Меню Рубрики

Анализ мочи на оксипролин и гаг

Для наследственных коллагенопатий характерна относительно частая встречаемость патологий как в педиатрической, так и в терапевтической практике, проградиентность течения, полиорганность поражения выраженный клинический полиморфизм, ранняя инвалидизация и даже смерть больных в молодом возрасте [4, 9].

Как известно, коллагены являются семейством внеклеточных матриксных белков, играющих важную роль в поддержании целостности органов и тканей, водно-солевого равновесия участвующих в процессах иммунологической защиты организма, заживлении ран, переломов костей, агрегации тромбоцитов и др. [5–7]. Мутации в генах, отвечающих за синтез этих белков, или дефицит активности посттрансляционных ферментов синтеза коллагенов приводят к возникновению таких наследственных болезней, как несовершенный остеогенез, некоторые типы синдрома Элерса – Данлоса, синдром Марфана, синдром Альпорте, дистрофические формы буллезного эпидермолиза, значительное число хондродисплазии, сходные мутации обнаружены также при остеоартрозе, различных вариантах остеопороза и др. [10, 11]. Другой серьезной проблемой практической медицины считаются болезни, сопровождающиеся избыточным синтезом коллагена, что приводит к развитию фиброза легких, печени и почек. В основе этих заболеваний лежат генетические дефекты, сопровождающиеся снижением активности ферментов, принимающие участие в распаде коллагеновых белков [12]. При изучении биохимических показателей коллагенопатии было показано, что уровень оксипролина (ОП) в крови, экскреция его с мочой вместе с его метаболитами коллагенов, а также глюкозамингликанов (ГАГ) в указанных биохимических материалах метаболитов, основного вещества соединительной ткани (СТ), изменяется закономерно в зависимости от возраста клинических и генетических форм заболевания.

Основной диагностический показатель наследственных коллагенопатий глюкозамингликаны (ГАГ) по химической структуре являются линейными полимерами содержащими аминосахар (N-ацетилированный или N-сульфатированный) и уроновую или идуроновую кислоту, образующие специфические для каждого типа дисахаридазные единицы. Посредством цепей глюкозамингликанов и стержневого белка протеогликаны взаимодействуют с коллагеновыми белками, фибронектином, протеиназами, ростовыми факторами, нейромедиаторами, гормонами, липопротеидами, мембранными рецепторами и ионами.

Глюкозамингликаны разделяют на две неоднородные группы – несульфатированные (гиалуроновая кислота, хондроитин) и сульфатированные. Последние представлены гепарансульфатом, который по своим химическим свойствам сходен с гепарином, хондроитин-4-сульфатом, хондроитин-6-сульфатом (для обоих соединений характерно наличие дисахаридазной единицы, состоящей из N-ацетил, Д-галактозамин и Д-глюкуроновой кислоты), дерматансульфатом, в котором повторяющаяся дисахаридазная единица содержит сульфатированный N-ацетил, Д-галактозамин и L-идуроновую кислоту, гепарином и кератансульфатом. Последний, однако, не является истинным глюкозамингликаном, так как не содержит уроновой кислоты. Соотношение глюкозамингликанов в разных типах тканей варьируется.

Другим показателем обмена коллагена является оксипролин. Оксипролин – одна из основных аминокислот коллагена, что позволяет считать его маркером, отражающим катаболизм этого белка. Около 20 % оксипролинсодержащих пептидов, высвобождаемых из коллагеновых молекул, экскретируются с мочой, а 80 % метаболизируются в печени. Практически 90 % оксипролина мочи является компонентом пептидов небольшой молекулярной массы, а около 9 % большой (преимущественно фрагментов N-концевых пропептидов проколлагена I типа). В свободном виде находится только 1,0 % оксипролина. Поэтому увеличение количества свободного и, соответственно, снижение уровня связанного оксипролина может косвенно свидетельствовать о нарушении синтеза коллагена.

Генетические дефекты синтеза коллагена приводят к уменьшению числа легко растворимого коллагена. Именно поэтому у пациентов с наследственными коллагенопатиями отмечается достоверное повышение количества оксипролина в суточной моче, выраженность которого коррелирует с тяжестью патологического процесса.

Изучение наследственных коллагенопатий в Азербайджанской Республике показало распространение этой патологии. В эндемических очагах республики уровень наследственных коллагенопатий составляет 15 %. Поэтому разработка комплексных методов диагностики для нашей республики является очень важной и актуальной [1, 2].

Таким образом, целью данной работы является исследование биохимических показателей метаболитов коллагена и основного вещества СТ среди больных с наследственнными коллагенопатиями.

Материалы и методы исследования

Собственные наблюдения составили 172 больных в основном с диагнозом синдрома Марфана, несовершенного остеогенеза и семейного пролапса митрального клапана в возрасте от 2 до 39 лет – 80 женщин и 92 мужчин из 110 семей, а также их 120 здоровых родственников I и II степени родства. Контрольную группу составили 20 здоровых лиц в возрасте от 2 до 39 лет. Клинический протокол обследования семей включал: данные анамнеза жизни и болезни, анализ первичной медицинской документации пробанда и членов его семьи, составление родословных и результаты лабораторных методов исследования. Клинический диагноз больных был поставлен врачами. Для диагноза наследственных коллагенопатий исследовали определение оксипролина по П.Н. Шараеву (1981) [8]. Количество и различные формы глюкозамингликанов в моче электрофорезом на ацетат и целлюлозных пленках [3]. Количественный анализ глюкозамингликанов исследовали иммуноферментным методом с помощью теста фирмы BlueGene Biotech (China).

Результаты исследования и их обсуждение

В табл. 1 представлены показатели экскреции оксипролина в суточной моче больных с коллагенопатиями. Среди обследованных было выделено три группы: с уровнем анализированных показателей 100 % (I группа); 150 % (II группа) и более 150 % (III группа).

Проведенный анализ выявил у большинства обследованных (у 129 из 172 (75 %)) повышение выделения с суточной мочой ОП, которое отражал процесс катаболизма и синтеза коллагена. Примерно у половины (49,3 %) больных детей экскреция ОП была значительной и превышала должную величину более чем в 2 раза. Практически у трети (29,6 %) пациентов повышение этого показателя было умеренным и составило в среднем 122,1 ± 1,9 мг/сут. У четверти (25,0 %) обследованных выявлено снижение экскреции ОП, что может свидетельствовать об угнетении резорбции коллагена у этих больных. С другой стороны, с увеличением возраста больных и продолжительностью клинического течения болезни наблюдаются более высокие нарушения в обмене коллагена. В табл. 2 представлены данные глюкозамингликанов в суточной моче у больных с коллагенопатиями.

Как видно из таблицы, среди 172 обследованных больных у 140 (81,4 %) экскреция глюкозамингликанов с мочой выше по сравнению с контрольной группой. В этой группе больных полученные данные показывают активацию катаболизма межклеточных соединительной ткани. У 53,5 % больных уровень ГАГ был в 2 раза выше нормы. Однако у 18,6 % обследованных уровень ГАГ по сравнению с контрольной группой было ниже. А это показывает о низком межклеточном катаболизме соединительной ткани. Во второй группе установлено увеличение количества оксипролина и глюкозамингликанов одновременно. В группе больных, где уровень ГАГ был ниже 100 %, наблюдали повышение ОП в суточной моче. Такая комбинация биохимических показателей выявила у больных тяжелое течение заболевания. У больных с высоким содержанием (до > 150 %) ГАГ в суточной моче выявляли также снижение ОП более 100 % и клиническое течение заболевания было более мягким. Наличие достоверной взаимосвязи между изолированным нарушением экскреции ГАГ в суточной моче и тяжестью клинической картины заболевание показывает важность исследования данных биохимических показателей.

