Меню Рубрики

Методы анализа первичная структура белка

Определение первичной структуры белков

Глава 7. Методы исследования белков

7.3. Определение первичной структуры белков

Определение первичной структуры белков сводится к выяснению порядка расположения аминокислот в полипептидной цепочке. Эту задачу решают с помощью метода секвенирования (от англ. sequence последовательность).

Собственно секвенирование на его сегодняшнем уровне позволяет определить аминокислотную последовательность а полипептидах, размер которых не превышает несколько десятков аминокислотных остатков. В то же время исследуемые полипептидные фрагменты значительно короче тех природных белков, с которыми приходится иметь дело. Поэтому необходимо предварительное разрезание исходного полипептида на короткие фрагменты. После секвенирования полученных фрагментов их необходимо снова сшить в первоначальной последовательности.

Таким образом определение первичной последовательности белка сводится к следующим основным этапам:
1) Расщепление белка на несколько фрагментов длиной, доступной для секвенирования.
2) Секвенирование каждого из полученных фрагментов.
3) Сборка полной структуры белка из установленных структур его фрагментов.

Для специфического расщепления белков по определенным точкам применяются как ферментативные, так и химические методы. Из ферментов, катализирующих гидролиз белков по определенным точкам, наиболее широко используют трипсин и химотрипсин. Трипсин катализирует гидролиз пептидных связей, расположенных после остатков лизина и аргинина. Химотрипсин преимущественно расщепляет белки после остатков ароматических аминокислот — фенилаланина, тирозина и триптофана. При необходимости специфичность трипсина может быть повышена или изменена. Например, обработка цитраконовым ангидридом исследуемого белка приводит к ацилированию остатков лизина. В таком модифицированном белке расщепление будет проходить только по остаткам аргинина.

Наряду с ферментативными методами используются и химические методы расщепления белков. Для этой цели часто применяют бромциан, расщепляющий белок по остаткам метионина:

Секвенирование проводят методом, известным как метод Эдмана. Последовательная обработка полипептида, имеющего свободную концевую -аминогруппу, каким-либо алкил- или арилизотиоцианатом в слабощелочной среде приводит к образованию соответствующей тиомочевины, которая в умеренно кислой среде приводит (при значениях кислотности, не повреждающих пептидной связи) отщепляется в виде соответствующего тиогидантоина. Оригинальная процедура Эдмана основана на использовании фенилизотиоцианата и тем самым на образовании фенилтиогидантоинов:

В результате образуется фенилтиогидантоин, содержащий боковой радикал аминокислоты R 1 , который может быть идентифицирован путем измерения какой-либо физической или физико-химической характеристики, позволяющей различать гидантоины, соответствующие разным входящим в состав белков аминокислотам. В качестве такой характеристики может служить хроматографическая подвижность в какой-либо предварительно проградуированной по стандартным образцам гидантоинов системе или молекулярная масса, определяемая с помощью масс-спектрометра.

Превращение N-концевого аминокислотного остатка в тиогидантоин приводит к укорочению анализируемой полипептидной цепи на одно звено. Выделив этот пептид, исследователь получает возможность повторить всю процедуру, установить природу второго аминокислотного остатка и выделить полипептид, укороченный на два звена. Многократное повторение такой ступенчатой деградации дает возможность последовательно идентифицировать все составляющие исходный полипептид остатки аминокислот, т.е. установить его первичную структуру. Практически метод Эдмана позволяет сделать один-два десятка шагов. Работа сводится к многократному повторению одних и тех же чередующихся процедур: добавления изотиоцианата, отщепления тиогидантоина, отделения его от укороченного пептида для последующей идентификации, выделение оставшегося полипептида в виде пригодном для следующего шага обработки. Чтобы избавить исследователей от такой монотонной работы, требующей вместе с тем строгого соблюдения условий эксперимента на каждом шаге, созданы специальные автоматизированные установки для проведения всех перечисленных операций — автоматические секвенаторы полипептидов. С их помощью удается произвести до 40-60 шагов ступенчатой деградации.

Завершающим этапом установления первичной структуры белка является восстановление порядка, в котором просеквенированные фрагменты располагались в исходном полипептиде. Чаще всего для этой цели используют подход изветный как метод перекрывающихся белков. Ниже излагается основная идея метода.

