двумя наиболее существенными свойствами кривой. Важные свойства кривой распределения – это степень ее асимметрии, высоко–или низковершинность, которые в совокупности характеризуют форму или тип кривой распределения.

Важная задача – это определение формы кривой, так как статистический материал в обычных условиях дает по определенному признаку характерную, типичную для него кривую распределения. Всякое искажение формы кривой – это нарушение или изменение нормальных условий возникновения материала: появление двухвершинной или асимметричной кривой говорит о разнотипном составе совокупности и о необходимости перегруппировки данных в целях выделения более однородных групп.

Характер общего распределения предполагает оценку степени его однородности и вычисление показателей асимметрии и эксцесса.

Симметричным называют распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой.

Для симметричных распределений средняя арифметическая мода и медиана равны между собой. Простейший показатель асимметрии основан на соотношении показателей центра распределения.

Наиболее точным и распространенным является показатель основанный на определении центрального момента третьего порядка.

Общим является нормальное распределение, которое может быть представлено графически в виде симметричной куполообразной кривой. В сущности, распределения редко бывают точно асимметричны, поэтому нормальная кривая представляет собой идеализированную форму распределения.

Читайте также:  Как сделать анализ анкетирования пример

Куполообразная форма кривой показывает, что большинство значений концентрируется вокруг центра измерения, и в действительно симметричном одновершинном распределении средняя, мода и медиана совпадут.

Закон нормального распределения предполагает, что отклонение от среднего значения является результатом большого количества мелких отклонений, что позитивные и негативные отклонения равновероятны и что наиболее вероятным значением всех в равной мере надежных измерений является их арифметическая средняя.

Общие условия вариации признака отражены в характере и типе закономерностей распределения: сущность явления и те его свойства и условия, которые определяют изменчивость варьирующего признака.

Теоретической кривой распределения называют кривую распределения, которая выражает общую закономерность данного типа.

Огромное значение в теории выборочного метода имеет нормальная кривая, так как стандартные средние отклонения, рассчитанные по случайным выборкам, тяготеют к нормальным в случае больших размеров выборок, если даже совокупность не является нормально распределенной.

В кривой нормального распределения отражается закономерность, которая возникает при взаимодействии множества случайных причин.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности).Т. Б. Линдбергом предложен такой показатель:

где п – доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту и другую сторону от х.

Эксцесс – выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения.

Оценка показателей асимметрии и эксцесса дает возможность сделать вывод о том, можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения.

Статистические исследования очень трудоемки и дороги, поэтому возникла мысль о замене сплошного наблюдения выборочным.

Основная цель несплошного наблюдения состоит в получении характеристик изучаемой статистической совокупности по обследованной ее части.

Выборочное наблюдение – это метод статистического исследования, при котором обобщающие показатели совокупности устанавливаются только по отдельно взятой части на основе положений случайного отбора.

При выборочном методе изучению подвергается только некоторая часть изучаемой совокупности, при этом подлежащая изучению статистическая совокупность называется генеральной совокупностью.

Выборочной совокупностью или просто выборкой можно называть отобранную из генеральной совокупности часть единиц, которая будет подвергаться статистическому исследованию.

Значение выборочного метода: при минимальной численности исследуемых единиц проведение статистического исследования будет происходить в более короткие промежутки времени и с наименьшими затратами средств и труда.

В генеральной совокупности доля единиц, которая обладает изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака – это генеральная средняя (обозначается х).

В выборочной совокупности долю изучаемого признака называют выборочной долей, или частью (обозначается w), средняя величина в выборке – это выборочная средняя.

Если в период обследования будут соблюдены все правила его научной организации, то выборочный метод даст довольно точны результаты, и поэтому данный метод целесообразно применять для проверки данных сплошного наблюдения.

Этот метод получил широкое распространение в государственной и вневедомственной статистике, потому что при исследовании минимальной численности изучаемых единиц позволяет тщательно и точно провести исследование.

Изучаемая статистическая совокупность состоит из единиц с варьирующими признаками. Состав выборочной совокупности может отличаться от состава генеральной совокупности, это расхождение между характеристиками выборки и генеральной совокупности составляет ошибку выборки.

Ошибки, свойственные выборочному наблюдению, характеризуют размер расхождения между данными выборочного наблюдения и всей совокупности. Ошибки, возникающие в ходе выборочного наблюдения, называются ошибками репрезентативности и делятся на случайные и систематические.

Если выборочная совокупность недостаточно точно воспроизводит всю совокупность из–за несплошного характера наблюдения, то это называют случайными ошибками, и их размеры определяются с достаточной точностью на основании закона больших чисел и теории вероятностей.

Систематические ошибки возникают в результате нарушения принципа случайности отбора единиц совокупности для наблюдения.

Размер ошибки выборки и методы ее определения зависят от вида и схемы отбора.

Различают четыре вида отбора совокупности единиц наблюдения:

Случайный отбор – наиболее распространенный способ отбора в случайной выборке, его еще называют методом жеребьевки, при нем на каждую единицу статистической совокупности заготовляется билет с порядковым номером.

Далее в случайном порядке отбирается необходимое количество единиц статистической совокупности. При этих условиях каждая из них имеет одинаковую вероятность попасть в выборку, например тиражи выигрышей, когда из общего количества выпущенных билетов в случайном порядке наугад отбирается определенная часть номеров, на которые приходятся выигрыши. При этом всем номерам обеспечивается равная возможность попасть в выборку.

Механический отбор – это способ, когда вся совокупность разбивается на однородные по объему группы по случайному признаку, потом из каждой группы берется только одна единица Все единицы изучаемой статистической совокупности предварительно располагаются в определенном порядке, но в зависимости от объема выборки механически через определенный интервал отбирается необходимое количество единиц.

Типический отбор – это способ, при котором исследуемая статистическая совокупность разбивается по существенному, типическому признаку на качественно однородные, однотипные группы, затем из каждой этой группы случайным способом отбирается определенное количество единиц, пропорциональное удельному весу группы во всей совокупности.

Типический отбор дает более точные результаты, так как при нем в выборку попадают представители всех типических групп.

Серийный (гнездовой) отбор. Отбору подлежат целые группы (серии, гнезда), отобранные случайным или механическим способом. По каждой такой группе, серии проводится сплошное наблюдение, а результаты переносятся на всю совокупность.

Точность выборки зависит и от схемы отбора. Выборка может быть проведена по схеме повторного и бесповторного отбора.

Повторный отбор. Каждая отобранная единица или серия возвращается во всю совокупность и может вновь попасть в выборку Это так называемая схема возвращенного шара.

Бесповторный отбор. Каждая обследованная единица изымается и не возвращается в совокупность, поэтому она не попадает в повторное обследование. Эта схема получила название невозвращенного шара.

Бесповторный отбор дает более точные результаты, потому что при одном и том же объеме выборки наблюдение охватывает большее количество единиц изучаемой совокупности.

Комбинированный отбор может проходить одну или несколько ступеней. Выборка называется одноступенчатой, если отобранные однажды единицы совокупности подвергаются изучению.

Выборка называется многоступенчатой, если отбор совокупности проходит по ступеням, последовательным стадиям, причем каждая ступень, стадия отбора имеет свою единицу отбора.

Многофазная выборка – на всех ступенях выборки сохраняется одна и та же единица отбора, но проводится несколько стадий, фаз выборочных обследований, которые различаются между собой широтой программы обследования и объемом выборки.

Характеристики параметров генеральной и выборочной совокупностей обозначаются следующими символами:

N – объем генеральной совокупности;

σ2 – генеральная дисперсия (дисперсия признака в генеральной совокупности);

σ2 – выборочная дисперсия того же признака;

σ– среднее квадратическое отклонение в генеральной совокупности;

σ– среднее квадратическое отклонение в выборке.

Каждая единица при выборочном наблюдении должна иметь равную с другими возможность быть отобранной – это является основой собственнослучайной выборки.

Собственнослучайная выборка – это отбор единиц из всей генеральной совокупности посредством жеребьевки или другим подобным способом.

Принципом случайности является то, что на включение или исключение объекта из выборки не может повлиять любой фактор, кроме случая.