В следующей табл. 3 представлены показатели ОП и ГАГ в крови среди обследованных больных.

Количество сывороточного ОП среди больных выявлено в двух диапазонах. Больные, имеющие низкий уровень оксипролина и лица с повышенными показателями. Среди больных низкий уровень оксипролина было 51,1 ± 1,28 мкг % (10,1–109,7). Данный показатель ниже на 4,6 раз по сравнению с контрольной группой. Низкий уровень ОП в крови сопровождается повышенной экскрецией оксипролина в суточной моче. Повышенный уровень ОП в крови колебался от 181,0 до 359,2, в среднем 225,6 ± 4,11. Сравнение этих данных с контрольной группой показало, что здесь изменения незначительные. Уровень ГАГ же среди обследованных было 11,2 ± 4,75 мкг %. Данный показатель был повышен на 1,7 раз по сравнению с контрольной группой. Количество ГАГ в крови было ниже от показателей установленных в суточной моче.

Экскреция оксипролина в суточной моче больных с коллагенопатиями

источник

Оксипролин по структуре представляет собой 4-оксипирролидин-2-карбоновую кислоту, относится к иминокислотам . Имеет четыре оптических изомера из-за присутствия в структуре двух асимметричных атомов углерода — L-оксипролин, D-оксипролин, алло-L-оксипролин, алло-D-оксипролин.

Природный L-оксипролин является специфической составляющей эластина и коллагена — белков соединительной ткани, ряда растительных белков. В других белковых веществах — эта иминокислота, выявляется в гораздо меньших количествах. L-оксипролин в клетках синтезируется путем витамин-С-опосредованного гидроксилирования пролина, связанного в белках.

Исследование содержания оксипролина в урине, помогает получить информацию об обмене белков соединительной ткани в случае тех патологий, которые сопровождаются деструкцией соединительнотканных структур. В их перечень входят онкопатологии костной ткани, коллагенозы, процессы заживления ран. Оксипролин является одной из основных составляющих коллагена, поэтому данное вещество можно считать маркером, который способен отражать катаболические процессы этого белка.

Вещество выходит в кровь при катаболическом превращении коллагена в форме и полипептида, и свободного олигопептида, по причине того, что повторно он не может применяться для синтетических реакций. Исходя из этого, существенная часть оксипролина эндогенного происхождения, который находится в моче — продукт катаболизма разных форм коллагеновых молекул.

По причине того, что около половины всего коллагена локализовано в костной ткани, и там его биохимические превращения протекают интенсивнее, чем в остальных тканях, то было сделано предположение, что выделение оксипролина с мочой — отражение процесса резорбции костной ткани. Но нужно понимать, что взаимосвязь экскретируемого с мочой оксипролина с метаболическими превращениями коллагена является весьма непростой.

Примерно 90% оксипролина, высвобождаемого при резорбции в костной ткани, становится свободной иминокислотой, циркулирует в кровеносной системе, а затем подвергается фильтрации и реабсорбции, причем обратное всасывание происходит почти полностью. Далее, реабсорбированное вещество подвергается окислению в гепатоцитах до мочевины и углекислого газа. Можно сделать вывод, что определяемая величина оксипролина в моче только на 10% отражает катаболизм коллагена костной ткани.

Концентрация оксипролина исследуется в суточной моче для оценки экскреции этого вещества на протяжении полного дня. Пациент должен быть осведомлен о правилах подготовки к исследованию и о том, как правильно собрать мочу. На протяжении нескольких суток до сбора урины, необходимо соблюдать диету, которая исключает продукты, в каких содержится желатин.

Одной из разновидностей исследования оксипролина в моче, является анализ уровня оксипролина в утренней моче после 12-часового голодания, по отношению к уровню креатинина в этой же порции урины.

Методика определения оксипролина в моче базируется на окислении вещества перекисью в присутствии Cu2+ в щелочной среде. При этом образуется пиролл, какой окрашивается в розовый цвет парадиметиламинобензальдегидом. Содержание оксипролина пропорционально интенсивности окраски раствора.

При сборе мочи, первая (утренняя порция) — выливается, далее урина собирается в течение суток, а утренняя порция, на следующий день, уже включается в общий объем мочи.

Уровень оксипролина отражает интенсивность катаболических реакций коллагена. Экскреция этого вещества возрастает в случае, если присутствует одно из следующих состояний:

  • ревматоидный артрит ;
  • ревматизм;
  • дерматомиозит ;
  • системная склеродермия;
  • болезнь Педжета;
  • гиперпаратиреоидизм;
  • наследственная гипергидроксипролинемия (патология провоцируется недостатком фермента — гидроксипролиноксидазы);
  • остеомаляция;
  • акромегалия;
  • глюкокортикоид-индуцированный остеопороз .

У здорового взрослого за сутки допускается выведение до 8 мг свободного оксипролина.

Помимо оксипролина в качестве маркеров деструкции костной ткани актуальны такие аналиты: галактозилоксилизин, тартрат-резистентную кислую фосфатазу, пиридинолин и дезоксипиридинолин, С-концевые телопептиды коллагена первого типа, N-телопептид.

Исследование уровня оксипролина в моче является важным анализом, позволяющим оценить степень деструкции в костных тканях. Референсные значения и единицы измерения показателя могут отличаться в зависимости от конкретной лаборатории.

источник

Комплексное исследование, направленное на определение содержания аминокислот и их производных в моче в целях диагностики врождённых и приобретенных нарушений аминокислотного обмена.

Состав комплекса: Аланин • Аргинин • Аспарагиновая кислота • Цитруллин • Глутаминовая кислота • Глицин • Метионин • Орнитин • Фенилаланин • Тирозин • Валин • Лейцин • Изолейцин • Гидроксипролин • Серин • Аспарагин • Alpha-аминоадипиновая кислота • Глутамин • Таурин • Гистидин • Треонин • 1-метилгистидин • 3-метилгистидин • Gamma-аминомасляная кислота • Alpha-аминомасляная кислота • Пролин • Лизин • Цистин • Триптофан • Гомоцистин • Фосфоэтаноламин • Фосфосерин • Этаноламин

Аминокислотный профиль, скрининг аминоацидопатий.

Синонимы английские

Amino acid profile, screening of aminoacidopathy.

Высокоэффективная жидкостная хроматография.

Мкмоль / л (микромоль на литр).

Какой биоматериал можно использовать для исследования?

Среднюю порцию утренней мочи.

Как правильно подготовиться к исследованию?

  • Исключить из рациона алкоголь в течение 24 часов до исследования.
  • Исключить прием мочегонных препаратов в течение 48 часов до сбора мочи (по согласованию с врачом).

Общая информация об исследовании

Аминокислоты – это органические соединения, которые являются основными структурными компонентами белков. В свободном или связанном состоянии они участвуют в ферментативных реакциях, гормональных процессах, выполняют роль нейротрансмиттеров, участвуют в метаболизме холестерола, регуляции рН, контроле воспалительных реакций.