Если установлена структура всех полипептидов, полученных расщеплением исследуемого белка с помощью трипсина (далее такие полипептиды обозначаются буквой Т от слова «трипсиновые»), то остается определить для каждого из этих пептидов, с какими двумя Т-пептидами он соседствует с N- и С-конца. В структуре просеквенированных Т-пептидов такая информация полностью отсутствует. Однако ее можно частично, а в ряде случаев и полностью восстановить, если располагать аналогичными данными для серии полипептидов, полученных расщеплением того же исследуемого белка по какой-либо другой группе аминокислотных остатков. Для определенности ниже речь будет идти о полипептидах, полученных расщеплением химотрипсином (пептиды группы С, chymotryptic).

Как видно из рисунка, если два Т-пептида являются соседними в исходной цепи, то существует С-пептид, который либо содержит в своем составе полностью оба или один из рассматриваемых Т-пептидов, либо как минимум содержит С-концевую часть левого и N-концевую часть правого пептида группы Т. этот С-пептид перекрывает два соседних Т-пептида, с чем и связано название метода.

Таким образом, просматривая структуры пептидов Т и С, можно для любой пары Т-пептидов выявить, являются ли они соседями в исследуемом белке или разделены одним или несколькими другими Т-пептидами. Неоднозначность может появиться только в том случае, если перекрываемый каким-либо из С-петидов концевой фрагмент встречается у двух или нескольких Т-пептидов. Вероятность этого как правило невелика. Если это все же происходит, то применяют более сложные методы комбинаторики.

источник

Деградация по Эдмону

К раствору белка добавляют реактив Эдмона, содержащий фенилизотиоцианат.

Фенилизотиоцианат взаимодействует с альфа-аминогруппой первой (N-концевой) аминокислоты, а затем происходит ее отщепление от полипептидной цепи путем гидролиза:

После этого идентифицируют первую аминокислоту. Затем процесс повторяется.

В настоящее время процесс автоматизирован.

Секвенирование ДНК

Первичная структура любой белковой молекулы напрямую зависит от структуры ДНК-генома. Поэтому сначала выделяют ген, в котором закодирована структура белка. Далее определяют последовательность азотистых оснований в ДНК. Каждая аминокислота в белковой молекуле закодирована сочетанием трех азотистых оснований — триплетом (кодоном) в молекуле ДНК. Например, сочетание трех оснований аденина (ААА) кодирует аминокислоту фенилаланин, а последовательность из трех оснований цитозина – глицин. Это дает возможность получить информацию о первичной структуре белковой молекуле, а, значит, прогнозировать строение всей молекулы в целом, поскольку именно первичная структура определяет строение всех высших уровней организации – и вторичной, и третичной, а, иногда и четвертичной структур.

Для проверки предположений о строении высших структур используется еще один метод:

Рентгеноструктурный анализ

Схема, поясняющая принцип этого метода, представлена на рисунке:

В результате облучения на фотопленке фиксируется карта электронной плотности (похожа на географическую карту). Далее производится компьютерный анализ полученного изображения, в результате чего строится пространственная модель белковой молекулы.

Электронная микроскопия

Может быть использована для выяснения структуры белковых молекул с большой молекулярной массой – от 500.000 до 1.000.000 Да (дальтон). Дальтон (Да) и килодальтон (кДа)– единицы измерения массы белков. 1кДа=10 3 Да. 1 дальтон равен 1/16 массы атома кислорода (кислородная единица массы).

КОНФИГУРАЦИЯ И КОНФОРМАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

Из всего сказанного можно заключить, что пространственная организация белков очень сложна. В химии существует понятие — пространственная КОНФИГУРАЦИЯ — жестко закрепленное ковалентными связями пространственное взаимное расположение частей молекулы (например: принадлежность к L-ряду стереоизомеров или к D-ряду).

Для белков также используется понятие КОНФОРМАЦИЯ белковой молекулы — определенное, но не застывшее, не неизменное взаимное расположение частей молекулы. Так как конформация белковой молекулы формируется при участии слабых типов связей, то она является подвижной (способной к изменениям), и белок может изменять свою структуру. В зависимости от условий внешней среды молекула может существовать в разных конформационных состояниях, которые легко переходят друг в друга. Энергетически выгодными для реальных условий являются только одно или несколько конформационных состояний, между которыми существует равновесие. Переходы из одного конформационного состояния в другое обеспечивают функционирование белковой молекулы. Это обратимые конформационные изменения (встречаются в организме, например, при проведении нервного импульса, при переносе кислорода гемоглобином). При изменении конформации часть слабых связей разрушается, и образуются новые связи слабого типа.

