Меню Рубрики

Что такое спектральный анализ мочи

Спектроскопические методы исследования биожидкостей играют значительную роль при изучении различных заболеваний. Для определения элементного состава биожидкостей наиболее распространены методы эмиссионной и атомной абсорбционной спектроскопии [1]. При изучении комплексных соединений в достаточно сложно организованной биожидкости элементный анализ играет лишь вспомогательную роль для определения весовых долей элементов. Качественное определение комплексных соединений позволяют выполнять методы флоуресцентной спектроскопия, спектроскопии комбинационного рассеяния (КР), различные виды хромотографии и абсорбционная инфракрасная (ИК) спектроскопия [1, 2]. Среди приведенных методов значительный интерес представляет абсорбционная ИК — спектроскопия, позволяющая выявить по характерным полосам поглощения функциональные молекулярные группы и определить качественные характеристики биожидкости в целом.

При различных заболеваниях, одним из наиболее распространенных методов клинического обследования является анализ мочи. Благодаря селективности определения различных молекулярных групп методами ИК -спектроскопии, становится возможным повысить информативность анализа мочи.

Известно, что для проведения качественного спектрального анализа значительную роль играет способ приготовления исследуемых образцов. В связи с тем, что моча в своем составе содержит значительное количество воды проведение измерений ИК — спектров связано со значительными трудностями, обусловленными поглощением водой. В ряде работ был представлен метод приготовления образцов мочи способом «высохшей капли» по системе ЛИТОС [3]. Этот способ позволяет получить пространственную фрагментацию различных комплексов мочи, вследствие градиентного процесса ее самоорганизации при высыхании.

Пространственная фрагментация органических комплексов приводит к появлению существенных отличий в их составе между краевой и центральной зоной. При анализе образцов приготовленных данным способом в основном использовались методы кристаллографического описания и определялись химические элементы с помощью рентгеноспектрального микроанализа и фазового анализа.

На наш взгляд, метод приготовления образцов мочи способом «высохшей капли» пригоден для проведения ИК — спектроскопического анализа ее биохимических комплексов. Во-первых, данный способ приготовления образцов позволяет исключить не связанную с биокомплексами мочи воду, что снижает общий уровень поглощения ИК — излучения в исследуемом образце. И во- вторых, появляется возможность пространственно локализовать проведение спектрального анализа капли мочи вследствие ее фрагментации при высыхании

Целью настоящей работы явилось применение метода ИК — спектроскопии для исследования образцов мочи приготовленных способом «высохшей капли».

Исследование проводилось на образцах мочи четверых больных с различной патологией.

1. Больной — 44 г., диагноз: мочекаменная болезнь, рентген-негативный камень левого мочеточника. Общий анализ мочи от 24.04.03 г. — белка нет, удельный вес 1016, эпителий плоский -единичный в поле зрения, лейкоциты-1-2 в поле зрения, эритроциты неизмененные-2-4 в поле зрения, слизь +++.

2. Больной — 32 г., диагноз: рецидивирующая паховая грыжа слева. Гидроцеле слева. Общий анализ мочи от 24.04.03 г. — белок 53 мг/л, удельный вес 1024, эпителий плоский-1-2 в поле зрения, эритроциты-1-3 в поле зрения, слизь+, бактерии+.

3. Больной — 44 г., диагноз: мочекаменная болезнь, камни мочеточников. Хронический пиелонефрит. Анализ мочи от 24.04.03 г. — белок-392 мг/л, удельный вес 1014, щелочная реакция, эпителий плоский 1-3 в поле зрения, лейкоциты- 0-1-2 в поле зрения, эритроциты — значительное количество, оксалаты +, трипельфосфаты +, бактерии ++, слизь +.

4. Больной- 76 лет, диагноз: острый геморрагический цистит. Киста левой почки. Макрогематурия. Анализ мочи от 24.04.03 г. — белок 225 мг/л, удельный вес 1024, лейкоциты- 15-17 в поле зрения, эритроциты — большое количество, цилиндры гиалиновые 0-1 в поле зрения, оксалаты +, бактерии ++.

Исследуемые образцы утренней порции мочи объемом 5 мкл наносились на плоское зеркало с Al -покрытием при помощи мерной пипетки. При этом капли на поверхности зеркала принимали форму близкую к сферической. Капли сушились в сушильном шкафу при комнатной температуре + 25 С 0 на горизонтальной поверхности при отсутствии сторонних конвективных потоков воздуха в течение 10 часов. Изображения высохших образцов капель мочи взятых от разных пациентов приведены на рисунке 1 (а, b, c, d).

Рис. 1. Образцы высушенной капли мочи.

а. Больной — 1; b. Больной — 2; с.- Больной — 4; d. Больной — 3.

Изображения получены путем регистрации образцов краевой зоны высохшей капли при помощи Веб-камеры «AverCam» с разрешением 800 х 600 точек на дюйм, присоединенной к стандартному микроскопу «БИОЛАМ». Как можно увидеть из рисунков образцы капель при высыхании приобретают градиентную структуру характерную для завершившегося процесса самоорганизации биожидкостей хорошо описанной у ряда авторов [3]. Отчетливо различались аморфные краевые белковые зоны и центральные зоны, насыщенные солями, отличающиеся размерами кристаллов и их концентрацией на поверхности.

Измерения спектров поглощения образцов проводились в двух пространственно разделенных точках вблизи краевой белковой зоны и в центре высохшей капли. ИК-спектры были получены на ИК — микроскопе модели «InspectIR Plus» фирмы «SpectraTECH» (США), на базе ИК — спектрофотометра c Фурье преобразованием, модель «Impact 400» фирмы «Nicolet» (США). Анализ производился в диапазоне волновых чисел 4000-650 см -1 с разрешением 1.928 см -1 . Конструктивные возможности спектрометра позволяли осуществлять измерения спектров исследуемых образцов с пространственным разрешением порядка 0.6 мм. Изображение измеренных спектров поглощения представлены на рисунках 2 (а, b) и 3 (а, b).

Рис. 2. Изображения ИК — спектров поглощения в образцах мочи больных.

a. Больной — 1; b. Больной — 2.

Рис. 3. Изображения спектров поглощения в образцах больных.

Предварительная расшифровка спектров позволила определить наличие колебательных полос характерных для функциональных групп молекулярных соединений, присутствующих в моче. Наиболее интенсивно проявляются валентные и деформационные колебания мочевины (NH2 )2 CO и её производных. Отмечено смещение положения максимумов в спектрах поглощения мочевины полученных на образцах мочи разных больных. Величина сдвига составляет 10- 20 см -1 , что может иметь значение для выявления и дифференциации компонентов в смеси. Сравнительный анализ образцов показал на существенное отличие спектров поглощения измеренных вблизи краевой зоны и в центре высохшей капли. В краевой зоне спектры поглощения мочевины в диапазоне частот от 3500 см -1 до 3200 см -1 перекрываются широкими полосами поглощения высокомолекулярных белковых компонентов мочи, изучение которых может дать дополнительную информацию о биохимических сдвигах при различных заболеваниях. В центральной зоне образцов спектр мочевины более контрастен и позволяет обнаружить характерные полосы с максимумами в области 3440 см -1 , 3345 см -1 , 3261 см -1 , 1680 см -1 , 1605 см -1 , 1464 см -1 , 1155 см -1 , 1056 см -1 и 557 см -1 . Особый интерес представляет возможность определения методом ИК — спектроскопии наличия в образцах мочи больных соединений пенициллиновой группы. Расшифровка спектров поглощения в образцах мочи больных, получавших антибактериальную терапию, позволила уверенно регистрировать соединения пенициллиновой группы в области от 1000 см -1 до 800 см -1 . Исследование присутствия пенициллина в моче позволит в дальнейшем проводить анализ эффективности действия антибактериальных препаратов при различных воспалительных процессах.