Всего в составе белковых молекул в организме человека было обнаружено 20 аминокислот, из которых часть является незаменимыми, то есть они не синтезируются в организме и должны постоянно присутствовать в употребляемой человеком пище. К незаменимым аминокислотам относятся лизин, гистидин, аргинин, треонин, валин, метионин, триптофан, фенилаланин, лейцин, изолейцин. К заменимым относятся аланин, аргинин, цистин, цистеин, гистидин, глицин, серин, аспарагиновая кислота, тирозин, пролин, оксипролин, глутаминовая кислота. Помимо этого, известен ряд аминокислот, которые являются производными и важными биологическими компонентами других аминокислот.

Читайте также:  100 анализ мочи по нечипоренко

Анализ аминокислот в моче позволяет оценить их качественный и количественный состав, получить информацию об имеющемся дисбалансе, что может свидетельствовать о пищевых и метаболических нарушениях, лежащих в основе большого числа заболеваний. Следует отметить, что снижение количества той или иной аминокислоты в моче происходит раньше, чем в плазме крови. Учитывая эти обстоятельства и доступность исходного биоматериала, определение аминокислот в моче может быть рекомендовано для оценки ранних изменений аминокислотного состава.

Для определения качественного и количественного состава аминокислот в моче используется метод высокоэффективной жидкостной хроматографии. Он относится к современным хроматографическим методам анализа. Хроматография – это метод разделения и определения веществ, основанный на распределении компонентов между двумя фазами – подвижной и неподвижной. Жидкостная хроматография – метод разделения и анализа сложных смесей веществ, в котором подвижной фазой является жидкость. Он позволяет разделить и выявить количественно более широкий круг веществ с различной молекулярной массой и размерами, в данном случае аминокислот в моче. Исследуются следующие аминокислоты и их производные.

Аланин является одним из источников синтеза глюкозы и регулятором уровня сахара в крови, а также важным энергетическим компонентом для органов центральной нервной системы.

Аргинин участвует в ряде ферментативных реакций и выведении из организма остаточного азота в составе мочевины, креатинина, орнитина, в репаративных процессах.

Аспарагиновая кислота участвует в реакцияхцикла переаминирования и мочевины, синтезе пуриновых и пиримидиновых оснований, регуляции синтеза иммуноглобулинов.

Цитруллин участвует в стимуляции процессов иммунной системы, в процессах детоксикации в печени.

Глутаминовая кислота является нейромедиаторной аминокислотой, стимулирующей передачу возбуждения в синапсах центральной нервной системы. Участвует в обмене белков, углеводов, окислительно-восстановительных процессах, детоксикационных процессах и выведении аммиака из организма. Также принимает участие в синтезе других аминокислот, ацетилхолина, АТФ (аденозинтрифостфата), в переносе ионов калия, входит в состав скелетной мускулатуры.

Глицин является нейромедиаторной аминокислотой, регулирующей процессы торможения и возбуждения в центральной нервной системе. Участвует в выработке порфиринов, пуриновых оснований. Повышает обменные процессы в головном мозге, улучшает умственную работоспособность.

Метионин – это аминокислота, которая необходима для синтеза адреналина, холина. Участвует в обмене жиров, фосфолипидов, витаминов, активирует действие гормонов, ферментов, белков. Является источником серы в выработке серосодержащих аминокислот, в частности цистеина. Метионин также обеспечивает процессы детоксикации, способствует пищеварению, является одним из источников синтеза глюкозы.

Орнитин участвует в синтезе мочевины, снижении концентрации аммиака в плазме крови, регулирует кислотно-щелочной баланс в организме человека. Необходим для синтеза и высвобождения инсулина и соматотропного гормона, для нормального функционирования иммунной системы.

Фенилаланин необходим для синтеза нейромедиаторов: адреналина, норадреналина, допамина. Улучшает работу центральной нервной системы, функционирование щитовидной железы.

Аминокислота тирозин необходима в биосинтезе меланинов, дофамина, адреналина, гормонов щитовидной железы. Улучшает работу надпочечников, щитовидной железы, гипофиза.

Валин является важным источником для функционирования мышечной ткани, участвует в поддержании баланса азота в организме, регулирует восстановительные процессы в поврежденных тканях.

Лейцин является важным компонентом в синтезе холестерина, других стероидов и гормона роста и, следовательно, участвует в процессах регенерации тканей и органов.

Изолейцин участвует в энергетических процессах организма, регулирует уровень глюкозы в крови, необходим для синтеза гемоглобина и также участвует в регенерации кожи, мышечной, хрящевой и костной тканей.

Гидроксипролин является компонентом большинства органов и тканей организма человека, входит в состав коллагена.

Аминокислота серин необходима для синтеза пуриновых и пиримидиновых оснований, а также для ряда других аминокислот (цистеина, метионина, глицина). Участвует в обмене жирных кислот и жиров, в функционировании некоторых ферментов.

Аспарагин является важным регулятором процессов, происходящих в центральной нервной системе (возбуждение-торможение), участвует в метаболизме и синтезе аминокислот в печени.

Альфа-аминоадипиновая кислота является одним из продуктов конечного обмена аминокислот.

Глутамин участвует в синтезе углеводов, других аминокислот, нуклеиновых кислот, ферментов. Обеспечивает поддержание кислотно-щелочного равновесия, необходим для синтеза белков скелетной и гладкомышечной мускулатуры, обладает антиоксидантной активностью.

Таурин способствует увеличению энергетической активности клеток, участвует в процессах заживления и регенерации, нормализует функциональное состояние клеточных мембран.

Гистидин является исходным веществом при синтезе гистамина, мышечных белков, большого числа ферментов. Входит в состав гемоглобина, участвует в процессах регенерации и роста тканей.

Треонин необходим в синтезе коллагена и эластина, регулирует обмен веществ за счет участия в функционировании работы печени, белковом и жировом обмене.

1-метилгистидин и 3-метилгистидин являются одними из показателей распада белков мышечной ткани.

Гамма-аминомасляная кислота в основном содержится в центральной нервной системе и головном мозге. Участвует в обменных процессах в данных органах, в процессах нейромедиаторной передачи импульсов, оказывая тормозящее действие на нервную активность, а также играет роль в метаболизме глюкозы.

Альфа-аминомасляная кислота участвует в синтезе некоторых белков и является продуктом биосинтеза офтальмовой кислоты, являющейся структурным компонентом хрусталика глаза.

Пролин входит в состав большинства белков, а также является компонентом инсулина, адренокортикотропного гормона, коллагена. Способствует восстановлению кожи, соединительной ткани.

Лизин входит в состав большинства белков, необходим дляроста, восстановления тканей, синтеза гормонов, ферментов, антител, синтеза коллагена.

Цистин является компонентом множества белков и донором тиольных групп для пептидов, что играет важную роль в их метаболизме и биологической активности. Входит в состав инсулина, соматотропного гормона.

Для чего используется исследование?

  • Для диагностики аминокислотного состава мочи;
  • Для диагностики врождённых и приобретенных нарушений аминокислотного обмена;
  • Для диагностики первичных аминоацидопатий;
  • Для скрининговой диагностики вторичных аминоацидопатий;
  • Для контроля проводимой лекарственной терапии;
  • Для оценки нутритивного статуса.

Когда назначается исследование?

  • При подозрении на нарушение аминокислотного обмена, аминоацидопатии;
  • При нарушении питания, диете, приеме белковых препаратов, гормональных веществ;
  • При подозрении на нарушение обмена, состава аминокислот в организме человека;
  • При подозрении на врождённые и приобретенные аминоацидопатии.

Референсные значения (мкмоль/л)

Референсные значения,
ммоль/моль
креатинина

источник

анализ мочи «на аминокислоты»
Как расшифровать анализ в домашних условиях.