Доля выборки – это отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

Собственнослучайный отбор в чистом виде является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного статистического наблюдения.

Два основных вида обобщающих показателей, которые используют в выборочном методе – это средняя величина количественного признака и относительная величина альтернативного признака.

Выборочная доля (w), или частность, определяется отношением числа единиц, обладающих изучаемым признаком м, к общему числу единиц выборочной совокупности (n):

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки, ее еще называют ошибкой репрезентативности, представляет собой разность соответствующих выборочных и генеральных характеристик:

1) для средней количественного признака:

2) для доли (альтернативного признака):

Только выборочным наблюдениям присуща ошибка выборки.

Выборочная средняя и выборочная доля – это случайные величины, принимающие различные значения в зависимости от единиц изучаемой статистической совокупности, которые попали в выборку. Соответственно ошибки выборки – тоже случайные величины и также могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок – среднюю ошибку выборки.

Средняя ошибка выборки определяется объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, все более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки зависит от степени варьирования изучаемого признака, в свою очередь степень варьирования характеризуется дисперсией σ2 или w(l – w) – для альтернативного признака. Чем меньше вариация признака и дисперсия, тем меньше средняя ошибка выборки, и наоборот.

При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

1) для средней количественного признака:

где σ2 – средняя величина дисперсии количественного признака.

2) для доли (альтернативного признака):

Так как дисперсия признака в генеральной совокупности σ2 точно неизвестна, на практике пользуются значением дисперсии S2 , рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Формулы средней ошибки выборки при случайном повторном отборе следующие. Для средней величины количественного признака: генеральная дисперсия выражается через выборную следующим соотношением:

где S2 – значение дисперсии.

Механическая выборка – это отбор единиц в выборочную совокупность из генеральной, которая разбита по нейтральному признаку на равные группы; производится так, что из каждой такой группы в выборку отбирается лишь одна единица.

При механическом отборе единицы изучаемой статистической совокупности предварительно располагают в определенном порядке, после чего отбирают заданное число единиц механически через определенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки.

При достаточно большой совокупности механический отбор по точности результатов близок к собственнослучайному Поэтому для определения средней ошибки механической выборки используют формулы собственнослучайной бесповторной выборки.

Для отбора единиц из неоднородной совокупности применяется так называемая типическая выборка, используется, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, от которых зависят изучаемые показатели.

Затем из каждой типической группы собственнослучайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении сложных статистических совокупностей.

Типическая выборка дает более точные результаты. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представительство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Поэтому при определении средней ошибки типической выборки в качестве показателя вариации выступает средняя из внутригрупповых дисперсий.

Серийная выборка предполагает случайный отбор из генеральной совокупности равновеликих групп для того, чтобы в таких группах подвергать наблюдению все без исключения единицы.

Поскольку внутри групп (серий) обследуются все без исключения единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Характеристика генеральной совокупности на основе выборочных результатов – это конечная цель выборочного наблюдения.

Выборочный метод применяется для получения характеристик генеральной совокупности по определенным показателям выборки. В зависимости от целей исследования это осуществляется прямым пересчетом показателей выборки для генеральной совокупности или методом расчета поправочных коэффициентов.

Способ прямого пересчета в том, что при нем показатели выборочной доли w или средней х распространяются на генеральную совокупность с учетом ошибки выборки.

Способ поправочных коэффициентов применяется, когда целью выборочного метода является уточнение результатов сплошного учета. Данный способ используется при уточнении данных ежегодных переписей скота у населения.

Все процессы и явления, протекающие в общественной жизни человека, являются предметом изучения статистической науки они находятся в постоянном движении и изменении.

Динамическими рядами в статистической науке называют статистические данные, характеризующие изменения явлений во времени, они строятся для выявления и изучения возникающих закономерностей в развитии явлений в различных сферах (например, экономической, политической и культурной) жизни общества.

В рядах динамики имеются два главных элемента:

2) уровни развития изучаемого явления (у). В рядах динамики в качестве показателей времени могут выступать определенные даты времени или отдельные периоды.

Уровни, образующие ряды динамики, определяют количественную оценку развития во времени исследуемого явления или процесса, они могут выражаться относительными, абсолютными либо средними величинами. Уровни рядов динамики в зависимости от характера исследуемого явления могут относиться к определенным датам времени или к отдельным периодам.

Динамический ряд состоит из сопоставимых статистических показателей. Для правильности построения динамических рядов необходимо, чтобы состав исследуемой статистической совокупности относился к одной и той же территории, к одному и тому же кругу объектов и был рассчитан по одной и той же методологии.

Данные динамического ряда должны выражаться в одних и тех же единицах измерения, а промежутки времени между значениями ряда должны быть по возможности одинаковыми.

Ряды динамики подразделяются на моментные, интервальные и ряды средних величин.

Моментные ряды динамики отображают состояние исследуемых процессов на определенные даты времени.

Интервальные ряды динамики отображают итоги развития или функционирования исследуемых процессов за отдельные периоды времени.

Вычисление среднего динамического ряда. Для характеристики процесса за определенный период рассчитывают средний уровень из всех членов динамического ряда.

Способы его расчета зависят от вида динамического ряда. Для интервальных рядов средняя рассчитывается по формуле средней арифметической, причем при равных интервалах применяется средняя арифметическая простая, а при неравных – средняя арифметическая взвешенная.

Для нахождения средних значений моментного ряда применяют среднюю хронологическую:

Средняя хронологическая моментного ряда равна сумме всех уровней ряда, поделенной на число членов ряда без одного, причем первый и последний члены ряда берутся в половинном размере.

Если интервалы между периодами не равны, то применяется средняя арифметическая взвешенная, а в качестве весов берутся отрезки времени между датами, к которым относятся парные средние смежных значений уровня.

Для анализа динамических рядов в статистике используются такие показатели, как уровень ряда, средний уровень, абсолютный прирост, темп роста, коэффициент роста, темп прироста, коэффициент опережения, абсолютное значение одного процента прироста.

Уровнем ряда является абсолютная величина каждого члена динамического ряда. Все уровни ряда характеризуют его динамику. Различают начальный, конечный и средний уровни ряда. Начальный уровень – величина первого члена ряда. Конечный уровень – величина последнего члена ряда, средний уровень – средняя из всех значений динамического ряда.

Абсолютный прирост – это один из самых важных статистических показателей, он характеризует размер увеличения или уменьшения изучаемого явления за определенный период времени определяется как разность между данным уровнем и предыдущим или первоначальным. Уровень, который сравнивается, называется текущим, а уровень, с которым делается сопоставление, именуется базисным, так как он является базой для сравнения. Если каждый уровень ряда сравнивается с предыдущим, то получают цепные показатели, а если все уровни ряда сравниваются с одним и тем же первоначальным уровнем, то полученные показатели называются базисными.

Для динамического ряда у0 , у1 , у2 ,…, уn—1, уn, состоящего из n + 1 уровней, абсолютный прирост определяется по формулам:

где уi – текущий уровень ряда;

у – начальный уровень ряда.

Формула среднего абсолютного прироста:

где Δу – средний абсолютный прирост;

уn – конечный уровень ряда;

у – начальный уровень ряда.

Вычисляют показатели темпа роста и темпа прироста. Темп роста является самым распространенным статистическим показателем, который характеризует отношение данного уровня статистического процесса к предыдущему или начальному, выраженное в процентах. Темпы роста, вычисленные как отношение данного уровня к предыдущему, называются цепными а к начальному – базисными.

Темпы роста вычисляются по формулам:

где уi – текущий уровень ряда;

у – начальный уровень ряда.

Если у темпов роста база сравнения принимается за 1, то полученные статистические показатели называются коэффициентами роста.

Темпом прироста называется отношение абсолютного прироста к предыдущему или начальному уровню, выраженное в процентах. Темп прироста можно рассчитать по данным о темпе роста. Для этого надо от темпа роста отнять 100 или от коэффициента роста – 1, в последнем случае получим коэффициент прироста Кпр.

