Меню Рубрики

Анализ адгезия тромбоцитов где сдать

Адгезия тромбоцитов представляет собой присоединение кровяной субстанции к стенкам поврежденного сосуда. Она создает определенную защиту от патогенной микрофлоры, которая может проникнуть внутрь системы.

За счет такого явления человек может не переживать, что порез или травма мягких тканей приведет к серьезным осложнениям. После формирования тромб закрепляется на стенках поврежденного сосуда. Таким образом нормализуется кровообращение, пострадавшему удается избежать серьезных последствий.

Тромбоцитами называются самые мелкие клетки в организме человека, защищающие его от серьезной кровопотери. В процессе агрегации они склеиваются между собой. Это начальная стадия формирования тромба. Далее происходит нарастание его за счет увеличения клеток, которые закрепляются на стенке поврежденного сосуда. Формируется сгусток, который перекрывает движение кровотока. Скорость адгезии тромбоцитов — важный для жизни человека показатель.

На этот процесс влияют многочисленные факторы. Например, агрегация, при которой клетки крови склеиваются. Но это явление может играть как положительную, так и отрицательную роль для человеческого организма.

Каждый человек должен знать, что это такое — адгезия тромбоцитов. Процесс предусматривает формирование тромба, нужного, чтобы предупредить сильное кровотечение и спасти человека от смерти.

Недостаточная выработка этих клеток приводит к тому, что процесс адгезии минимальный и кровяной субстанции не хватает для формирования тромба. Если кровяные клетки вырабатываются в недостаточном количестве, происходит образование патологических процессов.

Повышенное количество клеток приводит к тому, что у пациента развиваются тромбозы и эмболия. Патологические процессы встречаются в любой части тела или во внутренних органах. Особенно там, где сетка сосудов расположена достаточно плотно.

Это объясняется тем, что высокая концентрация тромбоцитов увеличивает в размерах тромб. Он отрывается и начинает движение по системе кровообращения. Это серьезные нарушения, так как попавший в сердце сгусток становится причиной инфаркта миокарда. Чаще всего после такого явления человек умирает.

Исследование адгезии тромбоцитов необходимо проводить регулярно. Чтобы избежать серьезных последствий и сберечь свою жизнь, человеку следует посещать врачей, проходить медицинские обследования. В первую очередь нужно сдать кровь на анализ. Тест позволяет определить количество тромбоцитов и сравнить его с допустимыми нормами.

Нормальные показатели колеблются в пределах 180–400 тыс. клеток на 1 мл крови. Если параметры завышены или занижены, необходимо отправляться к врачу, чтобы он назначил эффективное лечение. С собой нужно взять результаты анализов из любой специализированной лаборатории, например, «Инвитро». Цель терапевтических методов заключается в том, чтобы стабилизировать уровень тромбоцитов в крови.

Медицина предусматривает различные диагностические способы определения параметров свертываемости. Самыми точными являются глобальные и локальные тесты.

Чтобы разобраться, как происходит весь процесс, необходимо внимательно изучить механизм адгезии:

  1. В результате механического воздействия повреждается стенка сосуда.
  2. Происходит образование незначительного кровотечения.
  3. Нервные импульсы передают сигнал рецепторам о том, что необходимо связать тромбоциты.
  4. В это же время происходит и выработка клеток коллагена. Они помогают удерживаться тромбу на внутренней стороне поврежденного сосуда.

Процесс адгезии и агрегации тромбоцитов не происходит сам по себе. Для его активации необходим сигнал, который подают нервные импульсы.

Чтобы предупредить риск развития патологических процессов, необходимо делать анализ агрегации тромбоцитов. Исследования помогут не только выявить увеличение скорости процесса или уменьшение, но и предупредить осложнения во время протекания любого заболевания. Специалисты рекомендуют своевременно обращаться за помощью, чтобы можно было провести профилактику патологии.

источник

Агрегация тромбоцитов — показатель нарушений в сосудисто-тромбоцитарной фазе гемостаза.

Для оценки функции тромбоцитов проводится анализ на агрегацию тромбоцитов. Исследование позволяет диагностировать и предотвратить риск развития кровоточивости, тромбофилии, оценить эффективность антиагрегантной терапии и подобрать оптимальную дозу антиагрегантов.

Когда повреждаются сосуды, тромбоциты скапливаются в месте повреждения, активируются и прилипают друг к другу, образуя тромбоцитарный тромб, происходит образование первичной гемостатической пробки, которая способствует остановке кровотечения и заживлению раны. При активации тромбоцитов возникает реакция, завершающаяся активацией фосфолипазы. В результате мембрана клетки изменяет свойства и может вступать в контакт с соседними клетками. Вследствие этого тромбоциты могут агрегировать друг с другом и образовывать тромбоцитарный тромб.

Агрегация — свойство тромбоцитов соединятся друг с другом.
Адгезия — способность тромбоцитов прилипать к поврежденной интиме сосуда.
Таким образом, адгезия и агрегация — процессы необходимые для формирования так называемой «пробки», чтобы закрыть место поражения в сосудистой стенке. Усиленная активация тромбоцитов при патологии может приводить к избыточному тромбообразованию и, наоборот, при замедлении агрегации могут возникать геморрагии (кровотечения).

Активация тромбоцитов — необходимый элемент для нормального гемостаза. В нормальных условиях циркулирующие тромбоциты не взаимодействуют с внутренней поверхностью и эндотелиальными клетками сосудов. Но при повреждении стенки сосудов в просвет сосуда выходит коллаген и тромбоциты при участии фактора Виллебранда прилипают (адгезия) к поврежденному участку сосуда.

Повышенная агрегация тромбоцитов сопровождается ишемической болезнью сердца и развитием инфаркта миокарда.

Показания:

  • для определения причин тромбозов при невынашивании беременности, при бесплодии;
  • при неудачных попытках ЭКО;
  • при сердечно-сосудистых заболеваниях — инфарктах, инсультах;
  • во время использования оральных контрацептивов;
  • во время планирования беременности и при беременности;
  • для выяснения причин повышенной кровоточивости и прогноза риска развития кровоточивости;
  • во время приема антиагрегантов;
  • для выявления чувствительности или резистентности к антиагрегантам;
  • для диагностики приобретенных и врожденных тромбоцитопатий.

Подготовка
Специальная подготовка не требуется. Взятие крови рекомендуется проводить не ранее, чем через 6–8 часов после последнего приема пищи. Накануне исследования следует исключить приём алкоголя и курение, физические и эмоциональные нагрузки.

Если пациент принимает лекарственные препараты, следует проконсультироваться с врачом по поводу целесообразности проведения исследования на фоне приёма препаратов или возможности его отмены перед исследованием, длительность отмены определяется периодом выведения препарата из крови.

Интерпретация результатов
Единицы измерения: %
В процентах норма соответствует 25–75%.

Факторы, повышающие результат:

  • гепарин;
  • гемолиз пробы крови;
  • липемия;
  • никотин.

Факторы, понижающие результат:

  • избыточное потребление чеснока (угнетает агрегацию тромбоцитов);
  • аспирин (ацетилсалициловая кислота ингибирует агрегацию тромбоцитов, блокируя синтез тромбоксана А2);
  • азлоцидин, каптоприл, карбамат, карбенциллин, хлорохин, хлорпромазин, клофибрат, ципрогептадин, декстран, дипиридамол, мочегонные, флюменавая кислота, гидроксихлорин, изосорбид динитрат, мезлоциллин, моксалактам, нифедипин, нитрофурантоин, пенициллин, фентоламин, пиперациллин, прометазин, пропранолол, простогландин Е1, пириндол, сульфинпиразон, тикарциллин, трициклические антидепрессанты;
  • тромбоцитопения.