Сейчас эту тему просматривают: Нет

Категория:
Для сохранения части сообщения в цитатник выделите нужный текст в поле ниже, категорию цитаты и нажмите кнопку «на память». В случае, если требуется сохранить всё сообщение, достаточно только выбрать категорию и нажать упомянутую кнопку. Для отмены нажмите кнопку «закрыть окно».
Предыдущая тема :: Следующая тема
Автор Сообщение
llazy
Академик

На сайте с 02.02.08
Сообщения: 9088
В дневниках: 45108
Откуда: Nsk

Добавлено: Чт Фев 11, 2016 19:53 Заголовок сообщения: анализ мочи «на аминокислоты»
Как расшифровать анализ мочи с гор.больницы в домашних условиях.

Анализ получен прошлом году, заключение гл.генетика НСО — здорова.
Фатальных нарушений обмена ( фенилкетонурия, цистинурия, гомоцистеинурия) у ребенка нет.
Для генетика важно это. Эти заболевания уходят в реестр, регистрируются. Мелкие синдромы не интересны никому , кроме родителей.

Что важно понимать — сам по себе изолированный показатель ничего не дает.
Например нашли повышенную фруктозу в моче или проба Бенедикта ( маркер сахаров в моче, в частности определяют лактазную недостаточность) положительная, надо вспомнить что ребенок ел и пил накануне. Есть ли у него такая проблема как колики, метеоризм или неустойчивый стул.

Фруктозу определяют в моче если накануне ребенок ел фрукты или пил сок, или вы используете фруктозу как сахарозаменитель. Или вы собрали мочу не специальную емкость из аптеки, а в традиционную баночку из-под детского питания. Проба Бенедикта высокочувствительная, может показать остатки сахара с посуды.

Гипераминоацидурия — это выделение азотистых соединений ( преимущественно белкового происхождения с мочой). Сам по себе положительный анализ не говорит о том что состояние обусловлено генетикой . Заболевания почек ( гломерулонефриты) и печени ( гепатиты) также могут показывать гипераминоацидурию.

Важно смотреть выделение отдельных аминокислот:
Повышенное выделение фенилаланина — фенилкетонурия, цистина — цистинурия, гомоцистеинурия хорошо описаны в интернете.

Повышенная секреция лизина, аланина , пролина и глицина с мочей в сочетании с положительной пробой Сулковича может указывать на гипопаратиреоз.

Обнаружение кетокислот (проба с треххлористым железом)
Кетокислоты в большом количестве выделяются с мочой при нарушении различных обменных процессов, в частности цикла Кребса; производные фенотиазида или салицилата — при отравлениях ими, 3-оксиантраниловая кислота — при нарушениях обмена триптофана.

Проба с 2.4НДФГ на кетокислоты дублирует предыдущую пробу. Для того чтобы быть клинически значимыми обе должны быть положительные.

Синдром недифференцировнной дисплазии соединительной ткани ( ДСТ)

Для подтверждения диагноза синдрома НДСТ используют биохимические
методы диагностики. Наиболее информативным является определение уровня
маркеров распада коллагена: оксипролина и гликозоаминогликанов в суточной моче,
лизина, пролина, оксипролина в сыворотке крови.

Но косвенными маркерами могут быть также положительная проба Сулковича, количественная проба на глюкозаминогликаны ( увеличение их содержания в моче), увеличение экскреции хондроитинсульфатов.

Предположить о том что у ребенка ДСТ можно подробно собрав анамнез у родственников и ребенка

Цитата:
У всех детей с НДСТ обнаруживаются так называемые «малые аномалии
развития» (МАР) или «дисморфии». К наиболее часто встречающимся МАР при ДСТ
относятся: светлокожесть, сросшиеся брови, широкая переносица, гипер-и
гипотелоризм, голубые склеры, эпикант, высокое небо, неправильный рост зубов,
диастема, деформированная ушная раковина, приросшая мочка, изогнутые мизинцы,
неполная синдактилия пальцев, сандалевидная щель, светлый или рыжий цвет волос.
Не всегда наличие МАР расценивается как признак дисплазии. Диагностически
значимым для диагностики ДСТ является наличие 6 и более МАР
Цитата:
Внешние изменения кожи характеризуются наличием ее гиперэластичности,
веснушек, повышенной растяжимости, ранимости, стрий [33], келоидных рубцов,
выраженной подкожной венозной сети, пигментных пятен типа «кофе с молоком»
либо депигментации, рубчиков по типу «папиросной бумаги», большого количества
невусов
Цитата:
Поражение плотной соединительной ткани проявляется изменениями со стороны
скелета: нарушением осанки в виде кифоза и сколиоза позвоночника, сутулости,
деформациями грудной клетки, арахнодактилией, наличием плоскостопия или «полой
стопы» и др. [9,23]. Пациенты, как правило, имеют высокий рост, астеническое
телосложение

Цитата:
К проявлениям ДСТ органа зрения относится: миопия, гиперметропия, эпикант,
дислокация хрусталика, отслойка сетчатки, дегенеративные изменения на глазном
дне, увеличение длины глазного яблока, плоская роговица, голубые склеры,
косоглазие
Цитата:
Со стороны суставной системы может наблюдаться гипермобильность суставов разной степени выраженности

Цитата:
У детей с признаками врожденной ДСТ доказано более тяжелое
течение бронхиальной астмы с ранним формированием легочной гипертензии [17,34].
Воспалительная бронхолегочная патология у детей с ДСТ чаще принимает
рецидивирующий характер, дебют ее развивается раньше, а течение самой патологии
тяжелее

Цитата:
Отмечается высокая частота фенов ДСТ у детей с
патологией гастродуоденальной зоны: изменений со стороны кожи, нарушений
осанки, СГГС [11], ПМК [16]. При ДСТ описана высокая частота эзофагитов,
гастродуоденитов [16], патологии толстого кишечника [21], холециститов и др.
Аномалии желчного пузыря и рефлюксы дополняют картину. Реже встречается
язвенная болезнь двенадцатиперстной кишки [16]. ДСТ может выступать как
усугубляющий фактор выраженности клинических проявлений со стороны ЖКТ
Цитата:
Сведения о сочетании НДСТ с патологией органов мочевой системы у
родственников свидетельствует о заболевании почек у ребенка в 90% случаев [4]. При
наличии заболевания почек дисплазия СТ диагностируется достаточно часто [5,10,12]:
это может быть поликистоз, дивертикулёз мочевого пузыря, нефроптоз, атония
чашечно-лоханочной системы, удвоение почки и/или мочевыводящих путей [10,22],
пролапс гениталий [28], множественные аневризмы почечных сосудов [10,39].
Наличие множественных МАР у больных острым гломерулонефритом может быть
косвенным критерием тяжёлого течения процесса [

Цитата:
При различных исследованиях подтверждена высокая частота нейровегетативных
расстройств (энурез, дефекты речи, вегето-сосудистая дистония) и психики у
пациентов с дисплазией [8]. Лиц с ДСТ определяют как пациентов с высокой
ситуационной тревожностью, низкой эмоциональной устойчивостью. У них имеется
неадекватность самооценки, неэффективность компенсаторных реакций на стресс в
сочетании со снижением динамических показателей психической деятельности

Скрыть

Сами по себе ДСТ или нарушение обмена триптофана, или обмена серотонина не являются смертельными, серьезными заболеваниями но мешают расти и развиваться головному мозгу как положено. Если ребенок перенес внутриутробную гипоксию (поздний гестоз у матери в анамнезе, был хотя бы один эпизод белка в моче за время беременности, подъемы артериального давления свыше 150\100 , отеки выше уровня колена, патологическая прибавка 20 и более кг, преждевременное старение плаценты, беспокойный эмбрион который все время крутился и пинался) или внутриутробную инфекцию ( у женщины нарастали титры IgM во время беременности, она перенесла за время беременности ОРВИ, грипп, обострение герпеса, ЗПП, у ребенка после рождения была в течение трех месяцев после родов пневмония, гнойный омфалит, еще какие-то гнойно септические осложнения в течение 42 дней после родов) у него есть высокий риск не справиться с адаптацией к внеутробной жизни.