Темпы прироста рассчитываются по следующим формулам:

1) цепной: Тпр. = (у – уi—1); уi—1 = Тр.ц. – 100 или (Кр.ц. – 1) х 100;

2) базисный: Тпр. = (уi – у0 ); у0 = Тр.б. – 100 или (Кр.б. – 1) х 100.

Для характеристики темпов роста и прироста в среднем за весь период рассчитывают средний темп роста и прироста. Средний темп (коэффициент) роста определяется по формуле средней геометрической, когда средний темп роста вычисляется по абсолютным данным первого и последнего членов динамического ряда, применяется следующая формула средней геометрической:

где у1 – начальный уровень;

Если имеются цепные коэффициенты роста, то средний коэффициент роста определяется по формуле:

Коэффициент опережения – это отношение базисных темпов роста двух динамических рядов за одинаковые отрезки времени Обозначив коэффициент опережения Коп, базисные коэффициенты роста первого ряда динамики – через К1 , второго – К11 , Тогда:

Данный коэффициент показывает, во сколько раз будет быстрее расти уровень одного ряда динамики по сравнению с другим Отношение абсолютного прироста к темпу прироста представляет собой абсолютное значение одного процента по формуле:

А% = Δ (абсолютный прирост) / Тпр.

Интерполяция и экстраполяция

Для решения неизвестных промежуточных значений динамического ряда применяется способ интерполяции.

Интерполяция – способ определения неизвестных промежуточных значений динамического ряда.

Интерполяция заключается по существу в приближенном отражении сложившейся закономерности внутри определенного отрезка времени – в отличие от экстраполяции, которая требует выхода за пределы этого отрезка времени.

Экстраполяция – метод определения количественных характеристик для совокупностей и явлений, не подвергшихся наблюдению, путем распространения на них результатов, полученных из наблюдения над аналогичными совокупностями за прошедшее время, на будущее и т. д.

Средний уровень ряда динамики характеризует типичную величину абсолютных уровней.

Средний уровень у в интервальных рядах динамики вычисляется с помощью деления суммы уровней у ; на их число n.

В моментном ряду динамики с равностоящими датами времени уровень будет определяться следующим образом:

В моментном ряду динамики с неравностоящими датами средний уровень определяется:

Характеристика обобщающих индивидуальных абсолютных приростов ряда динамики называется средним абсолютным приростом.

Средний абсолютный прирост у определяется так: сумма цепных абсолютных приростов n) делится на их число (n):

Средний абсолютный прирост также может определяться по абсолютным рядам динамики, для этого определяется разность между конечным уп и базисным у уровнями изучаемого периода, которая делится на м – 1 субпериодов.

Показатель среднего абсолютного прироста определяют по формуле:

Средний темп роста р) – это индивидуальные темпы роста ряда динамики, которые имеют обобщающую характеристику, ее формула:

Средний темп роста, который определяется по абсолютным уровням динамики, выглядит следующим образом:

На основе взаимосвязи между базисными и цепными темпами роста средний темп роста определяем по формуле:

Средний темп прироста Тп находится на основании взаимосвязи между темпами роста и прироста. Если существуют сведения о средних темпах роста Т, то для получения средних темпов прироста Тп используется зависимость:

Особым видом относительных величин являются индексы. Индекс (Index) означает указатель, показатель. Особенности индексов в том, что:

1) с помощью индексов одним числом можно выразить соотношение разнородных явлений, показатели которых не могут быть непосредственно суммируемыми. Посредством индекса можно установить процент выполнения плана по каждому отдельному виду продукции, а также средний процент выполнения плана по всей продукции коммерческого предприятия, который выпускает различные виды продукции;

2) с помощью индексов можно характеризовать степень выполнения плана и степень изменения явлений во времени и соотношение величин явлений в пространстве; посредством экономических индексов можно выразить задание по плану.

В статистике индекс – это относительная величина, характеризующая изменения во времени и в пространстве уровня изучаемого общественного явления (процесса), или степень выполнения плана.

По степени охвата различают два вида индексов: индивидуальные и общие.

Индивидуальные индексы характеризуют соотношение отдельных элементов совокупности.

Примером индивидуальных индексов может быть процент выполнения плана или динамика выпуска одного вида продукции, процент выполнения плана или динамика себестоимости одного вида продукции или соотношение выпуска одного вида продукции за один и тот же период в разных областях.

Индивидуальный индекс обозначается буквой Он определяется методом сопоставления двух величин, характеризующих уровень исследуемого статистического процесса или явления во времени или в пространстве, т. е. за два сравниваемых периода Период (уровень которого сравнивается) называется отчетным. или текущим, периодом и обозначается подстрочным знаком «I» а период, с уровнем которого проводится сравнение, называется базисным и обозначается подстрочным знаком «О» или «ря», если при внутрифирменном планировании сравнение проводится с планом. Если изменение явлений изучается за ряд периодов то каждый период обозначается соответственно подстрочным знаком «О», «1», «2», «3» и т. д.

В статистике количество обозначают буквой «q», цену – «р». себестоимость – «z», затраты времени на производство единицы продукции – «т».

Индивидуальные индексы выражаются следующим образом:

1) индекс физического объема продукции:

где q1 и q0 – количество произведенной продукции в отчетном и базисном периодах. Данный индекс характеризует изменение физического объема продукции во времени, в пространстве, если сравнивать производство одного и того же вида продукции за один и тот же период времени, но по разным объектам (заводам, территориям и т. д.), и плана, если фактический выпуск сравнивать с плановым заданием;

где р1 и р0 – цена единицы продукции в отчетном и базисном периодах.

Индекс себестоимости:

где z1 и z – себестоимость единицы продукции в отчетном и базисном периодах. Индекс трудоемкости:

где т1 и т – затраты времени в отчетном и базисном периодах на производство единицы продукции.

Изменение объема реализации товара в стоимостном выражении отражает индивидуальный индекс товарооборота:

Приведенные выше индексы: цен, физического объема и товарооборота взаимосвязаны между собой:

Эта взаимосвязь показывает, что изменение товарооборота складывается под воздействием динамики цены и изменения объема продажи данного товара.

Индивидуальные индексы по существу – это относительные величины динамики, выполнения плана или сравнения. Индекс как относительный показатель выражается в виде коэффициентов, когда база для сравнения принимается за единицу, и в процентах, когда база для сравнения принимается за 100.

Базисные и цепные индексы

Для определения статистических индексов нужно иметь данные за два периода или два сравниваемых уровня.

Если существуют данные за определенный ряд периодов или уровней, то в качестве базы для сравнения можно принять один и тот же начальный уровень или уровень предыдущего периода. В первом случае получим индексы с постоянной базой – базисные, а во втором – индексы с переменной базой – цепные.

В экономическом анализе базисные и цепные индексы обладают определенными значениями.

Базисные экономические индексы характеризуют изменение статистических процессов за длительный период времени по отношению к одной отправной точке, но если возникнет необходимость следить за текущими изменениями статистического процесса, то применяются цепные индексы.

Если на основе базисных и цепных индексов исследуется один и тот же период, то это обозначает, что между ними есть взаимосвязь – это произведение цепных индексов, равное базисному Такая взаимосвязь принесет возможность вычислить базисные индексы по данным цепных индексов, и наоборот.

Общие индексы

Общие индексы характеризуют соотношение совокупности статистических процессов или явлений, состоящей из разнородных, непосредственно несоизмеримых элементов. Для определения общей стоимости различных видов продукции в качестве со–измерителя используется обычно цена за единицу продукции, для определения общей себестоимости или производственных затрат – себестоимость единицы продукции, общих затрат труда – затраты труда на производство единицы продукции и т. д.

Общее изменение товарооборота от стоимости проданных товаров можно определять, сопоставив общую стоимость проданных товаров в отчетном периоде по ценам отчетного периода с общей стоимостью проданных товаров в базисном периоде по ценам базисного периода.

Формула общего индекса товарооборота:

Аналогично индексу товарооборота рассчитываются индексы продукции, потребления и т. д.

Приведенная выше формула индекса товарооборота называется агрегатной (от лат. aggrega – «присоединяю»). Агрегатными называются индексы, числители и знаменатели которых представляют собой суммы, произведения или суммы произведений уровней изучаемого статистического явления. Агрегатная формула индекса – основная и наиболее распространенная формула экономических ин.