Отклонения от нормы
Аномальная агрегация тромбоцитов сочетается со следующими состояниями:

  • нарушения тромбоцитов, вызванные дефицитом гликопротеиновых рецепторов мембраны, дефицитом мест хранения, дефицитом высвобождения АДФ;
  • недостаток белков плазмы, обеспечивающих взаимодействие тромбоцитов со стенками сосудов, в том числе фактора фон Виллебранда, фибриногена, фибронектина;
  • присутствие аномальных метаболитов и компонентов плазмы при уремии, диспротеинемии, синдроме диссеменированного внутрисосудистого свёртывания;
  • коллаген-сосудистые расстройства (синдром Марфана, osteogenesis imperfecta);
  • миелопролиферативные расстройства (эссенциальная тромбоцитемия, истинная полицитемия, хроническая миелоидная лейкемия);
  • тромбастения Glanzmann’s (Гланцманна): недостаток гликопротеина IIb/IIIa, отсутствие агрегации при действии АДФ, коллагена, адреналина, тромбина, но нормальная агрегация при действии ристомицина;
  • синдром Bernard-Soulier (Бернара-Сулье): недостаток Ib; нормальная агрегация под действием АДФ, коллагена, адреналина; недостаточная агглютинация под действием ристоцетина. В отличие от болезни фон Виллебранда агглютинация при действии ристомицина не корригируется при добавлении нормальной плазмы;
  • дефицит мест/пулов хранения (синдром Chediak- Higashi, гликогеноз типа I, синдром серых тромбоцитов, синдром Hermansky-Pudlak, синдром TAR тромбоцитопения —Trombocytopenia/pathia with Aplasia of the Radius. Этот синдром относится к группе врожденной патологии мегакариоцитарно-тромбоцитарного аппарата, сочетающийся с аномалиями костного аппарата — двустороннее отсутствие лучевой кости с укорочением предплечий, иногда с деформацией позвоночника, лопаток, дисплазией тазобедренных суставов, незаращением нёба, мышечными дефектами, косоглазием, гипоплазией легких, врожденными пороками сердца), синдром Wiskott-Aldrich: агрегация тромбоцитов может быть аномальной, часто вследствие отсутствия или снижения вторичного высвобождения АДФ;
  • дефицит циклооксигеназы: аномальная агрегация тромбоцитов в связи с неспособностью активировать путь простагландина; аспирино-подобный дефект;
  • болезнь фон Виллебранда: нормальная агрегация при действии АДФ, коллагена, адреналина; отсутствие или снижение агглютинации при действии ристоцетина (за исключением типа IIВ, где агглютинация при субнормальной концентрации ристоцетина происходит).

Снижение агрегации тромбоцитов

  • прием ацетилсалициловой кислоты, индометацина, больших доз фуросемида.

источник

Тромбоциты — самые маленькие форменные элементы крови, выполняющие множество задач, некоторые из которых были открыты совсем недавно. Адгезивная функция способствует образованию тромбов, не позволяющим крови вытекать из образовавшейся раны, а вредоносным микроорганизмам проникать в кровеносное русло.

Адгезия тромбоцитов — процесс прилипания тромбоцитов к иной поверхности, в частности к стенкам повреждённого сосуда. Эта способность делает их незаменимыми помощниками в защите организма от потери крови. Именно благодаря этим клеткам человек не истекает кровью при обычном порезе или кровотечении из носа. Механизм адгезии является одним из составляющих тромбоцитарно-сосудистого взаимодействия в процессе свёртывания крови.

В норме адгезия тромбоцитов происходит за 1-3 секунды. Этот показатель является очень важным, и его отклонения приводят к негативным последствиям для всего организма. Скорость адгезии — элемент, который обязательно учитывается врачами перед оперативным вмешательством. При неспособности тромбоцитов сформировать сгустки, перекрывающие повреждённые сосуды, пациент потеряет критически высокое количество крови.

При повреждении стенки сосуда высвобождается коллаген, который обнаруживают находящиеся поблизости тромбоциты. Клетки тут же активируются, меняя свою форму, и прилипают к волокнам коллагена, чтобы образовать тромб, препятствующий кровопотере. Адгезия происходит при помощи рецепторов, находящихся на мембране тромбоцита, именно они соединяют тромбоцит с коллагеном. Важным компонентом адгезии выступает фактор фон Виллебранда — гликопротеина, способствующего прочной связке тромбоцита с коллагеном.

Во время адгезии тромбоциты выделяют вещество, призывающее другие кровяные клетки присоединиться к уже зафиксированным на поверхности раны тромбоцитам. Тромбоциты связываются между собой, в то же время в крови происходят ферментативные реакции, в результате которых образуются сети фибрина. В них задерживаются другие форменные элементы крови, благодаря чему образуется тромбоцитарно-фибриновый сгусток, прочно удерживающийся на поверхности раны. Таким образом, кровяной поток не может вытекать из повреждённого сосуда.

Пониженная адгезия — процесс, когда образование тромбов происходит за более длительный промежуток, чем это необходимо. Это нарушение приводит к значительной кровопотере даже при небольшом повреждении тканей, а серьёзные травмы несут угрозу для жизни.

Заподозрить наличие пониженной адгезии можно по следующим признакам:

  • кровоточивость дёсен,
  • продолжительное кровотечение из мелких порезов,
  • кровоподтёки,
  • образование синяков от незначительного физического воздействия,
  • носовые кровотечения,
  • слабость, вялость,
  • бледность кожных покровов,
  • образование язвочек в ротовой полости.

Наиболее частые причины кроются в снижении тромбоцитов либо нарушении фактора фон Виллебранда.

Упадок уровня тромбоцитов происходит из-за следующих факторов:

  • наследственные заболевания (анемия Фанкони);
  • болезнь Верльгофа (тромбоцитопеническая пурпура);
  • вирусные заболевания — гепатит, инфекционный мононуклеоз, парвовирус В 19, герпес, ВИЧ;
  • радиационное облучение при лучевой терапии, воздействии рентгеновских лучей;
  • особая чувствительность к компонентам лекарственных препаратов (антибиотиков, противосудорожных, противовоспалительных, цитостатиков);
  • аутоиммунные заболевания (системная красная волчанка);
  • интоксикация токсичными веществами (в том числе алкоголем);
  • сердечная недостаточность;
  • нарушения функции щитовидной железы;
  • поражение печени;
  • лейкоз;
  • беременность;
  • хирургические вмешательства.

Дефекты фактора фон Виллебранда чаще всего провоцируют мутации гена, всего известно более 300 мутаций гена фон Виллебранда. Наследственные причины:

  • болезнь Виллебранда,
  • синдром Бернарда-Сулье.

Приобретёнными факторами являются:

  • стеноз аортального клапана,
  • лимфома, лейкоз,
  • множественная миелома,
  • легочная гипертензия,
  • опухоль Вильмса.

Терапия напрямую зависит от причины, вызвавшей снижение адгезии тромбоцитов.