По результатам работы можно сделать вывод о том, что применение метода ИК — спектроскопии для исследования образцов мочи в виде высушенной капли позволяет существенно детализировать результаты биохимического анализа мочи. Полученные результаты позволяют повысить диагностическую значимость молекулярного анализа с целью выявления нарушений механизмов гомеостаза, что очень важно при разработке новых методов ранней диагностики и лечения различных заболеваний.

  1. Л. Беллами.// Инфракрасные спектры сложных молекул. М.: ИЛ, 1963.
  2. А. Гордон, Р. Форд. Спутник химика. Физико-химические свойства. Методики, библиография. М.: «Мир», 1976.
  3. Кристаллографические методы исследования в медицине. Под ред. академика РАМН, профессора В.Н. Шаболина. Сб. научн. Трудов 1 Всероссийской научно- практической конференции, М.: МОНИКИ, 1997

источник

Общий анализ мочи (ОАМ), также называемый клиническим, – одно из самых частых лабораторных исследований, которое проводится в диагностических целях. Он назначается при многих заболеваниях и включает в себя определение до 20 показателей, каждый из которых помогает в постановке правильного диагноза. Если вам назначили общий анализ мочи, будет полезно ознакомиться с правилами интерпретации его результатов.

Урина (лат. urina), или моча, – вид биологической жидкости, выделяемый почками. Вместе с мочой из организма выводятся многие продукты обмена веществ, а потому по ее характеристикам можно косвенно судить и о составе крови, и о состоянии мочевыводящих путей и почек.

Моча включает в себя такие вещества, как мочевина, мочевая кислота, кетоновые тела, аминокислоты, креатинин, глюкоза, белок, хлориды, сульфаты и фосфаты. Анализ химического и микробиологического состава мочи играет важную роль при диагностике: любые отклонения от нормы указывают на неправильный обмен веществ в организме пациента.

Когда назначается общий анализ мочи? Данное исследование необходимо при любых заболеваниях мочеполовой и эндокринной систем, при отклонениях в работе сердечнососудистой и иммунной систем, а также при подозрении на диабет. Также общий анализ мочи назначается больным, перенесшим стрептококковую инфекцию. Кроме того, он проводится в профилактических целях и для наблюдения за динамикой заболеваний.

Чтобы результаты анализа отражали истинную клиническую картину, подготовка к процедуре и сбор урины проводятся с соблюдением ряда правил.

Основные требования при подготовке к общему анализу мочи:

  • необходимо заранее приобрести в аптеке или получить у врача специальный стерильный контейнер для сбора жидкости;
  • сбор нужно проводить с утра: для анализа рекомендуется использовать именно утреннюю жидкость, скопившуюся за ночь, при этом для сбора в контейнер важна «средняя порция» струи мочи;
  • накануне вечером следует отказаться от приема любых лекарств, которые могут повлиять на состав мочи (об этом лучше проконсультироваться с врачом), а также от алкоголя и окрашивающих продуктов (свекла, морковь, ревень, лавровый лист и др.);
  • утренняя моча собирается натощак, перед этим нельзя ничего есть или пить;
  • перед сбором анализа нельзя сильно переохлаждаться или перегреваться.

Правила сбора:

  • желательно собрать 100–150 мл (или 2/3 специального контейнера);
  • перед сбором нужно провести тщательный туалет половых органов: в некоторых случаях женщинам рекомендуется использовать тампон;
  • собранную жидкость следует как можно скорее доставить в лабораторию (с задержкой не более 2 часов);
  • если жидкость необходимо некоторое время хранить, то контейнер можно поставить в темное и прохладное, но не слишком холодное место;
  • транспортировать контейнер желательно при плюсовых температурах в диапазоне 5-20 градусов.

Расшифровка результатов общего анализа мочи поможет разобраться в полученных показателях до визита к врачу. Однако ни в коем случае нельзя заниматься самодиагностикой и самолечением на основе полученных данных: для правильного анализа результатов и постановки диагноза необходимо обратиться к специалисту.

Моча анализируется по нескольким категориям, среди которых органолептические свойства, физико-химические показатели, биохимические характеристики, микроскопические исследования. Но обо всем по порядку.

Объем . Общий объем жидкости для анализа не позволяет делать каких-либо выводов о нарушениях диуреза. Он необходим только для определения удельного веса мочи (относительной плотности).

Диурез – объем мочи, образуемый за определенный промежуток времени (суточный или минутный диурез). Суточный диурез обычно составляет 1,5–2 литра (70–80% от выпитой жидкости). Увеличение суточного диуреза называется полиурия, уменьшение до 500 мл – олигурия.

Цвет мочи, как и прозрачность, определяется лаборантом на глаз. В норме цвет может варьироваться от соломенного до насыщенного желтого. Он определяется присутствием в моче красящих веществ – уробилина, урозеина, уроэритрина. Любые другие оттенки могут сигнализировать о тех или иных патологиях в организме, например:

  • темно-бурый – желтуха, гепатит;
  • красный или розовый цвет говорит о наличии крови в анализе;
  • темно-красный – гемоглобинурия, гемолитический криз, порфириновая болезнь;
  • черный – алкаптонурия;
  • серовато-белый цвет говорит о присутствии гноя;
  • зеленый или синий цвет объясняется процессами гниения в кишечнике.

Запах при общем анализе мочи не имеет решающего значения, так как многие продукты питания, содержащие эфирные масла или просто сильно пахнущие продукты, могут придавать ей специфический запах. Тем не менее, некоторые запахи могут свидетельствовать об определенных патологиях:

  • запах аммиака говорит о цистите;
  • фекальный запах – кишечная палочка;
  • гнилостный запах – гангренозные процессы в мочевыводящих путях;
  • запах ацетона – кетонурия (наличие кетоновых тел в моче);
  • запах гниющей рыбы – триметиламинурия (накопление триметиламина в организме).

В норме запах мочи является мягким, несколько специфичным. Если емкость находится в открытом состоянии, запах становится резким из-за процесса окисления.

Пенистость . В норме при взбалтывании мочи в ней практически не образуется пены, а если образуется, то она является прозрачной и нестойкой. При стойкости пены или ее окрашивании можно говорить о желтухе или о наличии белка в моче.

Прозрачность мочи здорового человека приближается к абсолютной. Замутнение может быть вызвано присутствием эритроцитов, бактерий, слизи, жиров, солей, гноя и других веществ. Наличие какого-либо вещества выявляется с помощью специальных методик (нагревание, добавление различных кислот и пр.). Если в моче были выявлены эритроциты, бактерии, белок или эпителий, это говорит о мочекаменной болезни, пиелонефрите, простатите и некоторых других заболеваниях. Лейкоциты свидетельствуют о цистите. Выпадение в осадок солей говорит о наличии уратов, фосфатов, оксалатов.

Плотность . Удельная плотность мочи – показатель, который зависит от возраста. Норма для взрослых и детей старше 12 лет – 1.010–1.022 г/л, для детей 4–12 лет – 1.012–1.020, для детей в возрасте 2–3 лет – 1.010–1.017, новорожденных – 1.008–1.018. Плотность мочи зависит от количества растворенных в ней солей, белков, сахаров и других веществ. При некоторых патологиях этот показатель повышается из-за наличия бактерий, лейкоцитов, эритроцитов. Повышенный показатель может говорить о сахарном диабете, инфекционных процессах в мочевыводящих путях. У беременных – свидетельствует о токсикозе. Также плотность может быть повышена из-за недостаточного потребления жидкости или ее потери. Пониженный показатель свидетельствует о почечной недостаточности, несахарном диабете. Может также возникать при обильном питье или приеме мочегонных лекарств.

Кислотность в норме находится в пределах 4–7 pH. Пониженный показатель может говорить о наличии многих заболеваний: хронической почечной недостаточности, повышенном уровне калия в крови, гормонов паращитовидной железы, уреаплазмозе, раке почек или мочевого пузыря и т.д. Повышенная кислотность также возникает при обезвоживании и голодании, при приеме некоторых препаратов, при высокой температуре и обильном потреблении мяса. pH выше нормы может свидетельствовать о сахарном диабете, снижении уровня калия и нарушениях кислотно-основного баланса крови.