дексов. Агрегатная формула индекса показывает относительное изменение исследуемого экономического процесса и абсолютные размеры этого изменения.

Расчет агрегатного индекса цен по данной формуле был предложен немецким экономистом Г. Пааше, поэтому его принято называть индексом Пааше.

Агрегатная формула индекса товарооборота показывает, что его величина зависит от двух явлений, от двух переменных величин: физического объема товарооборота, т. е. количества проданных товаров, и цены за каждую единицу реализованных товаров. Чтобы выявить влияние каждой переменной в отдельности, следует влияние одной из них исключить, т. е. принять ее условно в качестве постоянной, неизменной величины на уровне отчетного или базисного периода. Вопрос о том, какой период принять в качестве постоянной величины, рассмотрим на примере индекса цен и индекса физического объема товарооборота.

Агрегатный индекс цен. Общее изменение цен можно определить, если считать постоянной величиной количество реализованных товаров за отчетный или базисный период. Если для получения индекса цен принимать в качестве весов данные о количестве реализованных товаров за отчетный период, можно получить следующую формулу агрегатного индекса цен:

где р1 и р – единицы реализованных товаров в отчетном и базисном периодах;

q1 – количество реализованных товаров в отчетном периоде.

Если примем в качестве весов данные о количестве реализованных товаров в базисном периоде, то формула агрегатного индекса цен примет вид:

Полученные формулы агрегатных индексов цен с отчетными и базисными весами не идентичны.

Величина индекса зависит от индексируемых показателей, т. е от величин, изменения которых нам нужно определить, и от сомножителей, которые берутся в качестве весов, а в зависимости от данных, которые были взяты в качестве весов – это данные базисного или отчетного периодов, получают два разных индекса.

Первый индекс показывает изменение цен отчетного периода по сравнению с базисным по продукции, проданной в отчетном периоде, и фактическую экономию от снижения цен.

Другой индекс показывает, насколько поменялись цены в отчетном периоде по сопоставлении с базисными, но только по продукции, которая была реализована в базисном периоде, и экономию, которую можно было получить в результате снижения цен.

Абсолютная фактическая экономия от снижения цен в отчетном периоде определяется следующим образом:

Абсолютная условная экономия в базисном периоде:

Для вычисления индекса цен необходимо сопоставить стоимость товаров, реализованных в отчетном периоде по ценам отчетного периода, со стоимостью этих же товаров, но по ценам базисного периода.

Агрегатный индекс цен представляет собой дробь, числитель и знаменатель которой состоят из двух сомножителей. Один из них является переменной индексируемой величиной (р1 и р0 ). а второй принимается условно в качестве постоянной величины – веса индекса (q1).

Агрегатный индекс физического объема товарооборота

Индекс физического объема товарооборота представляет собой изменение физического объема в отчетном периоде по соотнесению с базисным. Чтобы агрегатный индекс показывал лишь изменение физического объема товарооборота, в качестве весов берутся неизменные цены базисного и отчетного периодов.

Неизменные цены всегда только цены базисного периода. Применение в качестве весов неизменных цен дает возможность получить правильное представление о динамике физического объема товарооборота.

В индексе физического объема сомножитель индексируемого показателя берется на уровне базисного периода.

Формула агрегатного индекса физического объема продукции:

где Σq1р0 – стоимость продукции отчетного периода по ценам базисного;

Σqр0 – стоимость продукции базисного периода по ценам того же периода.

Абсолютное изменение физического объема вычисляется как разность между числителем и знаменателем индекса Σq1р0 – Σqр

Постоянные и переменные веса агрегатных индексов

Если индексы вычисляются за несколько периодов, то для всех них могут быть приняты одни и те же веса – индексы с постоянными весами, или же для каждого периода свои веса – индексы с переменными весами.

Теоретически возможны четыре типа индексов.

1. Общие базисные индексы цен с постоянными (базисными) весами:

2. Общие базисные индексы цен с переменными (отчетными) весами:

3. Общие цепные индексы цен с постоянными весами:

4. Общие цепные индексы цен с переменными весами:

Эти индексы получены путем сопоставления цен каждого последующего периода с предыдущим, но взвешенных в каждом случае на количество товаров отчетного периода.

В этих индексах отражается как изменение цен за ряд последовательных периодов, так и изменение структуры реализованных товаров.

Для характеристики изменения цен по сравнению с начальным периодом без учета изменений в структуре произведенных товаров применяют общие базисные индексы с постоянными весами, в тех же целях, но с учетом изменения структуры – базисные индексы с переменными весами. Для определения изменения цен каждого периода по сравнению с предыдущим без учета изменений в структуре проданных товаров применяют цепные индексы с постоянными весами, с учетом изменений в структуре – цепные индексы с переменными весами.

Выбор периода взвешивания индексов зависит от того, какие индексы вычисляются: индексы количественных (объемных) или качественных показателей.

Рассмотрим некоторые из агрегатных индексов.

1. Индекс себестоимости продукции показывает, во сколько раз себестоимость в отчетном периоде в среднем выше или ниже базисной или плановой себестоимости, а также абсолютный размер экономии или перерасхода в результате изменения себестоимости. Индекс себестоимости – это индекс качественных показате.

лей и исчисляется по весам (объему) продукции отчетного периода:

где z1, – себестоимость единицы продукции в отчетном периоде;

z0 – себестоимость единицы продукции в базисном (или плановом) периоде;

q1 – количество продукции в отчетном периоде.

2. Индекс производительности труда. Производительность труда определяется количеством продукции, произведенной в единицу времени, или затратами рабочего времени на производство единицы продукции. Для определения изменения производительности труда в отчетном периоде по сравнению с базисным нужно затраты рабочего времени на производство единицы продукции в базисном периоде ) разделить на затраты рабочего времени на производство единицы продукции в отчетном периоде.

3. Индивидуальный индекс производительности труда равен:

Для построения агрегатного индекса производительности труда необходимо затраты рабочего времени на производство одной единицы продукции взвесить на количество продукции, произведенной в отчетном периоде:

где т1q1 – фактические затраты времени на производство всей продукции в отчетном периоде;

тq1 показывает, сколько времени потребовалось затратить на производство всей продукции отчетного периода в базисном периоде.

Агрегатный индекс производительности труда рассчитывается по объему продукции отчетного периода.

4. Индекс трудоемкости характеризует модификацию трудоемкости единицы продукции в отчетном периоде по сопоставлению с базисным. Величина индекса трудоемкости обратно пропорциональна величине индекса производительности труда, вычисленной по затратам времени на производство единицы продукции. Формула индивидуального индекса:

Индекс трудоемкости – это индекс качественных показателей, и рассчитывается он также по весам отчетного периода.

5. Индекс выполнения плана. При его вычислении фактические данные сопоставляются с плановыми, причем весами индекса могут быть показатели плановые и фактические.

6. Среднеарифметический и среднегармонический индексы. Агрегатные индексы цен, физического объема товарооборота.

и другие могут быть рассчитаны, если известны индексируемые величины и веса, т. е. р и q. Допустим, что имеется произведение pq и индивидуальные индексы. Возникает проблема построения средних индексов, идентичных агрегатным, путем осреднения индивидуальных индексов. Эта задача решается преобразованием агрегатного индекса в среднеарифметический и среднегармони–ческий индексы. Преобразование агрегатного индекса в среднеарифметический можно рассмотреть на примере агрегатного индекса физического объема товарооборота. В данном случае индивидуальные индексы должны быть взвешены на базисные соизмерители. Из индивидуального индекса физического объема товарооборота iq = q1 / q0 следует, что q1 = iq / q0 .

Читайте также:  Как делать анализ на английском

Если заменить q 1 в числителе агрегатного индекса физического объема товарооборота Iq = Σq1Р0 / Σq0Р0 на iqq0 , то получим iq = Σiqq0р0 / Σq0р0.

Это среднеарифметический индекс физического объема товарооборота.