  • Лечение пониженной адгезии, связанной с аутоиммунными заболеваниями, включает применение глюкокортикостероидных гормонов, иммунодепрессантов. При тяжёлых формах необходимо хирургическое удаление селезёнки.
  • При заболеваниях, вызванных дефектом фактора фон Виллебранда, назначаются антидиуретические гормоны (Десмопрессин, Вазопрессин), которые повышают фактор свёртываемости.
  • Если антидиуретические средства не оказывают эффекта, используют замещение фактора Виллебранда путём вливания концентрата, содержащего компоненты этого фактора.
  • При кровотечениях назначается аминокапроновая кислота, которая не только уменьшает кровоточивость, но и способствует образованию тромбоцитов. Рекомендуется пропить курс витаминов С, Р, А.
  • Существенно влияют на увеличение адгезии синтетические гормональные противозачаточные средства. Их назначают при кровотечениях, особенно при обильных маточных кровопотерях.
  • Для купирования капиллярных и паренхиматозных кровотечений назначаются антигеморрагические средства (Адроксон).
  • Для увеличения числа тромбоцитов предписывается переливание донорской тромбоцитарной массы.
  • Народными средствами очищения крови и повышения числа тромбоцитов являются: соки и отвары крапивы, настойка прополиса, настои тысячелистника и душицы. В меню следует ввести: гречневые супы и каши, свеклу, щавель, петрушку, укроп, лук, чеснок, арахис.
Читайте также:  6000 лейкоцитов при анализе по нечипоренко

При повышенном значении возникает угроза образования тромбов в кровеносных сосудах. Адгезия происходит даже при отсутствии кровотечения. Либо при наличии кровотечения образуется тромб, превышающий необходимые размеры. В результате, тромб отрывается и перемещается по кровяному руслу. Это опасное состояние может привести к закупорке жизненно важных артерий, инсульту, инфаркту.

Симптомы, указывающие на повышенный уровень адгезии:

  • болевые приступы в брюшной полости;
  • боли в области спины, суставов;
  • увеличение размеров селезёнки;
  • покалывание и онемение в кончиках пальцев, стопах;
  • повышение температуры;
  • головные боли;
  • нарушение стула (в том числе кровь в кале).
  • Химиотерапия.
  • Приём лекарственных средств (кортикостероиды, противогрибковые, симпатомиметики).
  • Приём противозачаточных гормональных контрацептивов.
  • Эритремия (болезнь Вакеза).
  • Удаление селезёнки и другие хирургические операции.
  • Переломы крупных костей.
  • Вирусные инфекции (гепатит, энцефалит).
  • Бактериальное заражение (менингококковая инфекция, воспаление лёгких).
  • Грибковые инфекции (аспергиллез, кандидоз).
  • Нехватка железа в организме.
  • Туберкулёз.
  • Интоксикация.
  • Злокачественные опухоли.
  • Лишний вес.

В зависимости от факторов, вызвавших повышенную адгезию, назначается лечение.

  • При заболеваниях различной этиологии назначаются соответственно противовирусные, антибиотики, противогрибковые средства.
  • Пациенту назначается курс препаратов, разжижающих кровь, что уменьшает вероятность образования тромбов (аспирин).
  • Курс железосодержащих препаратов назначается при выявленном дефиците железа.
  • Для снижения свёртываемости крови предписываются антикоагулянты, антиагреганты.
  • Если снижение уровня тромбоцитов представляется необходимым, назначают препараты интерферона, гидроксимочевину.
  • В отдельных случаях назначают цитостатики, способствующие снижению процесса размножения клеток, в том числе тромбоцитов.
  • При тяжёлых формах применяется тромбоцитаферез — удаление избыточного числа тромбоцитов с помощью сепаратора клеток крови.
  • Народные средства, снижающие уровень тромбоцитов: отвары тёрна и корней шелковицы, настойки из корней пиона и каштановой кожуры. В рацион следует включить виноградный сок, зелёный чай с имбирём и корицей, шиповник, боярышник, апельсины.

Для определения уровня адгезии используется диагностика образца крови пациента. Необходимо сдавать анализ на голодный желудок, исключив в предыдущий день употребление жирных, острых блюд, алкоголя. Диагностика включает в себя:

  1. Клинический анализ, определяющий:
    • число тромбоцитов,
    • средний объём тромбоцитов (MPV),
    • ширину распределения тромбоцитов (PDW),
    • средний тромбоцитарный компонент (MPC).
  2. Оценка времени кровотечения:
    • На мочке уха наносят незначительное повреждение при помощи иглы, визуально высчитывая время от начала до окончания кровотечения.
    • Проба Дуке. Совершается прокол пальца на 3 мм, спустя каждые 30 секунд лаборант прикладывает к проколу бумагу. Кровяные капли на бумаге становятся всё меньше и постепенно пропадают, по числу капель определяется время кровотечения.

источник

На рис. 22 показаны адгезированные тром­боциты на участке деэндотелизации. Через не­сколько минут после повреждения сосудистой стенки формируется сплошной слой адгезиро-ванных и агрегированных тромбоцитов, кото­рые являются основой тромбоцитарного тром­ба (рис. 23).

В процессе адгезии важную роль играют 2 ме­ханизма. Один из них — непосредственная адге­зия тромбоцитов через рецепторы GPIa-IIa и GPVI к коллагену субэндотелия. Однако это вза­имодействие недостаточно для удержания тром­боцитов в местах воздействия высоких скоростей кровотока — артериях и артериолах. Другой ме-

Рис. 22. Адгезированные тромбоцитына поврежденной (деэндотелизированной) сосудистой стенке

Рис. 23. Тромбоцитарный тромб,сформированный на поврежденной сосудистой стенке

ханизм, эффективно удерживающий тромбоциты привысокой скорости кровотока, включает ад­гезию тромбоцитов, опосредованную молекула-ми адгезии — фактором Виллебранда, фибронек-тином,витронектином, ламинином, тромбоспон-дином и др. In vivo оба эти механизма работают параллельно.Возможно, что первичный контакт тромбоцитов с субэндотелием осуществляется благодаря первому механизму, тогда как окон­чательная фиксация тромбоцитов происходит за счет формирования связей субэндотелий — фак-тор Виллебранда — GPIb-V-IX и связей, опосре­дованных другими молекулами адгезии.

Фактор Виллебранда (vWF) — один из самых больших гликопротеидов плазмы, имеет молеку­лярную массу от 540 до нескольких тысяч кДа, содержит в цепочке более 2000 аминокислот.

Ген фактора Виллебранда находится на корот­ком плече 12-й хромосомы. Синтез фактора Вил­лебранда происходит в эндотелиоцитах и мегака-риоцитах. Фактор Виллебранда из эндотелиоци-гов секретируется или в плазму, или в субэндоте-лиальное пространство; кроме того, он может со­держаться в тельцах Вейбла-Палада эндотелиоци-тов (пулы хранения) и секретироваться после сти­муляции эндотелиальных клеток. Фактор Вилле­бранда, синтезированный мегакариоцитами, со­держится в альфа-гранулах тромбоцитов.

Информация о синтезе фактора Виллебран­да получена в основном при изучении его в куль­турах эндотелиальных клеток. Первичный про­дукт синтеза, обозначаемый как пpe-пpo-vWF, найден в эндотелии и тромбоцитах, он иммуно-логически отличается от зрелого фактора Вилле­бранда. Его уровень снижен у пациентов с болез­нью Виллебранда.

Пре-про-vWF содержит 2813 аминокислот­ных остатков. В эндоплазматическом ретикулу-ме после гликозилирования npe-npo-vWF преоб­разуется в пpo-vWF, который превращается в зре­лый vWF после отщепления пептида, состоящего из 741 аминокислотного остатка. Этот полипеп­тид идентифицируется как антиген II vWF (vWF:AgII).

Процесс димеризации и полимеризации vWF происходит одновременно. Зрелая субъединица

vWF содержит 2050 аминокислотных остатков, 169 из которых — цистеин, сгруппированный в областях, расположенных в амино- и карбокси-концах молекулы (N- и С-концы). Процесс диме­ризации связан с образованием дисульфидных мостиков между С-концами молекулы, а дальней­шая полимеризация происходит за счет образо­вания дисульфидных связей между N-концами. Конечный продукт накапливается в тельцах Вей­бла-Палада в эндотелиоцитах и в α-гранулах тромбоцитов.