Белок . Его концентрация в норме не должна превышать 0.033 г/л. Обнаружение повышенного содержания может говорить о повреждении почек, воспалениях в мочеполовой системе, аллергических реакциях, лейкозе, эпилепсии, сердечной недостаточности. Увеличение количества белка происходит при повышенных физических нагрузках, обильном потоотделении, долгой ходьбе.

Читайте также:  100 анализ мочи по нечипоренко

Повышенный белок в моче определяется у физически слабо развитых детей 7–16 лет и беременных женщин.

Сахар (глюкоза) в моче при норме – не более 0.8 ммоль/л. Повышенный сахар может быть следствием диабета, чрезмерного потребления сладкого, нарушений в работе почек, острого панкреатита, синдрома Кушинга, повышения уровня адреналина из-за поражения надпочечников. Также повышенное содержание сахара в моче может возникать во время беременности.

Билирубин – это желчный пигмент, который в норме должен отсутствовать в моче. Его обнаружение свидетельствует о резком повышении концентрации билирубина в крови, из-за чего почки берут на себя работу по его выведению (в норме билирубин полностью выводится через кишечник). Повышенный уровень данного пигмента в моче говорит о циррозе печени, гепатите, печеночной недостаточности, желчекаменной болезни. Также причиной может являться массивное разрушение эритроцитов в крови вследствие гемолитической болезни, серповидноклеточной анемии, малярии, токсического гемолиза.

Кетоновые тела (ацетон) в норме не должны определяться в общем анализе мочи. Их обнаружение говорит о нарушениях обменных процессов в результате таких заболеваний, как сахарный диабет, острый панкреатит, тиреотоксикоз, болезнь Иценко-Кушинга. Также образование кетоновых тел происходит во время голодания, вследствие алкогольной интоксикации, при чрезмерном потреблении белковой и жирной пищи, вследствие токсикоза у беременных, а также после травм, затронувших центральную нервную систему.

Осадок (органический, неорганический) . В общем анализе мочи под осадком понимают осаждающиеся после кратковременного центрифугирования клетки, цилиндры, кристаллы солей. Более подробно о различных веществах, которые могут быть выявлены в осадке, поговорим ниже.

Кровяные тельца (эритроциты, лейкоциты) . Эритроциты – красные кровяные тельца – могут присутствовать в моче в малом количестве (для женщин – 0–3 в поле зрения, единичные – для мужчин). Повышенное содержание эритроцитов говорит о серьезных заболеваниях, таких как:

  • мочекаменная болезнь;
  • нефротический синдром;
  • инфаркт почки;
  • острый гломерулонефрит;
  • рак почки, мочевого пузыря, простаты.

Лейкоциты в осадке, выявленные в общем анализе мочи, могут быть следствием заболеваний мочевыводящих путей (пиелонефрит, цистит, мочекаменная болезнь, простатит, уретрит, цистит и пр.). В норме лейкоциты в моче у женщин и детей составляют 0–6 в поле зрения, у мужчин – 0–3.

Если в результатах общего анализа мочи у вас был установлен повышенный уровень лейкоцитов, следует записаться на прием к урологу, который, вероятно, назначит дополнительные исследования – повторный ОАМ либо в совокупности с анализом мочи по Нечипоренко, трехстаканной пробой, УЗИ почек. Зачастую все опасения развеиваются после проведения повторных и дополнительных исследований.

Гиалиновые цилиндры – это цилиндрические образования, в составе которых преобладают клетки почечных канальцев и белок. В норме их не должно быть в моче. Их обнаружение (свыше 20 в 1 мл) говорит о гипертонической болезни, пиелонефрите, гломерулонефрите. Данные цилиндрические образования могут возникать также при приеме мочегонных препаратов.

Зернистые цилиндры . В их составе преобладают эритроциты и клетки почечных канальцев. Присутствие в моче зернистых цилиндров в любом количестве свидетельствует о вирусных инфекциях, пиелонефрите и гломерулонефрите. Возможно также отравление свинцом.

Восковые цилиндры , или восковидные цилиндры, образуются в результате длительного пребывания в просвете почечного канальца гиалинового или зернистого цилиндра. Их нахождение в моче в любом количестве свидетельствует о таких патологиях, как хроническая почечная недостаточность, амилоидоз почек (отложение в ткани почек нерастворимого белка – амилоида), нефротический синдром.

Бактерии . Наличие любых бактерий в общем анализе мочи говорит о воспалительных процессах в мочевыводящей системе. То есть, в норме бактерии должны отсутствовать. Их обнаружение свидетельствует о таких инфекционных заболеваниях, как уретрит, цистит, простатит и прочих. Чтобы результаты были достоверными, необходима тщательная гигиена интимных зон перед сбором мочи.

Грибы в моче, которые в норме не должны определяться, являются следствием инфекционных грибковых поражений мочевыводящих путей и наружных половых органов. Кроме того, их обнаружение может говорить об иммунодефицитных состояниях и о длительном применении антибиотиков.

Соли . Их отсутствие в моче является нормой, а наличие в осадке может говорить о возможности образования почечных камней. Повышенное содержание мочевой кислоты (уратов) может быть результатом подагры, нефрита, хронической почечной недостаточности. Ураты зачастую являются следствием определенной диеты и обезвоживания организма. У новорожденных наличие уратов является нормальным. Оксалаты могут образовываться из-за сахарного диабета и пиелонефрита, кристаллы гиппуровой кислоты – из-за дисбактериоза кишечника и печеночной недостаточности, фосфаты – из-за высокого содержания кальция в моче. Однако всегда стоит помнить, что выявление тех или иных солей часто бывает связано с повышенным потреблением тех или иных продуктов, а значит, их концентрацию можно легко снизить, изменив рацион питания.

Сводная таблица основных показателей общего анализа мочи с нормальными значениями выглядит следующим образом:

Итак, с помощью общего анализа мочи можно выявлять разнообразные болезни почек и мочевого пузыря, проблемы с предстательной железой, опухоли и пиелонефриты, а также целый ряд патологических состояний на начальных стадиях, когда клинические проявления как таковые отсутствуют. Поэтому ОАМ следует проводить не только при появлении болезненных ощущений, но также для профилактики и раннего обнаружения многих заболеваний мочеполовой системы, чтобы предупредить их дальнейшее развитие.

источник

Различные виды анализов мочи включены в число обязательных. Ещё Гиппократ говорил, что при обследовании больного нужно обращать внимание на то, как выглядит моча, насколько у данного пациента она отличается от той, которая бывает у здорового человека.

Такой анализ может быть полезен далеко не только при болезнях почек. Он может свидетельствовать о патологиях в различных органах человеческого организма.

Если проводится общеклиническое исследование биожидкости, оно предназначен для выяснения химических и физических свойств этой биологической жидкости. Выполняется оно в специальной лаборатории, и изучение носит комплексный характер. Результатом проведённого изучения может быть точный диагноз заболевания пациента.

Обычно его назначают при наличии соответствующих показаний:

  1. Когда происходят нарушения общего самочувствия.
  2. При изучении наличия заболеваний мочеполовой системы (например, в случае цистита, простатита или уретрита).
  3. Если в организме развивается патологический процесс, исследование биоматериала поможет получить информацию о том, как происходит его развитие.
  4. В тех случаях, когда проводится курс лечебной терапии, такое исследование позволяет проконтролировать состояние организма больного.
  5. При прохождении профилактического осмотра, таким образом можно получить важную информацию о состоянии организма.