Но если не известны отдельные значения q1 и р1 , а дано их произведение q1р1 – товарооборот отчетного периода и индивидуальные индексы цен iр = р1 / р0 , и сводный индекс рассчитывается с отчетными весами, то применяется среднегармонический индекс цен. Необходимо, чтобы индивидуальные индексы были взвешены так, чтобы среднегармонический индекс совпал с агрегатным. Из формулы iр = р1 / р0 определяем неизвестное значение р0 и, заменив в формуле агрегатного индекса цен Iр = Σq1Р1 / Σq0Р0 значение р0 = р1 / iр, получаем Iр = ΣР1q1 / Σ(р1 / iр)q1 = Σр1q1 / Σ(р1q1 / iр).

Этот индекс называется среднегармоническим.

7. Индексы средних величин.

Индексы переменного и фиксированного состава

Иногда при изучении динамики общественных явлений можно заметить, что ее уровни выражены средними величинами (средней себестоимостью, средней заработной платой, средней производительностью труда и т. д.). Динамика средних показателей зависит от одновременного изменения вариантов, из которых формируются средние, и изменения удельных весов этих вариантов, т. е. от структуры изучаемого явления.

На изменение динамики среднего значения изучаемого статистического процесса или явления могут оказывать влияние одновременно два фактора: изменение осредняемого показателя и изменение структуры. Изучение совместного действия указанных факторов на общее изменение динамики среднего уровня явления, а также роли и влияния каждого фактора в отдельности в общей динамике средней проводится в статистике при помощи системы взаимосвязанных индексов. Различают индексы переменного и фиксированного состава. Рассмотрим их построение и содержание на примере индекса себестоимости продукции.

На величину индекса себестоимости продукции влияют изменения себестоимости единицы продукции в каждой фирме и изменения роли отдельных фирм в общем объеме выпускаемой продукции. Общий индекс определяем как отношение следующих двух средних:

Индексы, отражающие изменение средних величин за счет влияния индексируемых величин при постоянных весах, называются индексами фиксированного (постоянного) состава.

Разложение общих индексов на факторные дает возможность определить роль отдельных факторов в общем изменении явления в относительном и абсолютном выражении.

Изучение динамики средних показателей индексным методом возможно только после разбивки данных совокупности на группы по признакам, характеризующим структурные сдвиги, и вычисления групповых средних. Таким образом, применение индексного метода для проведения факторного анализа и изучения структурных сдвигов тесно связано с методом группировок.

Для анализа динамики средних показателей систему взаимосвязанных индексов, можно представить в следующем виде:

где х1 и хО – уровни осредняемого показателя соответственно в отчетном и базисном периодах;

f1 и f2 – веса (частоты) осредняемых показателей в отчетном и базисном периодах.

В выше изложенной системе взаимосвязанных индексов при построении индекса фиксированного состава в качестве весов принята структура отчетного периода, что позволяет проследить изменение средней динамики изучаемого явления только за счет изменения осредняемых значений качественного показателя. При построении индекса структурных сдвигов в качестве соизмерителя принята величина осредняемого показателя на уровне базисного периода, что дает нам возможность изучить изменение средней динамики явления только за счет структурных сдвигов.

Территориальные (пространственные) индексы.

Территориальные индексы нужны для сравнения показателей в пространстве, т. е. по предприятиям, округам, городам, районам и т. д. Для того чтобы построить пространственные индексы, необходимо решить ряд методологических вопросов, которые связаны с выбором базы сравнения и весов, или уровня, на котором будут зафиксированы веса.

При двусторонних сравнениях каждая территория может быть сравниваемой и базой сравнения. Веса этих территорий имеют равные основания использоваться при расчете индекса. Однако это может привести к различным или противоречивым результатам, этого можно избежать несколькими способами.

Один способ заключается в том, что в качестве весов принимаются объемы реализованных товаров i – го вида (I = 1, 2, 3, … n) по двум регионам, вместе взятым:

Территориальный индекс цен в данном случае вычисляется по формуле:

Второй способ расчета территориальных индексов учитывает соотношение весов на каждой из сравниваемых территорий. При данном способе первый шаг заключается в расчете средней цены каждого товара по двум территориям, вместе взятым:

после этого вычисляется территориальный индекс:

1. Принципы формирования системы показателей для характеристики хозяйственной деятельности предприятия

Для решения важнейшей задачи статистики предприятия – определения состава получаемой статистической информации – потребуется очень много времени.

Общий принцип, положенный в основу формирования системы показателей статистики предприятий, состоит в следующем.

Предмет статистики – это сбор и обработка экономических показателей, позволяющих производить анализ экономической деятельности предприятий различных типов и отраслей.

Сбор статистической информации по заказам конкретных потребителей осуществляется в рамках отраслевой статистики.

Примером этого подхода является организация статистического наблюдения за деятельностью малых предприятий в 1994– 1996 гг.

Вся информация разделена на два потока:

1) основные результаты всей экономической деятельности малых предприятий независимо от их отраслевой принадлежности (форма № МП – I раздел, важнейшие экономические показатели);

2) статистические показатели производства продукции или оказания услуг на малых предприятиях отдельных отраслей включая производство продукции в натуральном выражении разрабатываются с использованием II раздела формы № МП и целого ряда отраслевых форм, для которых характерна значительная дифференциация и детализация объема запрашиваемой информации. Проводится также работа по подготовке базовых показателей для статистики крупных и средних предприятий. Направлениями анализа деятельности крупных.

и средних предприятий, определяющими состав собираемой в рамках статистики предприятий информации, могут быть следующие:

а) финансовое и имущественное положение предприятий (основной и оборотный капитал, источники и направления расходования денежных средств, задолженность и др.);

б) эффективность экономической деятельности предприятия, соотношение результатов и затрат (структура прибыли и затрат, рентабельность производства, соотношение активов и пассивов и др.);

в) инвестиционная и деловая активность предприятий (инвестиции, производственные мощности и их использование, состояние запасов, спрос на продукцию, движение рабочей силы и другие);

г) структурная и демографическая характеристика предприятий.

Работа по определению состава основных экономических показателей состоит из следующих основных этапов:

1) инвентаризация и анализ действующей отраслевой отчетности с точки зрения состава показателей, методологии их формирования, сроков представления, круга отчитывающихся единиц и т. п.;

2) формирование основных экономических показателей микроуровня с учетом общей структуры принципиальной схемы анализа социально–экономического развития России и состава отдельных специальных блоков;

3) сопоставление перечня показателей с имеющимися в действующей отчетности статистическими показателями;

4) разработка форм статистической отчетности для крупных и средних предприятий;

5) подготовка предложений по пересмотру форм статистической отраслевой отчетности.

Отраслевая отчетность действует в части производства продукции. Она охватывает вопросы учета продукции в стоимостном и натуральном выражении со всеми ее расчетами и отражает специфику работы предприятий конкретной отрасли.

Интегрированные формы отчетности помогают устранить повторяемость статистических показателей, снизить информационную нагрузку на предприятие.

Форма структурного обследования предприятий – это один из примеров интегрированных форм отчетностей для различных типов производителей.

Главная цель структурного обследования – регулярное предоставление статистических данных о состоянии структуры производственной системы для проведения комплексного анализа основных параметров финансово–экономической деятельности предприятий, формирования отдельных макроэкономических показателей.

2. Система показателей, характеризующая ресурсный потенциал и результаты всей деятельности предприятия

Кадры предприятий

Роль трудовых ресурсов постоянно возрастает, и не только в период рыночных отношений.

Трудовой коллектив – основа успеха предпринимательской деятельности, команд единомышленников и партнеров, способных осознавать, понимать и реализовывать замыслы руководства предприятия.

Трудовые отношения – сложный аспект работы предприятия.

Производственный процесс зависит от людей, т. е. от их желания и умения работать и, соответственно, от их квалификации Возникающие новые производственные системы состоят не только из машин, но включают также и людей, которые работают в тесном взаимодействии.

Человеческий капитал, оборудование и производственные запасы являются краеугольным камнем конкурентоспособности экономического роста и эффективности.

Основные факторы, влияющие на повышение эффективности работы предприятия:

1) отбор и продвижение кадров;

2) подготовка кадров и их непрерывное обучение;

3) стабильность и гибкость состава работников;

4) совершенствование материальной и моральной оценки труда работников.