Фактор Виллебранда состоит из ряда полиме­ров прогрессивно увеличивающейся молекулярной массы: разделяют легкие, средние, тяжелые и сверх­тяжелые мультимеры. Молекулярная масса vWF варьирует от 540 кДа у димеров до 20 тысяч кДа у самых крупных мультимеров, содержащих от 50 до 100 субъединиц. Самым большим тромбоген-ным потенциалом обладают молекулы vWF с наи­большей молекулярной массой.

В плазме нет мономеров фактора Виллебран­да, он всегда образует комплексы. Концентрация vWF в плазме составляет примерно 10 мкг/мл.

При исследовании vWF, содержащегося в пулах хранения, было выявлено, что его молеку­лярная масса, а следовательно, и тромбогенный потенциал существенно выше, чем у vWF, содер­жащегося в плазме, и наиболее высок в а-грану­лах тромбоцитов (так называемый сверхвысоко­молекулярный фактор Виллебранда). После силь­ной стимуляции тромбоцитов и эндотелиоцитов сверхвысокомолекулярный фактор Виллебранда некоторое время обнаруживается в плазме. Од­нако потом в сосудистом русле молекулярная масса vWF довольно быстро снижается до «нор­мальной» под воздействием кальпаиновых про-теаз плазмы. Такое распределение позволяет со­здавать высокий тромбогенный потенциал в ме­стах повреждения эндотелия при выбросе vWF из пулов хранения, в то же время сохраняя тромбо­генный потенциал на «обычном» уровне в интак-тном сосудистом русле.

Фактор Виллебранда имеет два пути секре­ции: непосредственная секреция после синтеза и полимеризации, которая создает определенный уровень vWF в крови, и регуляторная секреция из пулов хранения в ответ на различную стиму­ляцию. Фоновая активность vWF в крови у каж­дого человека может меняться в значительных

пределах. Реализация vWF из тромбоцитарных гранул возникает при активации тромбоцитов под воздействием различных физиологических и нефизиологических индукторов (АДФ, коллаген, адреналин, вазопрессин, серотонин, тромбин, простагландин Е1, тромбоксан А2 и др.), и в том числе плазменного vWF. Уровень vWF в крови возрастает при воспалении различного генеза, повреждении эндотелия сосудов при васкулитах, стрессе, у женщин во время беременности. По­вышение активности vWF в патологических си­туациях может способствовать развитию тром­бозов.

Вторичные изменения структуры vWF и его активности являются следствием иммунных про­цессов, тромботической тромбоцитопенической пурпуры, гемолитико-уремического синдрома и др. Описаны заболевания (болезнь Виллебран-да, тип Виченза; врожденная тромботическая тромбоцитопеническая пурпура), при которых дефект этих ферментов приводит к накоплению сверхвысокомолекулярных мультимеров vWF и преждевременной секвестрации тромбоцитов из кровотока.

Основными функциями фактора Виллебранда являются:

• опосредование адгезии тромбоцитов к субэн-
дотелиальным структурам, в первую очередь
к коллагену, и последующей агрегации тром­
боцитов (участие в первичном сосудисто-
тромбоцитарном гемостазе);

• связывание свободного фактора VIII и защи­
та его молекулы от преждевременной инак­
тивации (участие во вторичном плазменном
гемостазе).

Опосредование адгезии и агрегации тромбоци­тов.Роль фактора Виллебранда в адгезии и агре­гации тромбоцитов наиболее велика в условиях воздействия высоких скоростей кровотока. Мо­лекулы vWF специфически связываются с рецеп­торами тромбоцитов GPIb-V-IX и коллагеном су­бэндотелия. Это обеспечивает прочную фикса­цию тромбоцитов к субэндотелиальным структу­рам в тех участках сосудистого русла, где сила потока крови существенно мешает формирова­нию гемостатической пробки и другие механиз­мы адгезии не могут обеспечить надежной фик­сации тромбоцитов. В частности, известно, что vWF является ключевым при формировании

тромба в мелких артериях, артериолах и артери­альных капиллярах. В местах, где интенсивность кровотока невелика, роль vWF уменьшается, пре­обладающим становится взаимодействие, опос­редованное другими молекулами, в том числе прямая адгезия тромбоцитов к коллагену посред­ством GPIa-IIa.

Агрегация тромбоцитов в условиях воздей­ствия активного тока крови тоже происходит с уча­стием фактора Виллебранда. Помимо GPIb-V-IX, с фактором Виллебранда также связывается GPIIb-IIIа. Возможно, что это взаимодействие является ключевым в процессе агрегации в местах сосудис­того русла с высокой скоростью тока крови.

Тест агрегации, опосредованный фактором Виллебранда, в лабораторных условиях может быть выполнен с использованием фиксированных тромбоцитов. Видимо, эта реакция не требует энергетических затрат. Однако стимуляция рецеп­тора Ib-V-IX приводит к активации тромбоцита.

Учитывая особенности фактора Виллебран­да, можно сказать, что он выполняет функцию «биологического клея», фиксируя тромбоциты на поврежденной сосудистой стенке (рис. 24).

Другая функция фактора Виллебранда — за­щита ф.VIII от протеолитической деградации си­стемой протеин С — протеин S. Вплазме vWF яв­ляется белком-носителем фактора VIII.

Рис. 24. Фактор Виллебранда (vWF)выполняет роль «био­логического клея», прикрепляя к коллагену субэндотелия адгезированные тромбоциты через гликопротеиновый ком­плекс GPIb-V-IX, Тромб увеличивается в размерах по мере адгезии и агрегации новых тромбоцитов, скрепление кото­рых в агрегат обеспечивает фибриноген, имеющий дива-лентную структуру и взаимодействующий с рецепторами GPIIb-llla

Молярная концентрация vWF примерно в 50 раз выше, чем молярная концентрация фак­тора VIII. Фактор VIII практически весь связан с vWF (рис. 25). Это предупреждает быструю дег­радацию ф.VШ под влиянием протеина С. Свя­занный с vWF фактор VIII защищен от протео-литической инактивации в плазме, поскольку у него заблокированы сайты связывания с фос-фолипидной матрицей и заблокированы сайты связывания с протеином С. Поэтому недостаток vWF часто вызывает вторичный дефицит ф.VIII.

В области повреждения сосуда, в процессе vWF-опосредованной адгезии тромбоцитов про­исходит контакт комплекса vWF-ф.VIII и тром­бина (ф.Па), который активирует ф.III, освобож­дая его из комплекса с фактором Виллебранда.

Фибронектин(плазматический, субэндоте-лиальный и тромбоцитарный) — гранулярный контактный белок, который способен образовы­вать комплексы с GPIc-Па-рецепторами тромбо­цитов и коллагеном. Сродство фибронектина к коллагену и тромбоцитам меньше, чем у фак­тора Виллебранда, однако молекулярная кон­центрация его выше. Видимо, фибронектин яв­ляется основной молекулой адгезии в венозной и капиллярной сети, образуя ось: тромбоцитар­ный рецептор GPIc-IIa — фибронектин — колла­ген. Гликопротеиновый комплекс GPIc-IIa рас­познает в фибронектине RGD последователь­ность и осуществляет рецепторную функцию как в интактных, так и в активированных тром­боцитах. Характерная аминокислотная последо­вательность RGD — трипептид Arg-Gly-Asp име­ется во всех адгезивных белках крови, белках а-гранул тромбоцитов, фибриногене, факторе Виллебранда, фибронектине, витронектине и других белках. Наличие RGD-последовательно-сти на фибронектине определяет зависимость процесса его взаимодействия со своим рецеп­тором на тромбоцитах от двухвалентных катио­нов Са 2+ и Mg 2+ .