Когда проводится анализ, рассматривается несколько различных параметров этой биологической жидкости. Вот примерный список таких параметров и характеристики мочи, которые говорят, что человек не болеет:

  1. Цвет здоровой урины жёлтый, при этом она должна иметь соломенно-жёлтый оттенок и быть прозрачной.
  2. Запах трудно описать, но он узнаваем и носит специфический характер.
  3. Удельный вес урины немного больше, чем у воды. Он составляет от 1005 до 1028 г/л.
  4. Реакция среды должна находиться в пределах от 5,0 до 7,0.
  5. Определённые вещества не должны присутствовать в здоровой биожидкости. Речь идёт об общем белке, билирубине, глюкозе, кетонах и о жёлчных кислотах.
  6. Не должно в моче быть эритроцитов.
  7. Лейкоцитов в поле зрения не более 6.
  8. Слизь, а также клетки эпителия могут встречаться, но такие случаи должны быть единичными.
  9. Кристаллы или цилиндры солей, а также бактерии встречаться в биожидкости не должны.

Если характеристики диагностики именно таковы, то речь идёт о здоровом организме. Если же речь о тех, кто болен, регулярная сдача такого анализа и диагностика результатов помогут контролировать состояние организма.

В продаже в аптеках имеются специальные тестовые полоски. Они могут дать предварительную, приблизительную информацию о составе биожидкости. Для выполнения исследования предоставленную полоску помещают в жидкость и она меняет цвет в зависимости от состава. В комплекте имеется цветовая таблица, которая поможет интерпретировать полученный цвет.

Одним из наиболее продуктивных способов работы является изучение мочевого осадка под микроскопом. При этом имеет место визуальное определение различных форм, которые там могут присутствовать.

Обычно для проведения такого изучения достаточно, чтобы урина простояла в течение двух часов. В результате отложится осадок, который можно будет изучить.

Обычно препарат берут пипеткой, после этого обрабатывают на центрифуге, затем проводят изучение осадка. Обращают внимание на наличие эритроцитов, лейкоцитов, гемоглобина, цилиндров или клеток эпителия.

Для проведения исследования состояния организма назначаются различные виды диагностики.

Анализ мочи по Нечипоренко предназначается для проведения исследования функционального состояния мочевыделительного тракта и почек. Эта методика была создана А. З. Нечипоренко. Она позволяет доктору:

  • подробно изучить изменения характеристик урины в зависимости от состояния здоровья пациента;
  • уточнить диагноз больного;
  • тщательно проконтролировать то, как действует на него лечебный курс.

Для данного типа исследования берётся биожидкость, полученная утром. Для анализа применяется особое оптическое устройство, которое называется Камера Горяева. В процессе исследования подсчитывается количество форменных клеток урины. Считается хорошим результатом, в результате которого установлено:

  • эритроцитов в одном миллилитре не более пятисот;
  • цилиндры обнаружены не были;
  • количество лейкоцитов не превышает двух тысяч.

Почки в процессе своей жизнедеятельности могут быть охарактеризованы качеством своей концентрационной функции. Если человек употребляет большее количество жидкости, биожидкость будет более разбавленной. Если же меньше, то более концентрированной.

Методика диагностики, которая изучает эти процессы, была предложена С. С. Зимницким. С её помощью можно проанализировать то, насколько качественно работает концентрационная функция почек у пациента.

В процессе исследования мочи по Зимницкому определяется плотность биологического материала и концентрация в нем различных веществ (аммиака, солей или белков).

Известно, что в течение суток человек в разное время употребляет различное количество жидкости. При этом в течение дня жидкости больше, что ведёт к уменьшению плотности урины. С другой стороны, после ночной задержки урина становится более плотной.

В процессе проведения диагностики выполняется изучение особенностей образования биожидкости в различное время.

Обследование проводится обычно с целью изучения определённых особенностей функционирования почек или сердечно-сосудистой системы.

В процессе изучения исследуются следующие параметры:

  1. Общий объём этой биологической жидкости. У здорового человека он обычно составляет около двух литров.
  2. Величина удельного веса биожидкости. Обычно она находится в пределах от 1008 до 1033 г/л.
  3. Соотношение между объёмом дневной и ночной мочи. Считается нормой, если количество дневной составляет примерно две третьих от общего суточного объёма.
  4. Количество жидкости в течение суток, которое пациент употребил и какая часть была выведена организмом в качестве урины. Норма в этом случае — примерно 65% — 75%.

Наличие сахара в моче может иметь место при заболевании диабетом или в случае некоторых патологий почек. Глюкоза это одно из веществ, которые содержатся в крови здоровых людей. Однако в биологическую жидкость она попадать не должна.

Здесь нужна особая процедура сбора биологической жидкости для обследования. Сначала нужно приготовить тщательно промытую и ошпаренную кипятком трёхлитровую банку. Перед собиранием мочи необходимо тщательно промыть гениталии.

Первую утреннюю порцию биологической жидкости необходимо пропустить. После этого биологический материал собирают на протяжении 24 часов. Хранить урину необходимо в прохладном месте или в холодильнике, температура не должна быть ниже +4 градусов. Перед сдачей материал взбалтывают и сливают в специальный контейнер.

В день, когда происходит сбор желательно избегать стрессовых ситуаций и перенапряжений.Не рекомендуется в это время употреблять гречневую крупу, свеклу, апельсины или грейпфруты.

Наличие сахара говорит о том, что пациент болен. У здорового человека его в урине нет.

У здорового человека белка в моче нет. Если он всё же обнаружен, это может свидетельствовать о таких заболеваниях, как иммунные патологии, различные заболевания почек, миеломной болезни и других.

Эритроциты в моче здорового пациента могут быть, но в очень незначительных количествах. В исследуемом препарате их не должно быть более двух.

При их обнаружении могут иметь две ситуации: они содержат гемоглобин и являются неизменёнными или выщелоченные. В обоих случаях их наличие указывает на заболевания мочеполовой системы.

При исследовании пробы в поле зрения у мужчин не должно быть больше трёх, у женщин — больше пяти. Превышение нормы лейкоцитов носит название лейкоцитурия. Это может быть свидетельством заболевания почек — пиелонефрита или мочевыводящих путей — цистита или уретрита.

В редких случаях данный симптом возникает при различных более тяжёлых заболеваниях.

Очень большое количество лейкоцитов говорит о наличии гнойных процессов.

Допустимо наличие одного или двух гиалиновых цилиндров. Кроме этих белковых образований, других видов присутствовать не должно.

В результате проведения обследования могут быть обнаружены цилиндры:

  • лейкоцинтарные;
  • эпителиальные;
  • зернистые;
  • восковидные;
  • эритроцитарные;
  • гиацидные.

Их наличие может говорить о множестве различных заболеваний.

В этом случае исследования подвергается биожидкость, которая была выделена в течение одного раза. Её для изучения делят на три порции, которые пациентом наполнялись последовательно. Материал собирают утром, перед этим нужно тщательно промыть гениталии.

Цель данного способа диагностики состоит в том, чтобы определить, какие именно органы мочеполовой системы подвержены воспалению в наибольшей степени.

  1. Если в биоматериале были обнаружены эритроциты, а также при наличии слишком большого количества лейкоцитов.
  2. При использовании анализа по методу Нечипоренко были получены результаты. Которые нуждаются в дальнейшем уточнении.
  3. Если был выявлен инфекционный процесс, который происходит в органах мочеполовой системы.

Как проходит анализ? Как известно, урина у здорового пациента имеет соломенно жёлтый цвет. Её состав характеризуется тем, что в жидкости отсутствуют эритроциты, а также бактерии или белок. Количество лейкоцитов при наблюдении не больше четырёх. Клетки эпителия могут присутствовать в единичных случаях.