Существует два критерия отбора и продвижения работников:

1) высокая профессиональная квалификация и способность к обучению;

2) опыт общения и готовность к сотрудничеству. Гарантия занятости, снижение текучести кадров, высокая заработная плата обеспечивают значительный экономический эффект и формируют у работников желание повышать эффективность работы.

Оплата труда должна стимулировать повышение производительности труда и обладать мотивационным эффектом.

Для повышения эффективности и производительности необходимо менять и оплату труда, и подход к ее формированию.

Организация труда и управления коллективом предприятия включает:

1) прием сотрудников на условиях неполного рабочего дня или недели;

2) расстановку работников в соответствии со сложившейся системой производства;

3) распределение среди работников предприятия обязанностей;

4) переподготовку или подготовку кадров;

6) совершенствование организации труда.

Трудовой коллектив предприятия адаптируется к сложившейся системе производственных процессов.

Структура производственного процесса базируется на научных принципах организации труда, которые предполагают:

1) разделение труда и улучшение его кооперации на основе разделения производственного процесса;

2) подбор профессиональных и квалифицированных рабочих и их расстановка;

3) усовершенствование трудовых процессов путем разработки и внедрения рациональных методов и приемов труда;

4) улучшение обслуживания рабочих мест на основе четкого регламентирования каждой функции обслуживания;

5) внедрение эффективных форм коллективной работы, развития многоагрегатного обслуживания и совмещения профессий;

6) совершенствование нормирования труда на основе использования резервов, снижения затрат труда и наиболее рациональных режимов работы оборудования;

7) организацию и проведение систематического производственного инструктажа – повышение квалификации рабочих обмен опытом и распространение передовых методов труда;

8) создание благоприятных в санитарно–гигиеническом, психофизиологическом, эстетическом отношениях условий труда и безопасности работы, введение рациональных графиков работы, режимов труда и отдыха на производстве. Обобщающими показателями реализации этих принципов служат:

1) рост производительности труда;

2) удовлетворение всех условий труда;

3) удовлетворение содержательностью труда и его привлекательностью.

В настоящее время для того, чтобы принять сотрудника необходимо поддерживать постоянную связь с учебными заведениями, использовать при приеме на работу систему рекомендаций. проводить экзамены и собеседования и, что наиболее актуально – установливать испытательный срок.

Основные источники подбора кадров на предприятии – это все виды учебных заведений, предприятия с подобными профессиями, биржа труда.

Распределение обязанностей и расстановка рабочих основана на системе разделения труда. Распространение получили следующие формы разделения труда:

1) технологическая – по видам работ, профессиям и специальностям;

2) пооперационная – по отдельным видам операций технологического процесса;

3) по функциям выполняемых работ – основных, вспомогательных, подсобных;

Если собственник предприятия подобрал себе работников. которые отвечают всем его требования, то необходимо составить трудовой договор или контракт – соглашение между предпринимателем и человеком, который нанимается на работу, а конкретная система найма находит применение в отечественной практике.

Структура кадров предприятия

Весь персонал предприятия подразделяется на категории: рабочие, служащие, специалисты и руководители.

К рабочим предприятия можно отнести работников, непосредственно занятых созданием материальных ценностей или оказанием транспортных и производственных услуг.

Рабочие подразделяются на основных и вспомогательных.

Их соотношение – это аналитический показатель работы предприятия.

Коэффициент численности основных рабочих определяется по формуле:

где Твр – среднесписочная численность вспомогательных рабочих на предприятии, в цехах, на участке, чел.;

Тр – среднесписочная численность всех рабочих на предприятии, в цехе, на участке, чел.

Специалисты и руководители (директора, мастера, главные специалисты и др.) осуществляют организацию производственного процесса и руководство им.

К служащим относятся работники, которые осуществляют финансово–расчетные, снабженческо–сбытовые и другие функции (агенты, кассиры, делопроизводители, секретари, статистики и др.).

Квалификация работ определяется уровнем специальных знаний и практических навыков и характеризует степень сложности выполняемого конкретного вида работы. Соответствие способностей, физических и психических качеств какой–либо профессии означает профессиональную пригодность работника.

Структура кадров предприятия – это соотношение разных категорий работников в их общей численности. Для анализа структуры кадров определяют и сравнивают удельный вес каждой категории работников dpi в общей среднесписочной численности персонала предприятия Т:

где Тi – среднесписочная численность работников категории, чел.

Структура кадров может рассматриваться по признакам, например пол, возраст, уровень образования, стаж работы и т. д. анализируется она по каждому подразделению. Трудовой коллектив по численному составу все время меняется: работники увольняются, принимаются другие, такие изменения характеризуются текучестью кадров.

Состояние кадров определяется с помощь коэффициентов.

Коэффициент выбытия кадров Квк (%) – это отношение количества работников, уволенных по различным причинам за данный период Тув, к среднесписочной численности работников за тот же период Т:

Коэффициент приема кадров Кп (%) – это отношение количества работников, которые приняты на работу за данный период Т, к среднесписочной численности работников за тот же период, Т:

Коэффициент стабильности кадров Кс применяется при оценке уровня организации управления производством как на предприятии в отдельных подразделениях или в целом.

1 – т где Тʼув. – численность работников, уволившихся по собственному желанию и из–за нарушения трудовой дисциплины за отчетный период, чел.;

Т – среднесписочная численность работающих на предприятии в период, предшествующий отчетному, чел.;

Тп – численность вновь принятых за отчетный период работников, чел.

Коэффициент текучести кадров Кт.к.(%) определяется делением численности работников предприятия, выбывших или уволенных за данный период Тув , на среднесписочную численность за тот же период Т:

Статистика рабочей силы и рабочего времени предприятия

Статистика рабочей силы изучает состав и численность рабочей силы. В сфере материального производства рабочая сила подразделяется на персонал, занятый в основной деятельности предприятия, и персонал неосновной деятельности.

Основная категория персонала – это рабочие.

Рабочие группируются по профессиям, по степени механизации труда и по квалификации. Основной показатель квалификации – это тарифный разряд или тарифный коэффициент. Средний уровень квалификации определяется средним тарифным разрядом, исчисляемым как средняя арифметическая разрядов, взвешенная по численности или по проценту рабочих:

Т – численность (%) рабочих с данным разрядом.

Все работники группируются по полу, возрасту, стажу работы и образованию.

К категориям численности рабочих и служащих относятся списочная и явочная численность, число фактически работавших. В списочную численность входят все работники предприятия, принятые на срок один и более дней. Явочное число включает работников, явившихся на работу, а также находящихся в командировках и занятых на других предприятиях по нарядам своей организации.

Все категории численности определяются на конкретную дату, но для многих экономических расчетов необходимо знать среднюю численность работников – среднесписочную, среднеявоч–ную и среднюю фактически работавших.

Среднесписочная численность определяется следующими способами.

Допустим, что известна списочная численность на начало и конец периода, тогда среднесписочная численность определяется как полусумма этих величин.

Среднесписочная численность за квартал, полугодие и год определяется как средняя арифметическая из среднемесячных чисел:

где Т – сумма среднемесячных чисел работников на число месяцев периода.

Если известна списочная численность на даты через одинаковые интервалы времени, например на начало или конец каждого месяца, то среднесписочная численность за квартал, полугодие или год находится по формуле средней хронологической:

Т – численность на первую дату, Т2 , Т3 – на другие даты. Наиболее точные результаты дают два следующих способа:

Среднеявочная численность работников определяется по формуле:

Средняя численность фактически работавших исчисляется формулой:

Рабочее время измеряется в человеко–днях и человеко–часах.

В статистической науке рассматриваются следующие фонды рабочего времени (в человеко–днях).

Календарный фонд – это все время отчетного периода, равен произведению числа календарных дней в периоде на списочную численность работников. Табельный фонд меньше календарного на число праздничных и выходных человеко–дней.

Максимально возможный фонд меньше табельного фонда за счет времени очередных отпусков.

Фактически отработанный фонд времени меньше максимально возможного за счет различных потерь рабочего времени.