Взаимодействие белка с каким-нибудь веществом иногда приводит к связыванию молекулы этого вещества молекулой белка. Этот явление известно как «сорбция» (связывание). Обратный же процесс — освобождение другой молекулы от белковой называется «десорбция».

Если для какой-нибудь пары молекул процесс сорбции преобладает над десорбцией, то это уже специфическая сорбция, а вещество, которое сорбируется, называется «лиганд».

1) Лиганд белка-фермента – субстрат.

2) Лиганд траспортного белка – транспортируемое вещество.

3) Лиганд антитела (иммуноглобулина) – антиген.

4) Лиганд рецептора гормона или нейромедиатора – гормон или нейромедиатор.

Белок может изменять свою конформацию не только при взаимодействии с лигандом, но и в результате любого химического взаимодействия. Примером такого взаимодействия может служить присоединение остатка фосфорной кислоты.

В природных условиях белки имеют несколько термодинамически выгодных конформационных состояний. Это нативные состояния (природные). Natura (лат.) – природа.

НАТИВНОСТЬ БЕЛКОВОЙ МОЛЕКУЛЫ

НАТИВНОСТЬ — это уникальный комплекс физических, физико-химических, химических и биологических свойств белковой молекулы, который принадлежит ей, когда молекула белка находится в естественном, природном (нативном) состоянии.

Например: белок хрусталика глаза — кристаллин — обладает высокой прозрачностью только в нативном состоянии).

ДЕНАТУРАЦИЯ БЕЛКА

Для обозначения процесса, при котором нативные свойства белка теряются, используют термин ДЕНАТУРАЦИЯ.

ДЕНАТУРАЦИЯ — это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур. Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями. Разрушение первичной структуры может произойти только в результате гидролиза белковой молекулы длительным кипячением в растворе кислоты или щелочи.

Дата добавления: 2018-11-24 ; просмотров: 569 ; ЗАКАЗАТЬ РАБОТУ

источник

Можно выделить следующие этапы выяснения первичной структуры белков и пептидов:

1. Выделение белка в чистом виде и определение его молекулярной массы

2. Определение аминокислотного состава

3. Определение N-концевой аминокислоты

4. Определение С-концевой аминокислоты

5. Определение аминокислотной последовательности

Выделение белка в чистом виде. Как правило, исходный материал содержит много различных белков. В связи с этим возникает проблема выделения из этой смеси интересующего белка в чистом виде. При очистке белков используются методы, которые основаны на разнице:

1.Поверхностного заряда белков

2.Молекулярного размера белков (зависящего от их молекулярной массы)

3.Биологической активности вследствие связывания с субстратами или ингибиторами

Разделение белков по разнице величины поверхностного заряда. Суммарный поверхностный электрический заряд белка при данном значении рН может быть отрицательным, нейтральным или положительным. Для разделения белков с различным зарядом, подобно тому, как это было в случае аминокислот, может быть использован метод ионообменной хроматографии (см. выше). Концентрацию белка в пробирках с элюатом определяют с помощью спектрофотометра по интенсивности поглощения ультрафиолетового света и строят графическую зависимость её от объема вытекшей из хроматографической колонки жидкости.

Разделение белков по молекулярной массе. Если представить молекулы белков в виде шариков различной величины, размер которых зависит от их молекулярной массы, то окажется, что у больших шариков будет большей молекулярная масса или размер молекул. Это означает, что белки можно разделить подобно частичкам в сите — молекулярном сите, образованном гелем. Такой способ часто называют гель-фильтрацией или хроматографией исключения размером. Ниже приводится иллюстрация того, как с помощью гель-фильтрации удается разделить смесь белков различного размера (рис.1.12).

Хроматографическую колонку заполняют набухшим гелем. Частицы геля приготовлены из связанного поперечными сшивками полисахаридного материала и содержат большое количество микропор. Размер микропор подбирают таким образом, чтобы в них проникали меньшие из разделяемых молекул, в то время как большие этого сделать не могли. Смесь разделяемых белков наносят на верхнюю часть колонки и элюируют буферным раствором. Увлекаемые током нисходящей жидкости большие молекулы, не имея возможности проникнуть в поры гелевых частиц, будут двигаться быстрее. Меньшие молекулы проникают в поры и задерживаются там. Если собирать вытекающий из колонки раствор равными порциями в пробирки, то окажется, что в более ранних порциях вытекающей жидкости будут содержаться белки больших размеров, а в более поздних — меньших размеров. Путем подбора размера пор можно добиться разделения самых разных смесей белков.