Проводится отдельное изучение каждого из трёх образцов. Нарушение нормы может быть выявлено в некоторых из них или во всех трёх. Результаты интерпретируют следующим образом:

  1. Когда первая, самая ранняя порция имеет отклонение от нормы, то это означает, что воспалительный процесс происходит в мочеиспускательном канале. Отклонение в составе происходит от того, что он поражает стенки канала и там происходят мелкие кровоизлияния.
  2. Если нарушения возникли в третьей пробе, воспаление происходит в мочевом пузыре или в простате.
  3. Возможна и такая ситуация, когда отклонения имеются во всех трёх пробах. В этом случае нужно обратить внимание на почки или мочеточник.
Читайте также:  1500 эритроцитов в анализе мочи

Интересно отметить, что урина в нормальной ситуации полностью биологически стерильна. Однако, это относится только к здоровым людям. При некоторых заболеваниях в моче могут появляться бактерии. Это относится в первую очередь к каналам уретры. Если имеет место их воспаление. То моча смывает с их стенок бактерии, которые могут быть обнаружены с помощью данного анализа. В процессе проведения выполняются следующие действия:

  1. Оценивается степень стерильности урины.
  2. Если микробы обнаружены, определяется тип, к которому они относятся.
  3. Степень, в которой моча насыщена микроорганизмами.
  4. Исследуется чувствительность болезнетворных микроорганизмов по отношения к действию различных антибактериальных препаратов.

Для анализа достаточно десяти миллиграммов утренней биожидкости. Чтобы взять эту пробу, необходимо предварительно тщательно вымыть гениталии.

При проведении обследования выполняется бактериологический посев. На основании его результатов происходит оценка степени наличия бактерий:

  1. Показатель, равный 1000 КОЕ/мл указывает на нормальную ситуацию. В этом случае наличие бактерий соответствует нормальному уровню, который наблюдается у здорового человека.
  2. Если указанный показатель в десять раз больше, то это говорит о наличии патогенной флоры, которая пока сдерживается иммунитетом организма. Если произойдёт ослабление, можно ожидать развития воспалительных процессов.
  3. В том случае, когда показатель достигает уровня 100 000 КОЕ/мл или больше, это говорит о развитии заболевания в мочевыделительных органах человека.

Дополнительно для уточнения диагноза могут назначаться другие пробы урины.

Биоматериал для такого исследования должна браться при условии, что пациент пил мало жидкости днём и совсем не пил ночью. После первого мочеиспускания больной собирает урину через каждые три часа.

Проба предпринимается для определения наличия различных форменных элементов в урине.

Метод по Каковскому-Аддису в последние годы не очень распространён. Его применяют для исследования наличия и количества форменных элементов в моче больного.

Пациент перед сбором урины питается согласно белковой диете и ограничивает употребление жидкости.

Первое утреннее мочеиспускание пропускается. Далее в течение суток собирается урина. При этом в неё добавляются 4-5 капель Формалина. Материал необходимо сохранять в холодильной камере.

С помощью этой пробы определяется содержание в моче кальция. Известно, что данный микроэлемент является жизненно важным для организма. Недостаточное его содержание может указывать на нарушение здоровья.

Для исследования используется утренняя порция мочи. Её смешивают с особым веществом. В результате происходит химическая реакция. Одним из её результатов является помутнение жидкости. По его характеристикам делается вывод:

  1. Помутнение отсутствует. Это говорит о недостатке витамина D и о нарушении функции околощитовидных желез.
  2. Незначительная степень свидетельствует о том, что у пациента нормальная реакция здорового человека.
  3. Слишком высокая степень помутнения свидетельствует о чрезмерном содержании витамина D и слишком высокой активности околощитовидных желез.

В этом случае происходит параллельное исследование состава мочи и венозной крови пациента. Это необходимо для определения уровня концентрации креатинина. Такой вид анализа обычно используется в тех случаях, когда речь идёт о:

Врач таким образом изучает реабсорбционную и выделительную функции почек. Первая из них характеризует обратное всасывание определённых веществ в кровь или лимфу.

В данном случае изучению подвергается вся моча, которую организм пациента выделил за сутки. Обычно для этого считается, что режим потребления жидкости должен быть таким же, как всегда. Мочу собирают, начиная с семи утра одного дня до семи утра следующего.

Предметом исследования является изучение содержания следующих веществ в предоставленной для анализа урине:

Анализ мочи можно применять для диагностики и лечения детей. Так, например проба Сулковича может помочь диагностировать наличие рахита у ребёнка. Сейчас наиболее часто применяется биохимический анализ. При его рассмотрении надо учитывать, что характеристики организмов взрослых и детей могут иметь существенные различия.

Анализ мочи является одним из наиболее распространённых методов диагностики. Если имеют место подозрения о наличии тех или иных заболеваний этот анализ может помочь поставить точный и надёжный анализ.

источник

Спектральный анализ широко используется в различных отраслях промышленности и науки, и служит универсальным инструментом, который позволяет точно и оперативно исследовать элементный состав вещества. Эта информация необходима для правильного ведения технологических процессов, контроля качества исходных материалов, промежуточного и готового продуктов, а также позволяет создавать новые материалы с заданными качествами.

Современные спектральные приборы постоянно совершенствуются в соответствии с возрастающими требованиями к точности и чувствительности. В связи с разработкой и внедрением новых технологий создаются спектрометры, которые обеспечивают необходимую производительности и возможность автоматизации процесса анализа.

Спектральный анализ — совокупность методов анализа химического состава веществ, в основе которого лежит исследование спектров испускания, поглощения, отражения и люминесценции. При этом используется основное свойство спектров: длина волны или частота — индивидуальный параметр, который соответствует только определенному атому исследуемого вещества, и не зависит от источника возбуждения.

Метод отличается высокой чувствительностью, точностью и простотой, что делает его универсальным, и обуславливает его широкое распространение в промышленности.

В основе спектральных методов лежат такие процессы:

  • Абсорбция. При взаимодействии вещества с электромагнитным излучением происходит его частичное поглощение.
  • Люминесценция. При возбуждении частиц вещества под воздействием внешнего излучения происходит испускание излучения, имеющего другую частоту.
  • Эмиссия. При воздействии источника возбуждения вещество переходит в состояние плазмы и испускает излучение.
  • Рассеяние. Процесс происходит при падении электромагнитного излучение на исследуемый образец.

В зависимости от процесса, который находится в основе принципа действия, спектральные методы анализа подразделяются на следующие виды:

  • Абсорбционный.
  • Люминесцентный.
  • Эмиссионный.
  • Комбинационный.

Наибольшее распространение получил оптический эмиссионный спектральный атомный анализ (ОЭСА). Этот мощный инструмент позволяет решать различные по сложности аналитические задачи.

Оптико-эмиссионные спектральные приборы обладают высокой избирательностью, позволяют исследовать различные вещества с высокой скоростью, чувствительностью и точностью. При этом расход анализируемого вещества крайне мал.

  • возможность исследования химического состава образца в любом агрегатном состоянии;
  • подготовка пробы отличается простотой, а в некоторых случаях не требуется вовсе;
  • высокая скорость проведения анализа позволяет автоматизировать процесс;
  • анализ одного образца можно проводить многократно;
  • высокая точность результатов анализа и избирательность;
  • простота эксперимента и относительно невысокая стоимость;
  • возможность проведение исследований, как в полевых, так и лабораторных условиях.

Атомный спектральный анализ находит широкое практическое применение по сравнению с другими методами спектрального анализа. Он используется для исследования самых разнообразных объектов, а при анализе металлов и сплавов значение ОЭСА трудно переоценить.

С помощью эмиссионной спектрометрии решаются целый ряд аналитических задач:

  • Исследование химического состава сплава при ведении плавки металла.
  • Анализ готовых изделий с целью определения марки, состава, примесей.
  • Контроль качества на всех стадиях производства.
  • Контроль качества исходного материала.
  • Экологический мониторинг состояния окружающей среды.
  • Изучение химического состава геологических объектов.

Перед экологами стоят разнообразные задачи, среди которых особое место занимают определение соединений, загрязняющих почву, атмосферу и водный бассейн. Экологический мониторинг необходим для предотвращения угрозы жизни и здоровью людей, и окружающей среде, поэтому точность и скорость получения результатов анализа — наиболее важные требования, предъявляемые к анализаторам.