Читайте также:  Агрегация и адгезия тромбоцитов анализ

Витронектин— гликопротеин плазмы, суб­эндотелия и а-гранул тромбоцитов. Имеет зна­чение в гемостатических реакциях и в восста­новлении поврежденных тканей сосудистой стенки. Витронектин, как и другие адгезивные белки, содержит трипептид RGD, распознаю­щийся интегриновыми рецепторами эндотели-альных клеток и тромбоцитов. Витронектино-

Рис. 25. Комплекс фактор VIII — фактор Виллебранда (ф.Vlll—vWF)состоит из 2 отдельных белков, которые выполня­ют в гемостазе разные функции, имеют разную химичес­кую и иммунологическую структуру. Фактор VIII необхо­дим для активации фактора X в каскаде свертывания кро­ви, его дефицит вызывает гемофилию А. Фактор Вилле­бранда (vWF) — полимерный белок, который составляет ос­новную массу комплекса. Он необходим для адгезии тром­боцитов к поврежденной стенке сосудов, обеспечивая вза­имодействие коллагена с гликопротеиновым комплексом тромбоцитов GPIb-V-IX. Кроме того, он участвует в агрега­ции тромбоцитов, взаимодействуя с интегринами GPIIb-llla. Недостаток vWF приводит к болезни Виллебранда

Не нашли то, что искали? Воспользуйтесь поиском:

источник

стоимость указана без учета стоимости забора биологического материала

Обычные*: в тот же день (при условии сдачи до 12.00, в Подольске до 11.00)

Дата сдачи анализа:
Дата готовности:

* без учёта дня сдачи.
** с момента поступления в лабораторию.

Натощак, не менее 8 часов после последнего приема пищи. Через 1 месяц после окончания приема лек. препаратов, влияющих на свертывание крови, если иначе не назначено врачом.

Оптическая агрегометрия. Количественный, %

Время сдачи Готовность
Будни Выходные
Клиника при Лаборатории ЦИР на Дубровке
08:00-17:00 09:00-17:00 2-4 часа
Марьино, Новокузнецкая, Войковская
08:00-12:00 09:00-12:00 4-6 часов
Бутово
08:00-12:00 09:00-12:00 до 17:00
Подольск
08:00-09:00 09:00-10:00 до 15:00
09:00-11:00 10:00-11:00 до 17:00

Анализ на агрегацию тромбоцитов рекомендуется в следующих случаях:

  • при невынашивании беременности,
  • неудачных попытках ЭКО,
  • тяжелых осложнениях беременности в анамнезе,
  • бесплодии неясного генеза, а также
  • при повышенной кровоточивости: легкое образование синяков, меноррагии, носовые кровотечения.

Для оценки функции тромбоцитов в Лабораториях ЦИР проводится анализ на индуцированную агрегацию тромбоцитов. Выполняется на автоматическом агрегометре. Так как этот анализ резко меняется при приеме препаратов, влияющих на свертывание крови (антиагреганты, например, Аспирин, Тромбо АСС, антикоагулянты, например, гепарин), желательно сдавать его до начала приема этих лекарств. По каждой агрегатограмме врач-лаборант выдает заключение.

В кривой агрегации оцениваются амплитуда агрегации, форма кривой, наличие одной или двух волн, а также наличие дезагрегации.

На приведенном образце обозначены: 1- обнуление прибора, 2 — до добавления индуктора, 3 — пик, связанный с разведением пробы индуктором, 4 — начало отсчета, первая волна, 5 — вторая волна, 6 — дезагрегация.


Важная информация: сочетание приема пищевых продуктов, фитопрепаратов и пищевых добавок, содержащих компоненты из данного списка, с приемом антиагрегантов (тромбоАСС) и антикоагулянтов (гепарин) является опасной по риску кровотечения комбинацией (категория D по классификации FDA). Риск кровотечения в большинстве случаев превышает потенциальную пользу.

В Лабораториях ЦИР выполняется агрегация тромбоцитов со следующими индукторами:

  • Агрегация с АДФ;
  • Агрегация с арахидоновой кислотой;
  • Агрегация с адреналином (эпинефрином);
  • Агрегация с ристоцетином.

Три первых индуктора позволяют оценить функцию тромбоцитов c разных сторон, они дополняют друг друга. Агрегация с ристоцетином позволяет заподозрить опасное по кровотечениям состояние – болезнь Виллебранда (дефицит фактора фон Виллебранда). При планировании беременности этот анализ важен для исключения риска кровотечения в родах.

Агрегация с АДФ (синяя волна) и арахидоновой кислотой (черная волна). Агрегационный ответ резко снижен. Дезагрегация практически отсутствует.

источник

На рис. 22 показаны адгезированные тром­боциты на участке деэндотелизации. Через не­сколько минут после повреждения сосудистой стенки формируется сплошной слой адгезиро-ванных и агрегированных тромбоцитов, кото­рые являются основой тромбоцитарного тром­ба (рис. 23).

В процессе адгезии важную роль играют 2 ме­ханизма. Один из них — непосредственная адге­зия тромбоцитов через рецепторы GPIa-IIa и GPVI к коллагену субэндотелия. Однако это вза­имодействие недостаточно для удержания тром­боцитов в местах воздействия высоких скоростей кровотока — артериях и артериолах. Другой ме-

Рис. 22. Адгезированные тромбоцитына поврежденной (деэндотелизированной) сосудистой стенке

Рис. 23. Тромбоцитарный тромб,сформированный на поврежденной сосудистой стенке

ханизм, эффективно удерживающий тромбоциты привысокой скорости кровотока, включает ад­гезию тромбоцитов, опосредованную молекула-ми адгезии — фактором Виллебранда, фибронек-тином,витронектином, ламинином, тромбоспон-дином и др. In vivo оба эти механизма работают параллельно.Возможно, что первичный контакт тромбоцитов с субэндотелием осуществляется благодаря первому механизму, тогда как окон­чательная фиксация тромбоцитов происходит за счет формирования связей субэндотелий — фак-тор Виллебранда — GPIb-V-IX и связей, опосре­дованных другими молекулами адгезии.

Фактор Виллебранда (vWF) — один из самых больших гликопротеидов плазмы, имеет молеку­лярную массу от 540 до нескольких тысяч кДа, содержит в цепочке более 2000 аминокислот.

Ген фактора Виллебранда находится на корот­ком плече 12-й хромосомы. Синтез фактора Вил­лебранда происходит в эндотелиоцитах и мегака-риоцитах. Фактор Виллебранда из эндотелиоци-гов секретируется или в плазму, или в субэндоте-лиальное пространство; кроме того, он может со­держаться в тельцах Вейбла-Палада эндотелиоци-тов (пулы хранения) и секретироваться после сти­муляции эндотелиальных клеток. Фактор Вилле­бранда, синтезированный мегакариоцитами, со­держится в альфа-гранулах тромбоцитов.

Информация о синтезе фактора Виллебран­да получена в основном при изучении его в куль­турах эндотелиальных клеток. Первичный про­дукт синтеза, обозначаемый как пpe-пpo-vWF, найден в эндотелии и тромбоцитах, он иммуно-логически отличается от зрелого фактора Вилле­бранда. Его уровень снижен у пациентов с болез­нью Виллебранда.

Пре-про-vWF содержит 2813 аминокислот­ных остатков. В эндоплазматическом ретикулу-ме после гликозилирования npe-npo-vWF преоб­разуется в пpo-vWF, который превращается в зре­лый vWF после отщепления пептида, состоящего из 741 аминокислотного остатка. Этот полипеп­тид идентифицируется как антиген II vWF (vWF:AgII).