Рис.1.12. Схематическое изображение разделения белков методом гель-фильтрации

Если учесть, что размер молекулы зависит от молекулярной массы, то оказывается, что разделяя белки методом гель-фильтрации, одновременно можно установить его молекулярную массу.

Рис.1.13. График зависимости молекулярной массы белков от объема выхода их из хроматографической колонки в ходе гель-фильтрации

Читайте также:  Что такое анализ падение белка

Объем вытекающего из колонки элюата обратнопропорционален логарифму молекулярной массы белка. Таким образом, достаточно знать объем жидкости, в котором вышел из колонки интересующий белок, чтобы, пользуясь подобным графиком, можно было установить его молекулярную массу (рис.1.13).

Ещё одним методом, который позволяет разделить белки в зависимости от их молекулярной массы, является гель-электрофорез (см. выше).

Ультрацентрифугирование. Если встряхнуть сосуд, заполненный песком с водой, а затем поставить его на ровную поверхность, то песок быстро осядет на дно благодаря силе земного притяжения. С высокомолекулярными веществами, находящимися в растворе, этого не произойдет, так как тепловое (броуновское) движение сохраняет их равномерное распределение в растворе. Оседание макромолекул, подобно песчинкам, произойдет, только если их подвергнуть значительному ускорению.

В 1923 году шведский биохимик Т. Сведберг впервые использовал ультрацентрифугирование. При скорости вращения ротора 80000 об/мин ему удалось показать, что многие белки состоят из субъединиц. Позже ультрацентрифугирование стало незаменимым методом для разделения белков, нуклеиновых кислот и субклеточных частиц.

Рис.1.14. Схематическое изображение зонального ультрацентрифугирования.

Образец наслаивают на градиент сахарозы (слева). После центрифугирования (середина) каждая частица осаждается на уровне, зависящем от его массы. После остановки ротора центрифужную пробирку прокалывают и разделенные частицы (зоны) собирают в пробирки (справа).

Осаждение проводят в растворе химически инертного вещества (сахарозы или CsCl), концентрация которого и, следовательно, плотность увеличивается в направлении от поверхности до дна центрифужной пробирки. Использование таких градиентов плотности значительно усиливает разрешающую способность ультрацентрифуги. Различают зональное препаративное ультрацентрифугирование (рис.1.14) и ультрацентрифугирование в равновесном градиенте плотности (изократное ультрацентрифугирование) (рис.1.15).

Разделение белков по разнице биологической активности вследствие связывания с лигандами. Характерной особенностью белков является их способность прочно связываться с различными молекулами, но нековалентными связями. На этом основан метод разделения белков аффинной хроматографией (рис.1.16).

Рис.1.16. Схематическое изображение принципа иммуноаффинной хроматографии

Антиген — лиганд для выделяемого белка. Антитело — выделяемый белок.

Молекулы веществ, с которыми специфически связываются определенные белки, ковалентно соединяют с частицами инертного матрикса. Тогда они выполняют роль своеобразных «рыболовных крючков», задерживающих необходимый белок. Все остальные белки транзитом проходят через колонку. Задержанный белок затем можно вымыть из колонки с помощью буферного раствора, содержащего в свободном состоянии такие же молекулы, которые выполняли роль «рыболовных крючков», или с помощью какого-нибудь другого реактива, способного нарушить это взаимодействие. Одним из вариантов этого метода является иммуноаффинная хроматография. Тогда антитела к определенному белку присоединяют к частицам сорбента. Они обеспечивают с очень высокой специфичностью задержку в колонке этого белка (рис.1.16).

Определение аминокислотного состава белка.До определения аминокислотной последовательности выделенного белка желательно иметь представление о его аминокислотном составе, то есть знать, какие аминокислоты и в каком количестве входят в состав его молекулы. Для этого проводят полный гидролиз белка с последующим количественным анализом высвободившихся аминокислот. Чаще используют кислотный гидролиз. Полипептид растворяют в 6N НCl в отсутствие кислорода, чтобы предотвратить окисление серусодержащих аминокислот. Смесь нагревают до 100-120 0 С и выдерживают при этой температуре в течение 10-100ч. К сожалению при этом способе гидролиза некоторые аминокислоты (Сер, Три, Тир, Глн, Асн) разрушаются.