Плохо когда наследственность или анамнез родителей отягощен аутоиммунными заболеваниями ( тиреоидит Хашимото, системная красная волчанка, сахарный диабет 1-го типа, особенно развившийся в раннем возрасте, гломерулонефрит, ревматоидный артрит, рассеянный склероз, и еще много других, но более экзотических нозоологий), пороками развития — в первую очередь пороки развития сердца и почек, аллергические заболевания — любые. Отягощенный психиатрический анамнез — шизофрения, клиническая депрессия, деменция, болезнь Альцгеймера.

В совокупности с имеющимися на руках анализами и клиникой можно предполагать какое-то нарушение развития мозга связанное с нарушением обмена аминокислот.
Таким детям плохо помогают ноотропы, но они хорошо откликаются на заместительную терапию. Это витамины группы B, B6 и B5, витамин D, полиненасыщенные жирные кислоты, аминокислоты — в виде взвеси кортексин, или чистые аминокислоты триптофан, мелатонин.

Этот топик основан исключительно на личных наблюдениях, не является исчерпывающим по данному вопросу и не заменяет обращение за консультацией к специалисту для постановки диагноза и выбора лечения.

Вернуться к началу

На сайте с 27.10.09
Сообщения: 780
В дневниках: 92
Откуда: Новосибирск, м Покрышкина

Добавлено: Чт Фев 11, 2016 22:22
Спасибо! Вопросов все равно куча. Мозг взорвется скоро. Когда будет возможность и желание, просветите, пожалуйста. )


Мы два раза сдавали селективный скрининг, с разницей в полгода, вот что в обоих случаях расходится с нормой и на что генетик совсем отмахнулась без объяснений.

Проба Сулковича — стоит ++, в бумаге от генетика норма «отриц». А везде в интернете пишут, что норма + — ++. Это избыток или норма? Если это избыток кальция, не может ли он быть вызван тем, что за месяц до анализа ребенок прошел курс витаминов с кальцием?

Проба на гипераминоацидурию — 5,4 и 6,7. Почки и печень проверены (узи, уролог, анализы по направлению педиатра), в норме. Что и как еще можно проверить? Дальше почки?

Проба на кетокислоты с 2.4НДФГ ++. Теперь понятно что это.
Проба на кетокислоты с железом — серый и молочный. Совершенно непонятно что означают эти цвета. В интернете описывают другие.

Креатинин 10,2 и 12,5. Я поняла только то, что это проблемы с почками.

Пролин + (делали только во второй раз). Но это же в моче, а не в крови, при этом лизин тоже в моче в номе. Все равно подтверждает ДСТ?

Хондроитиносульфат ++++ и +++. Теперь тоже попонятнее.

Аланин ++++. Тоже теперь понятно что может предположить гипопаратиреоз.

Аспарагин ++. Непонятно, что означает. Из интернета вычитала только то, что связано с аммиаком, а значит с почками, правильно?

Олигосахара +. Вот это совсем непонятно.
—-

И вот если с нарушением обмена триптофана хоть немного понятно, то про гипопаратиреоз — совсем непонятно. Я из всего поняла только, что есть нехватка магния и нарушение обмена витамина Д, остальное пока еще абракадабра для меня.

источник

Просмотр полной версии : Особенный ребенок. Педиатры, неврологи, генетики, помогите с диагнозом и тактикой

Ребенок родился в срок, роды без особенностей (так в выписке написали, реально — затяжной потужной период). Была кефалогематома, билирубин до 266, сначала вели консервативно (с 5го по 15й день капельницы по 8 часов с глюкозой, кокарбоксилазой и т.п.), но через две недели все-таки в нейрохирургии пунктировали.
Еще при рождении обнаружили двусторонний брюшной крипторхизм, поэтому отправили на консультацию к генетику (в 1 месяц — ничего особенного).
В 4 месяца невролог ставит задержку моторного развития. Ребенок плохо держит головку, мышечная дистония, плохо группируется.
В 4,5 месяца с диагнозом перинатальная энцефалопатия, с-м двигательных нарушений занимется в реабилитационном отделении (ЛФК, массаж, церебролизин, вит. В12, глицисед, гопантенат кальция). Небольшое улучшение.
На выписку рекомендовано: кардонат, АТФ-лонг.
Пролечились в санатории (вели как ДЦП, гипотонический тип), стало еще хуже, гипотония усилилась.
Консультация областного невролога, диагноз — задержка моторного развития неясной этиологии, рекомендована консультация генетика.
У ребенка мышечная гипотония, гипермобильность суставов, голубые склеры, плосковальгусная стопа.
Половой хроматин — 0%.
Генетик выставляет под вопросом наследственное нарушение обмена? С-м Вильямса? С-м Элерса-Данлоса?
и отправляет на консультацию в Харьковский специализированый медико-генетический центр.

Консультация Офтальмолога: Врожденная близорукость слабой степени. Мегалокорнеа.

Выписка из Харькова:
скрининг-тест мочи — кальций -отр (норма пол.), проба на пролин пол.(норма отр.)
ТСХ АК крови — (ФА, тир, трип)=7-8 мг%
ТСХ угл.крови — нормограмма
Щелочная фосфатаза крови 135,5 (норма 117 Е/л)
ТСХ АК мочи — креатинин 0,04 (0,06-0,09), (ФА,тир,трип)=1 мг%, следы валина, повышение пролина, глицина.
ТСХ угл.мочи — нормограмма
ГАГ мочи 39 (норма до 262 lg ЦПХ % г креат.)
Оксипролин мочи 10,7 мг/сут (норма 21,1-51,3 мг/сут)
ГАГ крови — растворимые сульфогликаны 20,6 (норма 4,37-11,6), общие сульфогликаны 25,2 (норма 8,21-16,1)
УЗИ: (7.09.2006) диффузные измененияпаренхимы печени. Деформация, гипотония желчного пузыря. Умеренные признаки холангита, панкреопатии. Почки: метаболические изменения. Умеренный каликоз.
ЭМГ (7.09.2006): признаки миопатического синдрома

На основании фенотипа, клинической картины, родословной, данных дополнительных и лабораторных методов д-з: МУКОПОЛИСАХАРИДОЗ

После этого еще 2 раза консультировались в Харькове, менялись показатели ГАГ второй раз почти до нормы, третий раз опять повысились.
На повторной электромиографии положительная динамика, нижняя границы нормы, что для мукополисахаридоза не характерно.
В итоге нас направили в Киев для определения типа мукополисахаридоза.
В Киеве д-з мукополисахаридоз категорически исключили (по фенотипу, клинической картине, ЦПХ-тесту мочи 49 при норме до 244).
Предположили опять с-м Вильямса.
Мы сразу же обследовались у кардиолога на предмет порока сердца (что характеризует с-м Вильямса), но никакой патологии не выявлено.