Процесс димеризации и полимеризации vWF происходит одновременно. Зрелая субъединица

vWF содержит 2050 аминокислотных остатков, 169 из которых — цистеин, сгруппированный в областях, расположенных в амино- и карбокси-концах молекулы (N- и С-концы). Процесс диме­ризации связан с образованием дисульфидных мостиков между С-концами молекулы, а дальней­шая полимеризация происходит за счет образо­вания дисульфидных связей между N-концами. Конечный продукт накапливается в тельцах Вей­бла-Палада в эндотелиоцитах и в α-гранулах тромбоцитов.

Фактор Виллебранда состоит из ряда полиме­ров прогрессивно увеличивающейся молекулярной массы: разделяют легкие, средние, тяжелые и сверх­тяжелые мультимеры. Молекулярная масса vWF варьирует от 540 кДа у димеров до 20 тысяч кДа у самых крупных мультимеров, содержащих от 50 до 100 субъединиц. Самым большим тромбоген-ным потенциалом обладают молекулы vWF с наи­большей молекулярной массой.

В плазме нет мономеров фактора Виллебран­да, он всегда образует комплексы. Концентрация vWF в плазме составляет примерно 10 мкг/мл.

При исследовании vWF, содержащегося в пулах хранения, было выявлено, что его молеку­лярная масса, а следовательно, и тромбогенный потенциал существенно выше, чем у vWF, содер­жащегося в плазме, и наиболее высок в а-грану­лах тромбоцитов (так называемый сверхвысоко­молекулярный фактор Виллебранда). После силь­ной стимуляции тромбоцитов и эндотелиоцитов сверхвысокомолекулярный фактор Виллебранда некоторое время обнаруживается в плазме. Од­нако потом в сосудистом русле молекулярная масса vWF довольно быстро снижается до «нор­мальной» под воздействием кальпаиновых про-теаз плазмы. Такое распределение позволяет со­здавать высокий тромбогенный потенциал в ме­стах повреждения эндотелия при выбросе vWF из пулов хранения, в то же время сохраняя тромбо­генный потенциал на «обычном» уровне в интак-тном сосудистом русле.

Фактор Виллебранда имеет два пути секре­ции: непосредственная секреция после синтеза и полимеризации, которая создает определенный уровень vWF в крови, и регуляторная секреция из пулов хранения в ответ на различную стиму­ляцию. Фоновая активность vWF в крови у каж­дого человека может меняться в значительных

пределах. Реализация vWF из тромбоцитарных гранул возникает при активации тромбоцитов под воздействием различных физиологических и нефизиологических индукторов (АДФ, коллаген, адреналин, вазопрессин, серотонин, тромбин, простагландин Е1, тромбоксан А2 и др.), и в том числе плазменного vWF. Уровень vWF в крови возрастает при воспалении различного генеза, повреждении эндотелия сосудов при васкулитах, стрессе, у женщин во время беременности. По­вышение активности vWF в патологических си­туациях может способствовать развитию тром­бозов.

Вторичные изменения структуры vWF и его активности являются следствием иммунных про­цессов, тромботической тромбоцитопенической пурпуры, гемолитико-уремического синдрома и др. Описаны заболевания (болезнь Виллебран-да, тип Виченза; врожденная тромботическая тромбоцитопеническая пурпура), при которых дефект этих ферментов приводит к накоплению сверхвысокомолекулярных мультимеров vWF и преждевременной секвестрации тромбоцитов из кровотока.

Основными функциями фактора Виллебранда являются:

• опосредование адгезии тромбоцитов к субэн-
дотелиальным структурам, в первую очередь
к коллагену, и последующей агрегации тром­
боцитов (участие в первичном сосудисто-
тромбоцитарном гемостазе);

• связывание свободного фактора VIII и защи­
та его молекулы от преждевременной инак­
тивации (участие во вторичном плазменном
гемостазе).

Опосредование адгезии и агрегации тромбоци­тов.Роль фактора Виллебранда в адгезии и агре­гации тромбоцитов наиболее велика в условиях воздействия высоких скоростей кровотока. Мо­лекулы vWF специфически связываются с рецеп­торами тромбоцитов GPIb-V-IX и коллагеном су­бэндотелия. Это обеспечивает прочную фикса­цию тромбоцитов к субэндотелиальным структу­рам в тех участках сосудистого русла, где сила потока крови существенно мешает формирова­нию гемостатической пробки и другие механиз­мы адгезии не могут обеспечить надежной фик­сации тромбоцитов. В частности, известно, что vWF является ключевым при формировании

тромба в мелких артериях, артериолах и артери­альных капиллярах. В местах, где интенсивность кровотока невелика, роль vWF уменьшается, пре­обладающим становится взаимодействие, опос­редованное другими молекулами, в том числе прямая адгезия тромбоцитов к коллагену посред­ством GPIa-IIa.

Агрегация тромбоцитов в условиях воздей­ствия активного тока крови тоже происходит с уча­стием фактора Виллебранда. Помимо GPIb-V-IX, с фактором Виллебранда также связывается GPIIb-IIIа. Возможно, что это взаимодействие является ключевым в процессе агрегации в местах сосудис­того русла с высокой скоростью тока крови.

Тест агрегации, опосредованный фактором Виллебранда, в лабораторных условиях может быть выполнен с использованием фиксированных тромбоцитов. Видимо, эта реакция не требует энергетических затрат. Однако стимуляция рецеп­тора Ib-V-IX приводит к активации тромбоцита.

Учитывая особенности фактора Виллебран­да, можно сказать, что он выполняет функцию «биологического клея», фиксируя тромбоциты на поврежденной сосудистой стенке (рис. 24).

Другая функция фактора Виллебранда — за­щита ф.VIII от протеолитической деградации си­стемой протеин С — протеин S. Вплазме vWF яв­ляется белком-носителем фактора VIII.

Рис. 24. Фактор Виллебранда (vWF)выполняет роль «био­логического клея», прикрепляя к коллагену субэндотелия адгезированные тромбоциты через гликопротеиновый ком­плекс GPIb-V-IX, Тромб увеличивается в размерах по мере адгезии и агрегации новых тромбоцитов, скрепление кото­рых в агрегат обеспечивает фибриноген, имеющий дива-лентную структуру и взаимодействующий с рецепторами GPIIb-llla

Молярная концентрация vWF примерно в 50 раз выше, чем молярная концентрация фак­тора VIII. Фактор VIII практически весь связан с vWF (рис. 25). Это предупреждает быструю дег­радацию ф.VШ под влиянием протеина С. Свя­занный с vWF фактор VIII защищен от протео-литической инактивации в плазме, поскольку у него заблокированы сайты связывания с фос-фолипидной матрицей и заблокированы сайты связывания с протеином С. Поэтому недостаток vWF часто вызывает вторичный дефицит ф.VIII.

В области повреждения сосуда, в процессе vWF-опосредованной адгезии тромбоцитов про­исходит контакт комплекса vWF-ф.VIII и тром­бина (ф.Па), который активирует ф.III, освобож­дая его из комплекса с фактором Виллебранда.

Фибронектин(плазматический, субэндоте-лиальный и тромбоцитарный) — гранулярный контактный белок, который способен образовы­вать комплексы с GPIc-Па-рецепторами тромбо­цитов и коллагеном. Сродство фибронектина к коллагену и тромбоцитам меньше, чем у фак­тора Виллебранда, однако молекулярная кон­центрация его выше. Видимо, фибронектин яв­ляется основной молекулой адгезии в венозной и капиллярной сети, образуя ось: тромбоцитар­ный рецептор GPIc-IIa — фибронектин — колла­ген. Гликопротеиновый комплекс GPIc-IIa рас­познает в фибронектине RGD последователь­ность и осуществляет рецепторную функцию как в интактных, так и в активированных тром­боцитах. Характерная аминокислотная последо­вательность RGD — трипептид Arg-Gly-Asp име­ется во всех адгезивных белках крови, белках а-гранул тромбоцитов, фибриногене, факторе Виллебранда, фибронектине, витронектине и других белках. Наличие RGD-последовательно-сти на фибронектине определяет зависимость процесса его взаимодействия со своим рецеп­тором на тромбоцитах от двухвалентных катио­нов Са 2+ и Mg 2+ .