Эмиссионные спектрометры — универсальные приборы, которые способны исследовать не только металлические, но и токонепроводящие пробы. С их помощью можно исследовать вещества, находящиеся в различных агрегатных состояниях и формах. Диапазон спектральных линий охватывает все интересующие элементы, в том числе C, S, P, O, H и щелочно-земельные элементы.

Спектральный анализ дает возможность анализировать химический состав руд и минералов. С его помощью изучаются условия их образования, что позволяет целенаправленно проводить геологическую разведку для поиска новых месторождений.

Технология обогащения рудных и нерудных материалов требует тщательного контроля качества на всех стадиях процесса. Использование спектральных приборов делают это возможным, так как обеспечивается необходимая производительность и точность результатов анализа.

Кроме этого, спектральный анализ используется для изучения метеоритного материала. Это дает возможность сделать практические выводы о составе космических объектов.

Значение атомно-эмиссионного анализа в металлургической промышленности очень велико, так как этот метод дает ряд преимуществ. С помощью спектральных приборов решается большинство аналитических задач:

  • Определение марки стали.
  • Анализ углерода, серы и фосфора в сплаве.
  • Анализ неметаллических включений и примесей.
  • Анализ чистых металлов и сложных сплавов.
  • Сертификационный анализ.

Эмиссионные приборы широко используются для сортировки и анализа состава металлического лома, который служит сырьем для получения стали. Спектральный анализ незаменим при ведении плавки, так как позволяет оперативно получить информацию о химическом составе сплава. С его помощью решаются, как рутинные задачи, так и сложные проблемы, связанные с получением новых материалов с заданными свойствами.

Исходными материалами металлообрабатывающих предприятий служат заготовки, полученные путем литья и в результате обработки металлов давлением (поковки и металлопрокат). Организовать входящий контроль без определения химического состава заготовок невозможно, а пренебрежение этим технологическим этапом может стать причиной неисправимого брака и экономическими потерями.

Атомно-эмиссионные спектрометры — оптимальный вариант приборов для машиностроения, которые дают возможность получать точную информацию о химическом составе материала или марке стали в кратчайшие сроки. Портативные модели позволяют проводить исследования в полевых условиях, и не требуют наличия у оператора специальных знаний и особых умений, а стационарные приборы решают аналитические задачи любой сложности.

Возможности оптико-эмиссионных приборов не ограничиваются указанными выше областями промышленности, и позволяют использовать их во многих сферах жизнедеятельности человека. Конструкция и методы исследования постоянно совершенствуются, что позволяет им соответствовать уровню развития науки и технологии, и иметь оптимальные технико-экономические показатели.

источник

а В С I) Kb F ставляет пересмотреть первоначальный грубый спектр. Выясняется, что во многих широких линиях митогенетически активной является полоска шириной в несколько А, остальные участки (полосы) митогенетически пусты. Для получения общих ориентировочных результатов практикуются шаблоны—грасположение детектора только в нескольких пунктах спектра, соответствующих главнейшим хим. процессам. Главные спектрально исследованные источники излучения (см. рисунок): 1) Гликолиз—наилучше изученными источниками его являются: а) молочнокислое брожение, б) гемолизиро-ванная кровь с добавлением глюкозы, в) алкогольное брожение и др. Совпадение спектров этих химически весьма различных процессов говорит зато, что гликолитическое излучение связано с первым этапом процесса—■ распадом молекулы глюкозы на две составляющие ее триозы; только в этом начальном этапе химизм таких процессов, как например молочнокислое и алкогольное (дрожжи) брожение, совпадает; дальнейший ход гликолиза в различных случаях различен. Наиболее характерными для гликолиза являются следующие линии—1 900—20 А, 1 940— 50 А, 1 960—70 А, 2 170—80 А. 2) Протеолитический спектр —• примером служит переваривание фибрина или серум-альбумина желудочным соком и дипептидов (глицил-гли-цина) эрепсином. Совпадение в спектрах этих двух процессов заставляет связывать излучение с общим для них моментом отщепления группы NH2. Наиболее характерные линии—1 980— 90 А, 2030—50 А, 2110—30 А, 2 300—10 А, 2 340—50 А, 2 390— 2 400 А, 2 410—20 А. 3) С п е к т р фосфатазы —-в качестве объекта исследовалось действие фосфатазы на лецитин и нуклеиновую к-ту. Наиболее характерные линии, изученные нафосфатазе раковой клетки,—2 150—60 А, 2 240—50 А, 2280—90 А, 2 350—60 А, 2 460—80 А, 2 480—2 500 А—самая длинная из известных нам пока линий митогенетического излучения. Действие фосфатазы печени показывает новые линии—’1980 — 90 А, 1990 — 2 000 А. 4) Спектр распада д и-и полисахаридов — в качестве объекта были использованы мальтоза и сахароза; в соответствии с различием их хим. структуры получены были и различия в спектральной картине. Эти различия позволяют подойти к вопросу о структуре полисахарида (крахмал); совпадение его спектра с таковым мальтозы позволяет утверждать, что он является полимером этой последней. Характерные для мальтозы линии 1970—80А, 1 980—90А, 2 020—30А, 2 230—40А, 2 320—30 А, 2 370—80 А, 2 400—10 А, 2 410— 20 А, 2 430—40 А; для сахарозы характерно отсутствие первых двух линий. 5) Спектр распада креатин-фосфорной к-ты обнаруживается в целом ряде физиол. источников излучения—в мышцах, нерве, текущей крови и т. д., характеризуется линиями 2 000— 20 А, 2 030—60 А, 2 090—2 110 А и т. д. з ы (вызывающей распад мочевины) совпадает со спектрами поглощения и разрушения этого вещества; наиболее характерные линии 1 940 — 50 А, 1950—60 А, 2 040—50 А, 2 050—60 А, 2 080—90 А, 2 290—2 300 А. 7) С п е к т р окислительных процессов изучен на окислении пирогаллола в щелочной среде, окислении глюкозы перманганатом и сыворотки крови перекисью водорода, в особенности же на неорганических окислительных моделях, напр. K2Cr37+FeS04, HgCl2+SnCl2 и т. д. (Браунштейн и Потоцкая). Во всех этих случаях окислительные процессы понимаются в самом широком смысле как процессы обмена электронами между двумя хим. системами (ок-

* 20 *0 60 80 4 20 40 00. ■2100 2200

I 20 40 00 ВО * 20 40 вО 80 * SO0 2*00 2500 6) Спектр действия фермента у р е а — Диаграмма спектров митогенетического излучения различных химических источников. сиредукционные процессы); специальные опыты показьшают, что момент излучения связан с процессом присоединения электронов к системе, т. е. с редукцией. Спектры различных окислительных реакций весьма сходны, но не идентичны; характерны линии в средней части спектра, для окисления пирогаллолом напр. типичны линии 2 250—70 А, 2 280—2 300 А. Ряд линий, обнаруженных в нек-рых физиол. источниках излучения, в наст, время не может еще быть химически идентифицирован. с. Запкиид. Лит.: Фриш С, Современные теории спектров, М.—Л., 1931; Хвольсон О., Курс физики, том II, Берлин, 1923; Hicks W., Treatise on the analysis of spectra, Cambr >

источник

В современной науке и технике, для того чтобы определить химический состав веществ, используют множество различных методов. Минералы, найденные геологами, и новые вещества, полученные химиками, характеризуются, прежде всего, по составу. Для правильного ведения технологических процессов в разных отраслях необходимо точное знание химического состава данного сырья. Химические методы анализа не всегда соответствуют требованиям техники и науки. В связи с этим на практику внедряются физико-химические и физические методы исследования, которые являются более точными. Среди этих методов одно из значимых мест занимает спектральный анализ, имеющий множество ценностей и преимуществ. Данный анализ был открыт, более ста лет назад, в 1960 году Бунзеном и Кирхгофом. Открытие произвело огромное впечатление на современников и имело большое значение для развития знаний об окружающем мире. С первых дней своего существования спектральный анализ помог сделать ряд важнейших открытий. Направив спектроскоп на Солнце, Кирхгоф доказал присутствие в хромосфере железа и высказал предположение о существовании в ней элементов: Ca, Mg, Na, Ni.