Вот так мы развивались:
1мес 26дн — хорошо держит голову лежа на животике
2мес 21дн — улыбается в ответ на улыбку
2мес 26дн — перевернулся с животика на спинку
4мес 9дн — со спинки на животик
4мес 18дн — сгруппировался сам
5мес 12дн — лежа на животе, приподнимается на прямых руках
10мес — первый зуб
1г и 2мес — говорит «папа»
1г и 3мес — ползает по пластунски
1г и 4мес — подпевает маме, встает из положения сидя
1г и 6мес — самостоятельно сел
1г и 10мес — ползает на четвереньках
1г и 11мес — ходит, держась одной ручкой
2г и 2мес — начал ходить самостоятельно

Сейчас 2года 5мес. Ходит самостоятельно, но пошатывается.
Просьбы не понимает, не выполняет.
Понимает смысл некоторых слов (гулять, кушать, пить, банан, печенье, в общем, то, что любит).
Но не говорит ни слова. Все требования выражает криками, плачем, иногда жестами (протягивает ручку). Например, когда слушает музыку, требует переключить песню, поменять диск, приносит для этого пульт от проигрывателя. Приносит мыльные пузыри, чтоб мы выдували. На имя не отзывается. На вопросы «Где мама?», «Где папа?» не реагирует.
Но постоянно требует включать ему детские песни, требует, чтоб рассказывали ему длинные стихотворения, слушает, раскрыв рот, местами поддакивая, очень любил рассматривать книжки, но потом этот интерес пропал. Взгляд очень умный с самого начала, никто не понимает, почему с ребенком что-то не так.

Что вы можете посоветовать?
Если нужна дополнительная информация, пишите.

Я правильно поняла, что ребенок — мальчик?

Какие генетические исследования были проведены? Их результаты?
Что сейчас со зрением?

источник

Статья опубликована в рамках:

Выходные данные сборника:

ОЦЕНКА МАРКЕРА ОКСИПРОЛИНА И ЕГО ЗНАЧЕНИЕ У ЖЕНЩИН С НЕДИФФЕРЕНЦИРОВАНОЙ ДИСПЛАЗИЕЙ СОЕДИНИТЕЛЬНОЙ ТКАНИ

Лукина Татьяна Сергеевна

зам. главного врача, врач акушер-гинеколог ООО МЦ «Здоровое поколение», РФ, г. Калуга

ASSESSMENT OF HYDROXY-PROLIFIC MARKER AND ITS VALUE IN WOMEN WITH UNDIFFERENTIATED DYSPLASIA OF CONNECTIVE TISSUE

Tatyana Lukina

deputy Chief Doctor, Obstetrics and Gynecology Doctor, OOO MC “Zdorovoye pokoleniye”,
Russia, Kaluga

В статье проводиться оценка и исследование оксипролина в биологических жидкостях у женщин с недифференцированной дисплазией соединительной ткани (НДСТ) что, дает информацию о состоянии обмена коллагена при заболеваниях, сопровождающихся деструктивными процессами в соединительной ткани.

In the article assessment and research of hydroxy-prolific in body fluids in women with undifferentiated connective tissue dysplasia (NDCTD) are carried out that gives information about the state of collagen metabolism while diseases involving destructive processes in the connective tissue.

Ключевые слова: Маркер, оксипролин, дородовая подготовки беременных, недифференцированной дисплазией соединительной ткани.

Keywords: marker; hydroxy-prolific; prenatal training of pregnant women; undifferentiated connective tissue dysplasia.

При НДСТ происходит увеличение коллагена 4 типа за счет деструкции фибронектина эндогенного матрикса, что приводит к увеличению оксипролина. Необходимость биохимического исследования метаболизма структурных компонентов соединительной ткани как интегральной оценки состояния беременных с Н ДСТ очевидна [1, с. 24]. Из белковых компонентов волокнистой части соединительной ткани исследовался оксипролин (ОП) в сыворотке крови, после соблюдения в течение 3 предшествующих суток ограничивающей диеты [1, с. 24]. Исследовалось содержание общего и свободного ОП в суточной моче, по соотношению которых можно судить о степени выраженности нарушений метаболизма соединительной ткани [2, с. 270]. Анализ биохимических данных у пациентов с ДСТ до лечения выявил повышенные значения показателей метаболитов соединительной ткани, свидетельствующие о повышенном ≪распаде≫ волокнистых компонентов как в связи с избыточным ростом пациентов, так и воздействием неблагоприятных факторов на неполноценную соединительную ткань [2, с. 270]. Исследование оксипролина в биологических жидкостях дает информацию о состоянии обмена коллагена при заболеваниях, сопровождающихся деструктивными процессами в соединительной ткани (коллагенозы, опухоли костной ткани, заживление ран) [3, с. 37]. Оксипролин — одна из основных аминокислот коллагена, что позволяет считать его маркером, отражающим катаболизм этого белка. Необходимость биохимического исследования метаболизма структурных компонентов соединительной ткани и построение математической модели как интегральной оценки состояния беременных с НДСТ очевидна [4, с. 50]. Информативность биохимических показателей обусловлена тем, что при воздействии неблагоприятных экзо- и эндофакторов (повышение температуры, изменение рН среды и другие) «дефектные волокна» и углеводно-белковые комплексы соединительной ткани быстро теряют свою структурность. Следовательно, биохимические методики можно использовать в аспекте оценки эффективности магниевой терапии и составления прогноза течения диспластического процесса [5, с. 69]. Алло-L-O обнаружен в свободном состоянии в сандаловом дереве, входит в состав ядовитых пептидов, бледной поганки. В живых клетках L-O образуется гидроксилированием связанного в белках пролина (кислородный атом гидроксила включается в О путём фиксации атмосферного O2.. Волокна коллагена, которые не соответствуют линиям механического напряжения, т. е. не несут функциональной нагрузки, резорбируются у здоровых женщин, а другие, такие как коллаген 4 типа увеличиваются у женщин, страдающих бесплодием и маркерами НДСТ [6, с. 171]. В отличие от женщин группы сравнения у пациенток с маркерами (НДСТ) отмечалось статистически значимое преобладание 5 и более стигм. У женщины с признаками НДСТ связки становятся эластичными, высокорастяжимыми, что приводит и к увеличению оксипролина 4 типа и к нарушениям конструкции органов малого таза [6, с. 171]. Однако подобных работ в доступной литературе не достаточное количество. Определено повышение уровня экскреции оксипролина у беременных с соединительнотканной дисплазией и внутриутробными инфекциями (46,8±7,5 мг/сутки против 36,5±16,1 мг/сутки в контроле), что расценено как проявление нарушенного катаболизма коллагена, которое отражает сложные патогенетические отношения между макро- и микроорганизмом [5, с. 172]. Материалы и методы: обследовано 180 беременных. В зависимости от наличия НДСТ сформировано 2 группы: I группа (основная) (n=80) с маркерами НДСТ, II группа контрольная, в которую включили беременных без признаков НДСТ (n= 100). Оценка степени тяжести дисплазии соединительной ткани проводилась по шкале клинических критериев выраженности НДСТ. По степени выраженности в основной группе НДСТ она была разделена на 3 подгруппы: легкая (маловыраженная) степень ДСТ (n=20); средняя (умеренно выраженная) (n=32); тяжелая (выраженная) степень ДСТ (n=28). Для подтверждения НДСТ у всех пациенток проводилось исследование уровня суточной экскреции оксипролина в моче с использованием тестовых полосок Kruskal Wallis фирмы ANOVA.