Читайте также:  Адф агрегация тромбоцитов где сдать анализ

Витронектин— гликопротеин плазмы, суб­эндотелия и а-гранул тромбоцитов. Имеет зна­чение в гемостатических реакциях и в восста­новлении поврежденных тканей сосудистой стенки. Витронектин, как и другие адгезивные белки, содержит трипептид RGD, распознаю­щийся интегриновыми рецепторами эндотели-альных клеток и тромбоцитов. Витронектино-

Рис. 25. Комплекс фактор VIII — фактор Виллебранда (ф.Vlll—vWF)состоит из 2 отдельных белков, которые выполня­ют в гемостазе разные функции, имеют разную химичес­кую и иммунологическую структуру. Фактор VIII необхо­дим для активации фактора X в каскаде свертывания кро­ви, его дефицит вызывает гемофилию А. Фактор Вилле­бранда (vWF) — полимерный белок, который составляет ос­новную массу комплекса. Он необходим для адгезии тром­боцитов к поврежденной стенке сосудов, обеспечивая вза­имодействие коллагена с гликопротеиновым комплексом тромбоцитов GPIb-V-IX. Кроме того, он участвует в агрега­ции тромбоцитов, взаимодействуя с интегринами GPIIb-llla. Недостаток vWF приводит к болезни Виллебранда

Не нашли то, что искали? Воспользуйтесь поиском:

источник

  • О Центре
    • Дирекция
    • История
    • Все руководители Центра
      • Богданов А. А. (Малиновский)
      • Богомолец А. А.
      • Багдасаров (Багдасарян) А. А.
      • Киселёв А. Е.
      • Гаврилов О. К.
      • Федотенков А. Г.
      • Воробьёв А. И.
      • Савченко В. Г.
    • Наши награды
    • Выдающиеся гематологи и трансфузиологии, работавшие в Центре
    • Официальная информация
    • Печатные издания Центра
      • «Гематология и трансфузиология»
    • Нормативные документы
    • Политика конфиденциальности
    • Вакансии
  • Наука
    • Подразделения
    • Клинические апробации
    • Результаты научной деятельности
      • Темы НИР
      • Результаты НИР
      • Патенты и авторские свидетельства
      • Гранты и договоры
      • Информационно-аналитическая система результатов научной деятельности
    • Научные мероприятия, конференции, конгрессы
      • Конференции
      • Конгрессы
    • Диссертационные советы
      • Диссертационные советы на базе ФГБУ «НМИЦ гематологии» Минздрава России
      • Нормативные документы
      • Объявления о защите
      • Документы для защиты
    • Правила публикаций и электронные журналы
      • Правила для авторов публикаций
      • Электронные журналы
    • Аттестация научных работников
    • Конкурсы на замещение должностей научных сотрудников
  • Клиника
    • Подразделения
    • Практикующему врачу
      • Клинические рекомендации
      • Российский реестр лекарственных препаратов, применяемых у больных с нарушениями порфиринового обмена
        • О реестре
      • Порядки оказания медицинской помощи
      • Стандарты медицинской помощи
    • Пациенту
      • Правила записи на прием
      • Сведения о медицинских работниках
      • Порядок получения помощи пациентам с нарушениями свертывания крови
      • Высокотехнологичная медицинская помощь
      • Порядок получения талона-направления на высокотехнологичную медицинскую помощь
      • Правила и сроки госпитализации
      • Правила посещения пациентов стационара
      • Прайс. Платные медицинские услуги
      • Правила пересылки биоматериалов для лабораторных исследований
      • Расписание работы патологоанатомического отделения
      • Правила подготовки к диагностическим исследованиям
      • Пациентам «листа ожидания» почечного трансплантата
      • Часто задаваемые вопросы
      • Территориальная программа государственных гарантий бесплатного оказания гражданам медицинской помощи
      • Правила внутреннего распорядка для пациентов и посетителей
      • Страховые компании, с которыми работает Центр
      • Оценка качества оказания медицинских услуг
      • Гематологический глоссарий
  • Трансфузиология и донорство крови
    • Подразделения
    • Современная научно-практическая деятельность в трансфузиологии
    • Отзывы доноров и пациентов
    • Донору
      • Зачем сдавать кровь
      • Кто может стать донором
      • Противопоказания к донорству
      • Как стать донором
        • Процесс сдачи крови
        • Почетный донор России
        • Льготы для доноров
      • Виды донорства
        • Донорство цельной крови
        • Донорство плазмы
        • Донорство тромбоцитов
        • Донорство гемопоэтических стволовых клеток
      • Что должен знать донор?
        • Питание донора
        • Периодичность донации
        • Безопасность донации
        • Карантинизация плазмы
      • Справка о количестве кроводач, плазмодач
      • Адресное донорство
      • Использование донорской крови
      • Часто задаваемые вопросы
      • Словарь донора
      • Кодекс донора
      • Новости для доноров
      • Контакты
  • Телемедицина
  • Образование
    • Сведения об образовательной организации
    • Аспирантура
    • Ординатура
    • Приемная комиссия
      • Приемная комиссия 2016
      • Приемная комиссия 2017
      • Приемная комиссия 2018
      • Приемная комиссия 2019
      • Приемная комиссия 2020
    • Нормативные документы
    • Электронная информационно-образовательная среда
      • Информационно-библиотечные ресурсы
      • Образовательный портал аспирантуры и ординатуры
      • Портал инновационного дополнительного образования
      • Образовательные мероприятия
    • Дополнительное образование
      • Непрерывное медицинское образование
      • Дополнительное профессиональное образование
  • Научно-производственная деятельность
    • Подразделения
    • Научная деятельность по разработке лекарственных препаратов
    • Производимые лекарственные препараты
      • Информация по лекарственному препарату Агемфил A, фактор свертывания VIII
      • Информация по лекарственному препарату Агемфил B, фактор свертывания IX
  • Проекты документов для обсуждения
    • Проект
    • Обсуждение в ФГБУ НМИЦ гематологии
  • Новости
  • Отзывы
  • СМИ о нас
  • Межрегиональное взаимодействие

Тромбоциты человека — бесцветные дискообразные безъядерные клетки крови, которые играют главную роль в свертывании крови (образовании тромбов и остановке кровотечения).

Трансфузии тромбоцитов показаны при тромбоцитопенической кровоточивости, обусловленной недостаточным образованием тромбоцитов (лейкозы, воздействие цитостатиков, облучение, апластический синдром), повышенным их разрушением (экстракорпоральное кровообращение) или повышенным потреблением их (острый синдром диссеминированного внутрисосудистого свертывания, «тромбоцитопения смыва»).

Применение современных протоколов лечения онкогематологических пациентов и внедрение высокодозной химиотерапии в онкогематологическую практику невозможны без интенсивной сопроводительной терапии, одним из неотъемлемых компонентов которой являются трансфузии концентратов тромбоцитов.

Среди онкогематологических больных 47 % нуждаются в переливании 2 и более терапевтических доз тромбоцитов, а переливание 3 и более доз ассоциировано с более длительным лечением.