Использование фондов времени измеряется следующими коэффициентами:

Характеристика производительности труда

Труд превращает предметы природы или же сырье в готовый продукт. Эта способность труда называется производительной силой. Производительность труда – это показатель успешности.

Производительность труда – результативность живого труда эффективность производительной деятельности по созданию продукта в течение времени.

Перед статистикой производительности труда стоят задачи:

1) совершенствования методики расчета производительности труда;

2) выявления факторов роста производительности труда;

3) определения влияния производительности труда на изменение объема продукции.

Через показатели трудоемкости и выработки характеризуется производительность труда.

Выработка (W) продукции в единицу времени измеряется соотношением объема произведенной продукции (q) и затратами (Т) рабочего времени (среднесписочная численность):

Это прямой показатель производительности труда. Обратным показателем является трудоемкость:

Выработка показывает, сколько вырабатывается продукции за единицу рабочего времени.

Система статистических показателей производительности труда определяется единицей измерения объема произведенной продукции. Единицы могут быть натуральными, условно–натуральными, трудовыми и стоимостными. Применяют натуральный, условно–натуральный, трудовой и стоимостный методы измерения уровня и динамики производительности труда.

В зависимости от измерения затрат труда различают следующие уровни производительности.

Средняя часовая выработка = объем произведенной продукции / число человеко–часов, отработанных в течение данного периода.

Этот уровень характеризует среднюю выработку рабочего за один час фактической работы.

Средняя дневная выработка = объем произведенной продукции / число человеко–часов, отработанных всеми рабочими предприятия.

Данный уровень показывает степень производственного использования рабочего дня.

Среднемесячная выработка = объем произведенной продукции / среднесписочное число рабочих.

В знаменателе отражаются резервы труда.

Средняя квартальная выработка определяется аналогично среднемесячной. Средняя выработка характеризуется через соотношение товарной продукции и среднесписочной численности персонала. Между всеми рассмотренными показателями существует взаимосвязь:

где W1nnn – выработка на одного работника;

W4 – среднечасовая выработка;

Пр.д. – продолжительность рабочего дня;

Пр.п. – продолжительность рабочего времени;

dрабочих в ППП – доля рабочих в общей численности промыш–ленно—производственного персонала.

В зависимости от метода измерения уровня и динамики производительности труда применяют следующие статистическе индексы.

3) индекс академика С. Г. Струмилина:

В статистической науке для анализа изменения средней выработки под воздействием различных факторов используется система индексов средних величин или система агрегатных индексов В качестве индексируемой величины выступает уровень производительности труда отдельных единиц статистической совокупности, а в качестве весов – количество (в абсолютном выражении) таких единиц с разным уровнем производительности труда или их удельный вес в общей численности (dт):

Производство осуществляется при наличии двух основных факторов – это:

1) труд – целенаправленная деятельность человека;

2) средства производства, которые подразделяются на средства труда (машины, приборы и т. д.) и предметы труда (материалы, топливо, сырье и т. д.).

С помощью средств труда происходит непосредственное воздействие на предметы труда – их добыча, сбор, обработка и прочее или создаются условия, которые обеспечивают процесс производства – это производственные здания, сооружения и др.

Различие между средствами труда и предметами труда заключаются в том, что предметы труда потребляются в одном произ.

водственном цикле и стоимость их полностью и однократно переходит на продукцию, а средства труда, сохраняя в процессе производства свою натуральную форму, переносят свою стоимость на продукцию частями, многократно, при каждом повторном производственном цикле.

Все средства труда, которые функционируют в процессе производства, составляют основные фонды.

Таким образом, основные фонды – это средства труда, которые воздействуют на процессы производства, на предметы труда или же обеспечивают условия для осуществления процесса производства на предприятии, но, функционируя продолжительное время, они переносят частями свою стоимость на создаваемую продукцию.

Амортизация основных фондов

Основные производственные фонды в процессе функционирования изнашиваются, перенося свою стоимость на произведенную продукцию.

Амортизация – это денежное выражение стоимости износа основных фондов, перенесенной на продукцию. Амортизация включается в себестоимость продукции.

Годовая сумма амортизационных отчислений определяется по формуле:

где В – полная первоначальная стоимость основных фондов;

Л – ликвидационная стоимость основных фондов за вычетом расходов на их демонтаж;

Т – нормативный срок службы основных фондов.

Годовые нормы амортизации определяются по формуле:

где М – предполагаемая стоимость модернизации в течение всего эксплуатационного периода.

Годовые балансы основных фондов составляют для характеристики изменения объема и движения основных фондов, их воспроизводства, на их основе анализируются процессы их воспроизводства, изучается динамика, исчисляются показатели обновления выбытия и состояния основных фондов.

Годовой износ основных фондов равен сумме начисленной амортизации за год.

Источники поступления основных фондов:

1) ввод в действие новых основных фондов;

2) покупка основных фондов у юридических и физических лиц;

3) безвозмездное получение основных фондов других юридических и физических лиц;

4) аренда основных фондов. Выбытие может происходить по причинам:

1) ликвидации из–за ветхости и износа;

2) продажи основных фондов различным юридическим и физическим лицам;

4) передачи основных фондов в долговременную аренду. На основе данных балансов как по балансовой стоимости, так и по стоимости за вычетом износа можно рассчитать целый ряд показателей, характеризующих состояние и воспроизводство основных фондов:

Или 100% – коэффициент износа. Показатели использования основных фондов.

Фе = обратная величина фондоотдачи.

Источник образования основного капитала – долгосрочные финансовые вложения; отличительный признак – достаточно продолжительный период использования средств, вложенных в основной капитал в целях извлечения прибыли.

Оборотный капитал – финансовые ресурсы, вложенные в объекты, расходование которых осуществляется предприятием в рамках короткого календарного периода времени.

К числу объектов, включаемых в состав оборотного капитала, относят предметы, имеющие срок службы не более года, независимо от их стоимости, а также предметы стоимостью ниже установленного лимита не более 50–кратного уровня МРОТ за единицу на день приобретения независимо от срока службы и их стоимости.

Состав оборотного капитала:

1) производственные запасы;

2) незавершенное производство и полуфабрикаты;

3) незавершенное сельскохозяйственное производство;

5) расходы будущих отчетных периодов;

8) прочие товарно–материальные ценности;

12) краткосрочные финансовые вложения;

13) прочие оборотные средства.

В составе производственных запасов выделяют: сырье и материалы, покупные полуфабрикаты, комплектующие изделия, горючесмазочные материалы, топливо, комплектующие изделия и т. д.

Источник образования элементов оборотного капитала – финансовые ресурсы. В состав финансовых ресурсов входят собственные средства (средства уставного капитала, специальных фондов которые образуются за счет прибыли), привлеченные средства (коммерческие кредиты, депозиты, выданные векселя и т. д.).

Оборотный капитал состоит из активов, которые находятся в постоянном движении и превращаются в денежные средства.

Для характеристики использования оборотных фондов служат три показателя скорости их обращения.

Коэффициент оборачиваемости характеризует число оборотов среднего остатка производственных оборотных фондов за отчетный период:

где р – стоимость реализованной продукции за период;

СО – средний остаток оборотных фондов, определяемый как средняя арифметическая из средних месячных (за квартал, полугодие, год) или как средняя хронологическая.

Коэффициент закрепления оборотных фондов – эта величина показывает, сколько надо иметь оборотных средств на 1 руб. стоимости реализованной продукции. Средняя продолжительность одного оборота оборотных фондов в днях:

Средняя продолжительность одного оборота оборотных фондов в днях:

где D – число дней в периоде.

Рассчитываются средние показатели скорости обращения оборотных фондов. Коэффициент оборачиваемости и закрепления исчисляют как средние арифметические взвешенные:

Средняя продолжительность одного оборота в днях определяется как средняя гармоническая взвешенная:

Эффект от ускорения оборачиваемости оборотных фондов выражается суммой фондов, условно высвобожденных из оборота вследствие ускорения их оборачиваемости.

Показатель использования предметов труда – это материалоемкость, характеризующая в денежном выражении расход материальных ресурсов на единицу результата производства. Показатель материалоемкости исчисляется по формуле:

где МЗ – материальные производственные затраты без амортизации основных фондов;

Q – объем совокупного общественного продукта, национального дохода или продукции отдельных отраслей и предприятий.