Результаты: В отличие от женщин группы сравнения у пациенток с маркерами (НДСТ) отмечалось статистически значимое преобладание 5 и более стигм 69,8±3,2 % в основной группе и 23,4±3,8 % в контрольной (р 0,05). На фоне лечения уровень метаболита снижался. К 22 неделям отмечено снижение на 25 %, а к 34 неделям соответствовал группе здоровых беременных. Повысился уровень оксипролина к 22 неделям по сравнению с контрольной группой (2 подгруппа) на 60,7 %.

При изучении показателей уровня магния в сыворотке крови установлено, что у женщин контрольной группы (без НДСТ) на протяжении всего периода наблюдения уровень магния не меняется, составляя в среднем 0,70 ±0,05, не достоверно увеличивался к 22 недели (p>0,05). При беременности у женщин с НДСТ в 12 недель содержание магния было достоверно ниже чем в контрольной группе (p>0,05). На фоне приема препарата магния отмечена нормализация показателя к 34 нед. беременности. После реабилитационного курса комплексной терапии происходила активация кровообращения, обменных процессов во всех органах и тканях, что вело к усилению метаболизма соединительной ткани и временному увеличению продуктов ее метаболизма в сыворотке крови и моче после первого курса комплексной реабилитации.

Результаты: В отличие от женщин группы сравнения у пациенток с маркерами (НДСТ) отмечалось статистически значимое преобладание 5 и более стигм 69,8±3,2 % в основной группе и 23,4±3,8 % в контрольной (р

источник

Аминокислоты — органические соединения, являющиеся основной составляющей частью протеинов (белков). Нарушение обмена аминокислот является причиной многих заболеваний (печени и почек). Анализ аминокислот (мочи и крови) является основным средством оценки степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе многих хронических нарушений.

Биоматериалом для комплексного анализа на аминокислоты в Лаборатории Гемотест может служить кровь или моча.

Исследуется следующие незаменимые аминокислоты: аланин, аргинин, аспарагиновая кислота, цитруллин, глутаминовая кислота, глицин, метионин, орнитин, фенилаланин, тирозин, валин, лейцин, изолейцин, гидроксипролин, серин, аспарагин, α-аминоадипиновая кислота, глутамин, β-аланин, таурин, гистидин, треонин, 1-метилгистидин, 3-метилгистидин, γ-аминомасляная кислота, β-аминоизомасляная кислота, α-аминомасляная кислота, пролин, цистатионин, лизин, цистин, цистеиновая кислота.

Аланин – важный источник энергии для головного мозга и центральной нервной системы; укрепляет иммунную систему путем выработки антител;активно участвует в метаболизме сахаров иорганических кислот. Может быть сырьем для синтеза глюкозы в организме, это делает его важным источником энергии и регулятором уровня сахара в крови.

Снижение концентрации: хронические болезни почек, кетотическая гипогликемия.

Повышение концентрации: гипераланинемия, цитруллинемия (умеренное повышение), болезнь Кушинга, подагра, гипероротининемия, гистидиемия, дефицит пируваткарбоксилазы,лизинурическая белковая непереносимость.

Аргинин является условно заменимой аминокислотой. Участвует в цикле переаминирования и выведения из организма конечного азота, то есть продукта распада отработанных белков. От мощности работы цикла (орнитин — цитруллин — аргинин) зависит способность организма создавать мочевину и очищаться от белковых шлаков.

Снижение концентрации :3 дня после оперативного вмешательства на брюшной полости, хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации: гипераргининемия, в некоторых случаях гиперинсулинемии II типа.

Аспарагиновая кислота входит в состав белков, играет важную роль в реакциях цикла мочевины и переа-минирования, участвует в биосинтезе пуринов и пиримидинов.

Снижение концентрации: 1 сутки после оперативного вмешательства.

Повышение концентрации: моча – дикарбоксильная аминоацидурия.

Цитруллин повышает энергообеспечение, стимулирует иммунную систему, в процессах обмена веществ превращается в L-аргинин. Обезвреживает аммиак, повреждающий клетки печени.

Повышение концентрации цитруллина: цитруллинемия, болезни печени, интоксикация аммонием, дефицит пируват-карбоксилазы, лизинурическое нарушение толерантности к белку.

Моча — цитруллинемия, болезнь Хартнупа, аргининосукцинат-ацидурия.

Глутаминовая кислота является нейромедиатором, передающим импульсы в центральной нервной системе. Играет важную роль в углеводном обмене и способствует проникновению кальция через гематоэнцефалический барьер. Снижение концентрации: гистидинемия, хроническая почечная недостаточность.

Повышение концентрации: рак поджелудочной железы, подагра, глутаминовая ,ацидурия, ревматоидный артрит. Моча – дикарбоксильная аминоацидурия.

Глицин является регулятором обмена веществ, нормализует процессы возбуждения и торможения в центральной нервной системе, обладает антистрессорным эффектом, повышает умственную работоспособность.

Снижение концентрации: подагра, сахарный диабет.

Повышение концентрации: септицемия, гипогликемия, гипераммониемия 1 типа, тяжелые ожоги, голодание, пропионовая ацидемия, метилмалоновая ацидемия, хроническая почечная недостаточность. Моча – гипогликемия, цистинурия, болезнь Хартнупа, беременность, гиперпролинемия,глицинурия, ревматоидный артрит.

Метионин незаменимая аминокислота, помогающая переработке жиров, предотвращая ихотложение в печени и стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Способствует пищеварению, обеспечивает дезинтоксикационныепроцессы, уменьшает мышечную слабость, защищает от воздействия радиации,полезна при остеопорозе и химической аллергии.

Снижение концентрации: гомоцистинурия, нарушение белкового питания.

Повышение концентрации: карциноидный синдром, гомоцистинурия, гиперметионинемия, тирозинемия, тяжелые заболевания печени.

Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Необходим для иммунной системы, участвует в дезинтоксикационных процессах и восстановлении пече-ночных клеток.

Снижение концентрации: карциноидный синдром, хроническая почечная недостаточность.

Повышение концентрации: спиральная атрофия хориоидной оболочки и сетчатки, тяжелые ожоги,гемолиз.

Фенилаланин — незаменимая аминокислота, в организме она может превращаться в тирозин, который, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина. Влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит.

Повышение концентрации: преходящая тирозинемия новорожденных, гиперфенилаланинемия,сепсис, пе-ченочная энцефалопатия, вирусный гепатит, фенилкетонурия.

Тирозин является предшественником нейромедиаторов норадреналина и дофамина.Участвует в регуляциинастроения; недостаток тирозина приводит к дефициту норадреналина, что приводит к депрессии. Подавляет аппетит, уменьшает отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза, также участвует в обмене фенилаланина. Тиреоидные гормоны образуются при при-соединении к тирозину атомов йода.

Снижение концентрации: поликистоз почек, гипотермия, фенилкетонурия, хроническая почечная недоста-точность, карциноидный синдром, микседема, гипотиреоидизм, ревматоидный артрит.

Повышение концентрации: гипертирозинемия, гипертиреоидизм, сепсис.

Валин незаменимая аминокислота, оказывающая стимулирующее действие. Необходима для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме, может быть использован мышцами в качестве источника энергии.

Снижение концентрации: гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, гипервалинемия,недостаточное белковое питание, карциноидный синдром, острое голодание.

Лейцин и изолейцин — защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц. Способны понижать уровень сахара в крови и стимулировать выделение гормона роста.

Снижение концентрации: острое голодание, гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, ожирение, голодание, вирусный гепатит.