Трансфузия не менее 300 млрд тромбоцитов (3,0•10 11 ), полученных за одну процедуру от одного донора, является терапевтически эффективным лечебным мероприятием, обеспечивающим прекращение спонтанной кровоточивости у больных лейкозами и апластической анемией, предупреждающим кровотечения при оперативных вмешательствах, в том числе и полостных, выполняемых в условиях глубокой тромбоцитопении.

Аппарат для цитоплазмафереза Haemonetics MCS+.

Рациональным методом получения концентрата тромбоцитов в лечебной дозе от одного донора является метод аппаратного тромбоцитафереза, выполняемый с использованием специального аппарата (сепаратора) и полимерных контейнеров.

Процедура тромбоцитафереза включает в себя подключение донора к аппарату, взятие крови, фильтрация тромбоцитов, возврат аутоэритроцитов и аутоплазмы донору.

При процедуре тромбоцитафереза для предотвращения свертываемости крови применяется цитрат натрия.

Основа действия цитрата в том, что он связывает ионы кальция (ионы кальция необходимы в процессе свертывания крови), из-за чего при донации тромбоцитов возможны неприятные ощущения в мышцах лица, рук. Для предупреждения и лечения таких реакций донору вводят внутривенно глюканата кальция для восстановления уровня кальция в организме. Кроме того, регулярным донорам тромбоцитов рекомендуем принимать кальцийсодержащие витамины, а также продукты, богатые кальцием.

Такая одноразовая замкнутая система устанавливается в аппарат непосредственно перед процедурой для каждого донора.

О питании доноров тромбоцитов читайте в разделе «Питание доноров».

Аппаратный метод заготовки тромбоцитов позволяет получить за одну процедуру полную терапевтическую дозу тромбоцитов от одного донора на сепараторе клеток крови одноигольным методом.

Аппаратный тромбоцитаферез — это абсолютно безопасный процесс для донора. Вероятность заражения от предыдущего пациента полностью отсутствует, т. к. используется замкнутая одноразовая система, когда аппарат для тромбоцитафереза заряжается непосредственно перед каждым донором.

Тромбоциты полностью восстанавливаются за 2—5 дней. Донором тромбоцитов может стать любой здоровый человек в возрасте до 50 лет.

Сдавать тромбоциты можно не чаще 12 раз в год.

Длится процедура около 1,5 часов. Общее время, которое вам придется у нас провести — около 2,5 часов.

источник

Определение в крови антител к антигенам тромбоцитов, используемое для дифференциальной диагностики геморрагического синдрома и тромбоцитопении.

Антитела к гликопротеинам тромбоцитов, антитела при идиопатической тромбоцитопенической пурпуре.

Синонимы английские

Anti-platelet antibodies, Platelet Abs.

Непрямая реакция иммунофлюоресценции.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Антитела к тромбоцитам могут быть обнаружены при многих заболеваниях, в том числе при идиопатической тромбоцитопенической пурпуре, аллоиммунной тромбоцитопении новорождённых, системной красной волчанке (СКВ), бактериальных и вирусных инфекциях (ВИЧ, инфекционный мононуклеоз, сепсис), а также при приеме некоторых лекарственных средств. В настоящий момент описано несколько антигенов-мишеней для этих антител, в том числе гликопротеины GPIIb/IIIa, GPIb/IX, GP5 и рецептор тромбопоэтина.

Наличие антител к тромбоцитам связано как с количественными, так и с качественными изменениями тромбоцитов. С одной стороны, взаимодействие антител с антигенами приводит к разрушению тромбоцитов клетками ретикулоэндотелиальной системы в селезенке (и в меньшей степени в печени) и возникновению тромбоцитопении. С другой стороны, антитела, блокирующие гликопротеины тромбоцитов, нарушают процесс дегрануляции и адгезии тромбоцитов, в результате чего развивается тромбоцитопатия. Клиническим проявлением тромбоцитопении и тромбоцитопатии является повышенная кровоточивость разной степени выраженности – от незначительной петехиальной сыпи до обширного внутримозгового кровоизлияния.

Ведущее значение в диагностике заболеваний, протекающих с геморрагическим синдромом, принадлежит лабораторным методам. Антитела к тромбоцитам – один из тестов, входящих в алгоритм дифференциальной диагностики геморрагического синдрома. Этот тест имеет особое значение в следующих клинических ситуациях:

  1. При подозрении на сочетание аутоиммунной тромбоцитопенической пурпуры и заболеваний костного мозга. У пациентов с нарушенным тромбоцитопоэзом (например, при хроническом лимфолейкозе) наличие антител к тромбоцитам может ухудшать уже имеющуюся тромбоцитопению. Обнаружение антител к тромбоцитам в такой ситуации свидетельствует о том, что причиной тромбоцитопении является не только инфильтрация костного мозга опухолевыми клетками, но и аутоиммунное разрушение тромбоцитов, что имеет значение для выбора тактики лечения. Еще одним клинико-лабораторным признаком аутоиммунной тромбоцитопении является реактивный мегакариоцитопоэз в костном мозге.
  2. При наличии идиопатической тромбоцитопенической пурпуры, резистентной к препаратам первой и второй линии терапии. Пациентам, получающим лечение препаратами 3-й линии терапии, рекомендуется повторное определение антител к тромбоцитам и количества тромбоцитов для оценки эффективности лечения.
  3. Лекарственная тромбоцитопения. Применение многих лекарств ассоциировано с развитием тромбоцитопении. Для некоторых из них (гепарин, хинин/хинидин, тейкопланин) доказана аутоиммунная природа лекарственной тромбоцитопении. При возникновении тромбоцитопении на фоне приема одного из этих лекарственных препаратов анализ на антитела к тромбоцитам может быть необходим для решения вопроса о прекращении лечения этим препаратом.

Следует отметить, что исследование на антитела к тромбоцитам не является рутинным тестом при подозрении на идиопатическую тромбоцитопеническую пурпуру, что связано в основном с его недостаточной специфичностью в отношении этого заболевания.

В настоящее время исследование на антитела к тромбоцитам – это дополнительный метод диагностики геморрагического синдрома и тромбоцитопении. Результат анализа оценивают с учетом данных других лабораторных исследований, в первую очередь коагулограммы.

Для чего используется исследование?

  • Для дифференциальной диагностики геморрагического синдрома и тромбоцитопении.

Когда назначается исследование?

  • При наличии геморрагического синдрома, в первую очередь петехиально-пятнистого типа (петехиальной сыпи, рецидивирующих носовых кровотечений, меноррагий, повышенной кровоточивости десен);
  • при обнаружении в клиническом анализе крови тромбоцитопении.

Титр: Положительный результат:

  • идиопатическая тромбоцитопеническая пурпура;
  • аллоиммунная тромбоцитопения новорождённых;
  • системная красная волчанка;
  • ВИЧ-инфекция;
  • инфекционный мононуклеоз;
  • сепсис;
  • применение лекарственных средств (гепарин, хинин/хинидин, тейкопланин).

Что может влиять на результат?

  • Прием лекарственных средств;
  • наличие сопутствующих заболеваний.



  • В настоящее время исследование на антитела к тромбоцитам не является рутинным тестом при подозрении на идиопатическую тромбоцитопеническую пурпуру;
  • результат анализа оценивают с учетом данных анамнестических, клинических и других лабораторных исследований.

Кто назначает исследование?

Гематолог, терапевт, врач общей практики.

  • British Committee for Standards in Haematology General Haematology Task Force. Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy. Br J Haematol. 2003 Feb;120(4):574-96.
  • Kuwana M. Autoantibodies to platelets: Roles in thrombocytopenia. Review article. Inflammation and Regeneration. Vol.29 No.1 JANUARY 2009.

источник