Финансы предприятий – это финансовые отношения, выраженные в денежной форме, возникающие при образовании, рас.

пределении и использовании денежных фондов и накоплений в процессе производства и реализации товаров, выполнения работ и оказания различных услуг.

Количественная характеристика финансово–денежных отношений вместе с их качественными особенностями, обусловленными образованием, распределением и использованием финансовых ресурсов, выполнением обязательств хозяйствующих субъектов друг перед другом, перед финансово–банковской системой и государством, – это и есть предмет изучения статистики финансов.

Основными задачами статистики финансов предприятия являются:

1) изучение состояние и развития финансово–денежных отношений хозяйствующих субъектов;

2) анализ объема и структуры источников формирования финансовых ресурсов;

3) определение направления использования денежных средств;

4) анализ уровня и динамики прибыли, доходности предприятия;

5) оценка финансовой устойчивости и состояния платежеспособности;

6) оценка выполнения хозяйствующими субъектами финансово–кредитных обязательств.

Финансовые ресурсы – это собственные и привлеченные денежные средства хозяйствующих субъектов, которые находятся в их распоряжении и предназначены для выполнения финансовых обязательств и осуществления затрат для производства.

Объем и состав финансовых ресурсов связан с уровнем развития предприятия и его эффективностью. Если предприятие успешное, то размеры его денежных доходов высокие.

Формирование финансовых ресурсов происходит в момент образования уставного фонда. Источниками уставного капитала выступают:

2) паевые взносы членов кооперативов;

На сформированных предприятиях в условиях рыночной экономики источниками возникновения финансовых ресурсов являются:

1) прибыль от проданной продукции, выполненных работ или оказанных услуг;

2) амортизационные отчисления, поступления от реализации акций, ценных бумаг;

3) краткосрочные и долгосрочные кредиты;

4) доходы от продажи имущества и т. д.

Прибыль – это экономическая категория, отражающая хозяйственную деятельность предприятия в форме денежных накоплений. Прибыль характеризует конечные результаты торгово–производственной деятельности.

Прибыль – основной показатель финансового состояния предприятия. В статистике финансов предприятий существуют следующие виды прибыли:

2) от реализации продукции (работ, услуг);

Балансовая прибыль – это прибыль, полученная в результате реализации продукции основных средств и другого имущества хозяйствующих субъектов, а также доходы за вычетом убытков от внереализационных операций.

Прибыль от реализации продукции вычисляется как разность между вырученной от продажи продукции и затратами на производство и реализацию, включаемыми в себестоимость продукции.

Валовая прибыль в составе внереализационых доходов и убытков учитывает уплаченные штрафы и пени.

Прибыль, оставшаяся в распоряжении предприятия после уплаты различных платежей в бюджет, является чистой прибылью.

Предприятия сами определяют направления, объемы и характер использования чистой прибыли. За счет чистой прибыли формируется фонд развития производства, фонд накопления, социального развития и фонд материального поощрения, резервный фонд.

Показатели рентабельности

Рентабельность – это прибыльность предприятия.

где Пб – общая сумма балансовой прибыли;

Ф – среднегодовая стоимость основных производственных фондов и нормируемых оборотных средств.

2. Рентабельность реализованной продукции:

где Пр.п. – прибыль от реализации продукции;

С – полная себестоимость реализованной продукции.

Показатели деловой активности предприятия

1. Деловая активность предприятия определяется с помощью показателя общей оборачиваемости капитала:

где В – выручка от реализации продукции;

К – основной капитал предприятия.

Анализ финансовой устойчивости предприятия имеет очень важное значение в условиях рыночной экономики.

Финансовая устойчивость – это способность хозяйствующего субъекта вовремя из собственных средств возмещать затраты вложенные в основной и оборотный капитал, нематериальные активы, и расплачиваться по своим обязательствам, т. е. быть платежеспособным.

Для оценки измерения устойчивости применяются коэффициенты.

где Сс – собственные средства;

Sс – сумма всех источников финансовых ресурсов.

2. Коэффициент устойчивости:

где Кз – кредиторская задолженность и другие заемные средства.

3. Коэффициент маневренности:

где ДКЗ – долгосрочные кредиты и займы;

Осв. – основные средств и иные внеоборотные активы.

4. Коэффициент ликвидности:

где Дса – денежные средства, вложенные в ценные бумаги, запасы товарно–материальных ценностей, дебиторская задолженность; КЗ – краткосрочная задолженность.

К. Пирсон и Дж. Юл разработали корреляционный анализ, который по их мнению должен ответить на вопрос о том, как выбрать с учетом специфики и природы анализируемых переменных подходящий измеритель статистической связи (коэффициент корреляции, корреляционное отношение, и т.д.), решить задачу как оценить его числовые значения по уже имеющимся выборочным данным.

Корреляционный анализ поможет: найти методы проверки того, что полученное числовое значение анализируемого измерителя связи действительно свидетельствует о наличии статистической связи; определить структуру связей между исследуемыми к признаками х1, х2,…, хк, сопоставив каждой паре признаков ответ («связь есть» или «связи нет»).

Парный коэффициент корреляции – основной показатель взаимозависимости двух случайных величин, служит мерой линейной статистической зависимости между двумя величинами., он соответствует своему прямому назначению, когда статистическая связь между соответствующими признаками в генеральной совокупности линейна. То же самое относится к частным и множественным коэффициентам корреляции.

Парный коэффициент корреляции, характеризует тесноту связи между случайными величинами х и у, определяется по формуле:

Если р = 0, то между величинами х и у линейная связь отсутствует и они называются некоррелированными.

Коэффициент корреляции, определяемый по вышеуказанной формуле, относится к генеральной совокупности.

Частный коэффициент корреляции характеризует степень линейной зависимости между двумя величинами, обладает всеми свойствами парного, т.е. изменяется в пределах от–1 до +1. Если частный коэффициент корреляции равен ±1, то связь между двумя величинами функциональная, а равенство его нулю свидетельствует о линейной независимости этих величин.

Множественный коэффициент корреляции, характеризует степень линейной зависимости между величиной х1 и остальными переменными (х2 , х3 ), входящими в модель, изменяется в пределах от 0 до 1.

Ординальная (порядковая) переменная помогает упорядочивать статистически исследованные объекты по степени проявления в них анализируемого свойства.

Ранговая корреляция – статистическая связь между порядковыми переменными (измерение статистической связи между двумя или несколькими ранжировками одного и того же конечного множества объектов О1 О2 ,…, Оп .

Ранжировка – это расположение объектов в порядке убывания степени проявления в них к– го изучаемого свойства. В этом случае х(к) называют рангом i – го объекта по к – му признаку. Раж характеризует порядковое место, которое занимает объект Оi в ряду п объектов.

К. Спирмен в 1904г предложил показатель, который служил для измерения степени тесноты связи между ранжировками.

х1(к),х2(к). хn(к) и х1(i),х2(i). хn(i)

В последствии данный коэффициент был назван ранговым коэффициентом К. Спирмен:

Термин «регрессия» ввел английский психолог и антрополог Ф.Гальтон.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии Д(х), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у/х). модельной регрессией у и оценкой у регрессии. Пусть результа–тив–ный показатель у связан с аргументом х соотношением:

где Еi – случайная величина, имеющая нормальный закон распределения, причем Мε = 0 и dε – δ2.

Истинная функция регрессии в этом случае имеет вид:

Для наилучшего восстановления по исходным статистическим данным условного значения результативного показателя f(х) и неизвестной функции регрессии /(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Согласно методу наименьших квадратов минимизируется квадрат отклонения наблюдаемых значений результативного показателя yi(i= 1, 2, . п) от модельных значений yi = f(хi), где хi значение вектора аргументов в i – м наблюдении:

Получаемая регрессия называется среднеквадратической.

Согласно методу наименьших модулей, минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений:

уi= f (хi)

И получаем среднеабсолютную медианнуюрегрессию:

Регрессионный анализ – это метод статистического анализа зависимости случайной величины у от переменных хj-(j=1, 2, . к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения хj.

источник