Читайте также:  100 мл мочи хватит для анализа

Спектральный анализ

Спектральный анализ – это физический метод определения состава вещества, основанный на изучении спектров испускания, поглощения, отражения и люминесценции. Атомы каждого элемента испускают излучение определенных длин волн, это в свою очередь, позволяет определить, какие элементы входят в состав данного вещества. Спектры определяются свойствами электронных оболочек атомов и молекул, и воздействием структуры и массы атомных ядер на положение энергетических уровней. Спектральный анализ может обнаружить элементы в сложном веществе, даже если их масса не превышает 10грамм [1]. Когда мы используем методы спектрального анализа, мы должны учитывать в какой последовательности следует проводить анализы, чувствительность анализа, также иметь ввиду, что некоторые методы ведут к уничтожению вещественных доказательств, в результате чего, дальнейшее исследование вещества невозможно. Различают атомный и молекулярный спектральный анализ, задачи, которых состоят в определении состава вещества. В основу спектрального анализа положено разложение белого света на составные части. Если пучок света пустить на грань трехгранной призмы, то, преломляясь в стекле, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета идут в строгом порядке. Каждому цвету соответствует определенная длина этой волны или частоты. Длина волны в спектре уменьшается от красных лучей к фиолетовым от 0,7 до 0,4 мкм, а частота увеличивается, от 390 ТГц до 750 ТГц [2].

3. Методы спектрального анализа и их применение в экспертных исследованиях

Методы спектрального анализа – методы, заключающиеся в определении химического состава и строения веществ по их спектру. Их делят на две большие группы [3]. Эмиссионные методы – используют спектры поглощения атомов и является одним из наиболее распространенных методов элементарного анализа вещества, основанный на регистрации атомных спектров с помощью специального прибора – спектрографа. Целью практического эмиссионного анализа является качественное обнаружение элементов в веществе. Пробу изучаемого вещества вводят в источник излучения, где происходит ее испарение, молекулы диссоциируются и происходит возбуждение образовавшихся ионов (атомов). Последние испускают излучение, которое поступает в регистрирующее устройство спектрального прибора. При качественном атомном эмиссионном спектральном анализе спектры проб сравнивают со спектрами уже известных элементов, и потом устанавливают элементарный состав анализируемого вещества. При количественном анализе определяют количество данного элемента в исходном веществе. Точность и чувствительность атомного эмиссионного спектрального анализа зависят, прежде всего, от физических характеристик – температуры, концентрации электронов, времени пребывания атомов в зоне возбуждения. Эмиссионный анализ совместно с другими используется в методиках, устанавливающие конкретные группы объектов (дробь, стекло, автоэмали т.д.), а также органических объектов и объектов биологического происхождения. Если в составе объектов будут найдены специфические примеси, то могут быть установлены их конкретные объемы (массы). Данный анализ также применяется при исследовании продуктов выстрела, для установления последовательности и дистанции выстрелов, следов выстрела стрелявшего человека на другом лице. В последнее время внедрение в криминалистическую практику микроскопических методов эмиссионного анализа позволило повысить чувствительность метода до десятитысячных долей микрограмма. Есть один минус — при применении эмиссионного анализа – вещество, подвергающееся исследованию, уничтожается [4].

Абсорбционные методы (лат. Absorptio – поглощение, от absorbeo – поглощаю) используют спектры поглощения молекул и их частей. Абсорбционный анализ – аналитический метод определения содержащихся в пробе элементов, основанный на поглощении света свободными атомами. Через слой атомных паров пробы, которые мы получаем с помощью атомизатора (оборудование для распыления жидких дымов), пропускают излучение в диапазоне 190-850 нм. В результате атомы переходят в возбужденные энергетические состояния. Самым распространенным способом является атомизация анализируемой пробы в пламени. Этот способ наиболее простой, надежный и недорогой. Метод отличается высокой абсолютной и относительной чувствительностью. Чувствительность большинства элементов лежит в пределах от 0,005 до 10-10 мкг/мл. До разработки беспламенных способов атомизации область применения атомных спектров поглощения ограничивалась анализом растворов. Приемы беспламенной атомизации позволяют анализировать твердые и порошковые пробы очень малых размеров. Метрологические характеристики позволяют широко использовать атомно-абсорбционный метод спектрального анализа для решения большого числа аналитических задач [5]. Анализ используется для исследования микроколичеств объектов. Его точность лежит в пределах от сотых до стомиллионных долей микрограмма. Вещество также уничтожается в процессе исследования. По спектрам поглощения исследуют лаки и краски. При этом устанавливают связующее вещество, а также пигменты и наполнители. Иногда данным методом исследуются волосы человека, на принадлежность волоса тому или иному человеку; а также наличие в волосах вредных элементов (мышьяка, таллия, ртути). Абсорбционный метод может быть использован для обнаружения тяжелых элементов в твердых веществах или жидкостях (например, тетраэтилсвинца в бензине).

Также есть еще методы, которые широко используются при проведении спектрального анализа, входящие в состав этих двух групп методов. Комбинационные методы – используют спектры комбинационного рассеяния жидких, твердых и газообразных проб. При проведении данного анализа исследуемое вещество в жидком виде или в виде раствора помещается в специальную стеклянную чашку и освещается светом ртутных ламп. Спектр комбинационного рассеяния наблюдается от голубой иногда зеленой, и редко от желтых линий ртутного спектра. Зеленая и желтая линия используются для анализа мутных жидкостей и твердых порошков. При комбинационном рассеянии свет и вещество обмениваются энергией. Рассеяние можно рассматривать как очень быстрый процесс поглощения и испускания фотона (элементарная частица). При таком поглощении фотона молекула не может перейти в устойчиво возбужденное состояние. Она переходит в нестабильное состояние, из которого излучает фотон через короткий промежуток времени [6].

Люминесцентные методы – используют спектры люминесценции вещества, возбуждаемые ультрафиолетовым и инфракрасным излучении [7]. Наибольшее распространение в данном анализе получил анализ фотолюминесценции исследуемого вещества. Регистрируют люминесценцию в основном визуально, или с помощью спектрографов. Люминесцентный анализ подразделяют на качественный и количественный. Качественный анализ используют для обнаружения органических и неорганических веществ в объектах. Несмотря на свою простоту, этот прием позволяет выявлять в криминалистике следы травления, следы удаленного текста и частицы крахмала на местах перенесенного оттиска печати. Люминесценция картин при возбуждении ультрафиолетовым светом позволяет в некоторых случаях устанавливать автора картины или следы реставрации, что может оказаться существенным при экспертизе картин. Такой анализ позволяет изучать молекулярный и атомный состав вещества (например, исследование органических веществ, содержащихся в почвах). Это высокочувствительный аналитический метод. Вещество при анализе не будет уничтожаться

Рентгеновские методы – используют рентгеновские спектры атомов, получающиеся при переходах внутренних электронов. Качественный рентгеновский анализ выполняют в зависимости от положений линий в спектре испускания данного образца. Количественный — осуществляют по интенсивности этих линий. Этим методом могут быть определены все элементы с атомным номером 12. Наиболее распространенный вид рентгеновского анализа – анализ валового состава вещества. Выполняется он по интенсивности линий, которая измеряется с высокой точностью. Она колеблется в пределах от 0,3 до 10% в зависимости от состава пробы [8]. Рентгеновский спектральный анализ применяется при изучении неорганических объектов (например, неорганические компоненты почвы, лакокрасочные покрытия, металлические и другие).