Гидроксипролин содержится в тканях практически всего организма, входит в состав коллагена, на долю которого приходится большая часть белка в организме млекопитающих. Синтез гидроксипролина нару- шается при дефиците витамина С.

Повышение концентрации: гидроксипролинемия, уремия, цирроз печени.

Серин относится к группе заменимых аминокислот, участвует в образовании активных центров ряда ферментов, обеспечивая их функцию. Важен в биосинтезе других заменимых аминокислот : глицина, цистеина, метионина, триптофана.Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

Снижение концентрации: недостаточность фосфоглицерат дегидрогеназы, подагра.

Повышение концентрации серина: непереносимость белка. Моча – ожоги, болезнь Хартнупа.

Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной

системе; препятствует как чрезмерному возбуждению, так и излишнему торможению, участвует в процессах синтеза аминокислот в печени.

Повышение концентрации: ожоги, болезнь Хартнупа, цистиноз.

Альфа-аминоадипиновая кислота — метаболит основных биохимических путей лизина.

Повышение концентрации: гиперлизинемия, альфа-аминоадипиновая ацидурия, альфа-кетоадипиновая ацидурия, синдром Рея.

Глутамин выполняет ряд жизненно важных функций в организме: участвует в синтезе аминокислот, углеводов, нуклеиновых кислот, цАМФ и ц-ГМФ, фолиевой кислоты, ферментов, осуществляющих окислительно-восстановительные реакции (НАД), серотонина, н-аминобензойной кислоты; обезвреживает аммиак; превращается в аминомасляную кислоту (ГАМК); способен повышать проницаемость мышечных клеток для ионов калия.

Снижение концентрации глутамина: ревматоидный артрит

Повышение концентрации: Кровь – Гипераммониемия, вызванная следующими причинами: печеночная кома, синдром Рея, менингит, кровоизлияние в мозг, дефекты цикла мочевины, недостаточность орнитинтранскарбамилазы, карбамоилфосфатсинтазы, цитруллинемия, аргининсукциновая ацидурия, гиперорнитинемия,гипераммониемия, гомоцитруллинемия (HHH syndrome), в некоторых случаях гиперлизиемия 1 типа, лизинурическая белковая непереносимость. Моча – Болезнь Хартнупа, генерализованная аминоацидурия, ревматоидый артрит.

β-аланин – является единственной бета-аминокислотой, образуется из дигидроурацила и карнозина.

Повышение концентрации: гипер-β -аланинемия.

Таурин — способствуют эмульгированию жиров в кишечнике, обладает противосудорожной активностью, оказывает кардиотропное действие, улучшает энергетические процессы, стимулирует репаративные процессы при дистрофических заболеваниях и процессах, сопровождающихся нарушением метаболизма тканей глаза, способствует нормализации функции клеточных мембран и улучшению обменных процессов.

Снижение концентрации таурина: Кровь — Маниакально-депрессивный синдром, депрессивные неврозы

Повышение концентрации таурина: Моча — Сепсис, гипер-β-аланинемия, недостаточность фолиевой кислоты (В9), первый триместр беременности, ожоги.

Гистидин входит в состав активных центров множества ферментов, является предшественником в био-синтезе гистамина. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.

Снижение концентрации гистидина: Ревматоидный артрит

Повышение концентрации гистидина: Гистидинемия, беременность, болезнь Хартнупа, генерализован-

Треонин — это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме, важна для синтеза коллагена и эластина, помогает работе печени, участвует в обмене жиров, стимулирует иммунитет.

Снижение концентрации треонина: Хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации треонина: Болезнь Хартнупа, беременность, ожоги, гепатолентикулярная дегенерация.

1-метилгистидин основное производное ансерина. Фермент карнозиназа превращает ансерин в β-аланин и 1-метилгистидин. Высокие уровни 1-метилгистидина, как правило, подавляют фермент карнозиназу и увеличивают концентрации ансерина. Уменьшение активности карнозиназ также встречается у пациентов с болезнью Паркинсона, рассеянным склерозом и у пациентов после инсульта. Дефицит витамина Е может привести к 1–метилгистидинурии, вследствие увеличения окислительных эффектов в скелетных мышцах.

Повышение концентрации: хроническая почечная недостаточность, мясная диета.

3-метигистидин является показателем уровня распада белков в мышцах.

Снижение концентрации: голодание, диета.

Повышение концентрации: хроническая почечная недостаточность, ожоги, множественные травмы.

Гамма-аминомасляная кислота — содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге. Лиганды рецепторов ГАМК рассматриваются, как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезнь Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия. Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Бета (β) — аминоизомасляная кислота — небелковая аминокислота является продуктом катаболизма тимина и валина. Повышение концентрации: различные типы новообразований, болезни, сопровождающиеся усиленным разрушением нуклеиновых кислот в тканях, синдром Дауна, белковое недоедание, гипер-бета-аланинемия, бета-аминоизомасляная ацидурия, отравление свинцом.

Альфа (α) -аминомасляная кислота является основным промежуточным продуктом биосинтеза офталь-мовой кислоты. Повышение концентрации: неспецифические аминоацидурии, голодание.

Пролин — одна из двадцати протеиногенных аминокислот, входит в состав всех белков всех организмов.

Снижение концентрации: Хорея Хантингтона, ожоги

Повышение концентрации: Кровь – гиперпролинемия тип 1 (недостаточность пролиноксидазы), гиперпролинемия тип 2 (недостаточность пирролин-5-карбоксилат дегидрогеназы), недостаточность белкового питания у новорожденных. Моча – гиперпролиемия 1 и 2 типов, синдром Джозефа (тяжелая пролинурия), карциноидный синдром, иминоглицинурия, болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация).

Цистатионин — cepоcoдержащая аминокислота, участвует в биосинтезе цистеина изметионина и серина.

Лизин – это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов, оказывает противовирусное действие, поддерживает уровень энергии, участвует в формировании коллагена и восстановлении тканей, улучшает усвоение кальция из крови и транспорт его в костную ткань.

Снижение концентрации: карциноидный синдром, лизинурическая протеиноваянепереносимость.

Повышение концентраций: Кровь – гиперлизинемия, глутаровая ацидемия тип 2. Моча – цистинурия, гиперлизинемия, первый триместр беременности, ожоги.

Цистин в организме является важной частью белков, таких как иммуноглобулины, инсулин и соматостатин, укрепляет соединительную ткань. Снижение концентрации цистина: белковое голодание, ожоги.Повышение концентраций цистина: Кровь — сепсис, хроническая почечная недостаточность. Моча – Цистиноз, цистинурия, цистинлизинурия, первый триместр беременности.

Цистеиновая кислота — серосодержащая аминокислота. Промежуточный продукт обмена цистеина и цистина. Принимает участие в реакциях переаминирования, является одним из предшественников таурина.

В организме человека синтезируется лишь половина необходимых аминокислот, а остальные амино-кислоты – незаменимые (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, трип-тофан, фенилаланин) — должны поступать с пищей. Исключение из рациона какой-либо незаменимой аминокислоты из рациона ведет к развитию отрицательного азотистого баланса, клинически проявляющегося нарушением функций нервной системы, мышечной слабостью и другими признаками патологии обмена веществ и энергии.

Показания к назначению анализа:

  • Диагностика заболеваний, связанных с нарушением аминокислотного обмена.
  • Оценка состояния организма человека.

Необходимо соблюдать общие правила подготовки. Кровь на исследование необходимо сдавать натощак. Между последним приёмом пищи и взятием крови должно пройти не менее 8 часов.

Мочу для исследования собрать среднюю утреннюю порцию.

источник