Радиоспектроскопические методы – использующие спектры поглощения молекул на участке спектра с длинами волн больше 1мм. Определяется по совокупности методов исследования строения вещества, а также физических и химических процессов в нем, основанных не резонансном (возрастание температуры) поглощении радиоволн (на частотах электромагнитного поля от 10 3 до 6*10 11 Гц). Среди радиоспектроскопических методов большое значение имеют методы магнитной радиоспектроскопии – ядерный магнитный резонанс и электронный резонанс. Исследуемое вещество помещают в резонатор, который находится между полюсами магнита, и затем пропускают радиоволны, затем их фиксируют. Метод электронного резонанса применяется для исследования веществ, которые имеют непарные электроны, а также для изучения химических реакций.

Спектрофотометрический метод используется при экспертизе лекарственных, наркотических и отравляющих веществ, пищевых продуктов, химических волокон, пластмасс, лакокрасочных покрытий, резинотехнических изделий, драгоценных камней [9]. Метод нашел свое применение в криминалистике, поскольку, будучи достаточно чувствительным, позволяет провести изучение свойств определяемого образца за небольшое время в тех случаях, когда применение более трудоемких и дорогостоящих методов нецелесообразно. Распространенным приложением спектрофотометра в судебной экспертизе на сегодняшний день является определение гемоглобина и его производных, которое основывается на способности гемоглобина поглощать свет и образовывать характерные спектры поглощения в определенном диапазоне длин волн. Изменения свойств крови с течением времени могут быть использованы для ориентировочного определения давности образования пятен крови. В этом случае регистрируют спектры поглощения продуктов превращения гемоглобина. Предложено устанавливать давность образования пятен крови путем определения активности некоторых ферментов. Определение активности сывороточной холинэстеразы, осуществляемое по методу Хестрина, может применяться также при диагностике отравлений фосфорорганическими соединениями. Метод спектрофотомерии может применяться при определении некоторых показателей качества алкогольной продукции и остатков пищи.

По решаемым задачам спектральный анализ можно разделить на: элементарный – когда устанавливается состав пробы по элементам; молекулярный – когда устанавливается молекулярный состав пробы; структурный – устанавливаются составляющие молекулярного соединения; изотопный – состав пробы устанавливается по изотопам (разновидности химических элементов)

По характеру получаемых результатов: Качественный (в результате анализа определяется состав без указания на количественное соотношение компонентов); полуколичественный (результат выдается в виде оценки содержания компонентов); количественный (выдается точное количественное содержание элементов в пробе).

4. Схема проведения анализа

Прежде всего, для того, чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят в возбужденное состояние, а при их возвращении в обычное состояние, они отдают избыточную энергию в виде излучения. Например, излучение газов будет определяться составом анализируемой пробы. В связи с этим при проведении эмиссионного анализа исследуемое вещество необходимо испарить [11]. Общая схема проведения эмиссионного спектрального анализа показана ниже (рис.1). Излучение исследуемого светящегося вещества с помощью собирающей линзы (конденсора) фокусируется на входную щель спектрального прибора. Спектральный прибор раскладывает это излучение на монохроматические составляющие, каждая из которых регистрируется с помощью регистрирующего устройства.

Рис.1 Схема проведения эмиссионного анализа

(ИВ – исследуемое вещество; К – конденсор; СП – спектральный прибор; РУ – регистрирующее устройство)

Для примера схематически показан линейчатый спектр излучения (рис.2). Далее спектр излучения необходимо расшифровать, т.е. установить какому химическому элементу или соединению принадлежит та или иная линия или полоса. С этой целью используют атласы эталонных спектров химических элементов и их соединений. Установив происхождение линий и полос в спектре исследуемого вещества, мы тем самым определяем его химический состав, т.е. проводим качественный эмиссионный анализ.

Рис.2 Линейчатый спектр излучения

Для осуществления количественного анализа, кроме этого, необходимо измерить интенсивность отдельных линий или полос в спектре исследуемого вещества и сравнить её с интенсивностью аналогичных линий или полос в спектре излучения эталонных образцов, для которого известно количественное содержание интересующего нас химического элемента или соединения. С помощью эталонных образцов можно построить график зависимости интенсивности отдельной линии, обусловленной наличием в веществе исследуемого элемента, от его концентрации при одинаковых условиях возбуждения излучения образцов (т.е. градуировочный график). Чтобы обеспечить последнее условие на практике обычно используется градуировочный график в виде зависимости I/Iref=f(C) , где I/Iref – отношение интенсивности линии соответствующей примеси в эталонных образцах к интенсивности одной из линий некоторого образца сравнения. Измерив интенсивность линии в образце с неизвестной концентрацией примеси и используя градуировочный график, можно найти значение данной концентрации.

Схема проведения абсорбционного анализа немного отличается (рис.3). Для абсорбционного анализа необходим источник излучения, обладающий сплошным спектром. В качестве такого могут быть использованы лампа накаливания, газоразрядная лампа высокого давления, графитовый стержень, нагретый до высокой температуры при пропускании через него электрического тока. Исследуемое вещество располагают на пути светового пучка перед спектральным прибором. В остальном, оптическая схема абсорбционного анализа аналогична схеме эмиссионного. Абсорбционный анализ проводят в следующем порядке. Сначала измеряют спектр самого источника излучения в интересующем нас интервале длин волн от min до max. При этом исследуемое вещество убирают из светового пучка. Затем на пути светового луча помещается исследуемое вещество и измеряется спектр, прошедшего через него излучения. Расшифровка полученного спектра осуществляется с помощью атласов эталонных спектров поглощения химических элементов и их соединений. В результате устанавливается химический состав исследуемого вещества (качественный абсорбционный анализ).

Рис.3 Схема проведения абсорбционного анализа

(ИСС -источник излучения со сплошным спектром, К -конденсор, ИВ -исследуемое вещество, СП -спектральный прибор, РУ -регистрирующее устройство)

Для проведения количественного анализа необходимо измерить спектр поглощения эталонного образца. Для расчётов используют обычно одну или несколько линий поглощения, наиболее характерных для данного химического элемента [10].

Все вышеперечисленные методы спектрального анализа нашли свое применение в криминалистике. В основном спектральный анализ применяется при исследовании солей и металлов, позволяет устанавливать структуру молекул. Используется, в первую очередь, при исследовании органических соединений, но также могут быть исследованы неорганические вещества. Данные методы используются для обнаружения подделок документов (выявление зачеркнутых, залитых или выцветших текстов, записей); выявление структуры ткани; обнаружение загрязнений на тканях (остатки минеральных масел, сажа) при транспортных происшествиях и огнестрельных повреждениях; выявление замытых, а также расположенных на пестрых, ярких вещах следов крови и т.д.

Применение методов аналитической химии в экспертной работе во многом способствует эффективному проведению следствия и судебного разбирательства. Среди инструментальных аналитических методов, применяющихся в криминалистической и судебно-медицинской экспертизе, большое распространение получили различные варианты спектрального анализа. Преимуществами спектральных методов являются достоверность, информативность, быстрота проведения анализа, возможность автоматизации измерений, наличие разнообразных методов математической обработки результатов.

1. http://lnktd-opz.narod.ru/sa.html — Спектральный анализ;

3.html — Методы спектрального анализа;

5. Львов Б. В., Атомно-абсорбционный спектральный анализ, М, 1966;

6. http://www.nytek.ru/Article_403.html — Теория комбинационного рассеяния света;

8. http://allencyclopedia.ru/72541 — Рентгеновский спектральный анализ;

9.http://www.kazedu.kz/referat/39304 — Применение физики в криминалистических исследованиях;

10.http://bookzooka.com/book/571-fizicheskie-metody-kontrolya-kachestva-materialovaabataeva/75-95-sxema-provedeniya-spektralnogo-analiza.html — Схема проведения спектрального анализа;

11. Зайдель А. Н., Основы спектрального анализа М., 1965,324с. С илл.;

источник