Аминокислотный состав полипептидного гидролизата определяют с помощью автоматического аминокислотного анализатора. Прибор разделяет аминокислоты посредством ионообменной хроматографии (см. выше). Их идентифицируют по элюционному объему и количественно учитывают по интенсивности флюоресценции после проведения реакции с дансилхлоридом. Современные аминокислотные анализаторы проводят анализ гидролизата белка в течение 1ч с чувствительностью, которая позволяет определить до 1 пикомоля аминокислоты.

Определение N-концевой аминокислоты.Имеется несколько эффективных подходов, с помощью которых можно идентифицировать N-концевую аминокислоту. 1-Диметиламинонафталин-5-сульфонилхлорид (дансил хлорид) взаимодействует с первичными аминами с образованием дансилированного полипептида. Последующее проведение кислотного гидролиза позволяет высвободить из полипептидной цепи N-концевую аминокислоту в виде дансил-аминокислоты, обладающей интенсивной желтой флюоресценцией (рис.1.17).

Рис.1.17. Этапы определения N-концевой аминокислоты методом дансилирования

Благодаря этому дансил-производное аминокислоты можно идентифицировать хроматографически.

Ещё более популярным методом идентификации N-концевой аминокислоты является разрушение по Эдману (Pehr Edman — автор метода). Фенилизотиоцианат (ФИТЦ, реактив Эдмана) взаимодействует с N-концевой аминогруппой белков в слабо щелочной среде (рис.1.18). В результате образуется фенилтиокарбамильный продукт. Его обрабатывают безводной сильной кислотой, такой как трифторуксусная кислота. При этом тиазолиновое производное N-концевой аминокислоты отщепляется, в то время как остальные пептидные связи не подвергаются гидролизу. Тем самым разрушение по Эдману заключается в отщеплении остатка только N-концевой аминокислоты и сохранении оставшейся части полипептидной цепи.

Рис.1.18. Этапы определения N-концевой аминокислоты методом Эдмана

Тиазолиновое производное аминокислоты избирательно экстрагируют органическим растворителем и превращают в более стабильное фенилтиогидантоиновое производное. Последнее можно идентифицировать сравнением с известными стандартами при проведении тонкослойной хроматографии, электрофореза, высокоэффективной жидкостной хроматографии или газо-жидкостной хроматографии.Наиболее важным преимуществом расщепления по Эдману по сравнению с другими методами определения N-концевой аминокислоты является то, что, проводя повторно с одним и тем же пептидом эту процедуру, каждый раз можно идентифицировать новую N-концевую фенилгидантоин-аминокислоту, выясняя таким образом аминокислотную последовательность.

Идентификация С-концевой аминокислоты. Один из подходов заключается в использовании ферментов — карбоксипептидаз (катализирует отщепление от пептида С-концевой аминокислоты). Карбоксипептидазы, подобно другим ферментам, обладают субстратной специфичностью, то есть они катализируют отщепление определенных аминокислот. Вместе с тем, наличие рядом с С-концевой аминокислотой остатка Про делает невозможной её отщепление под влиянием карбоксипептидазы. В этом случае наиболее надежным считается метод гидразинолиза. Полипептид обрабатывают безводным гидразином при температуре 90 0 С в течение 20-100ч в присутствии ионообменного сорбента (в качестве катализатора). При этом разрушаются все пептидные связи, а из высвобождающихся аминокислот образуются гидразиды. Но С-концевая аминокислота высвобождается как свободная и поэтому её можно идентифицировать хроматографически.

Определение аминокислотной последовательности. Установление концевых аминокислот в исследуемом пептиде позволяет в дальнейшем определить всю его аминокислотную последовательность. Для этого обычно проводят повторное разрушение по Эдману (см. выше) в автоматическом приборе — секвенаторе, который был предложен П. Эдманом и Г. Бэгом. Современный такой прибор определяет 1 аминокислотный остаток в час. Таким способом можно установить последовательность расположения 40-60 остатков аминокислот. Затем накапливаются незавершенные реакции, продукты побочных реакций. Наряду с потерей самого пептида они делают малоинформативной и ненадежной дальнейшую идентификацию аминокислот. Чтобы установить последовательность их расположения в больших полипептидных молекулах, их подвергают расщеплению ферментативным или химическим путем на фрагменты с размерами, достаточными для проведения секвенирования (рис.1.19).

Рис.1.19. Аминокислотную последовательность полипептидной цепи определяют, совмещая перекрывающиеся последовательности фрагментов пептида. В данном случае после расщепления исследуемого пептида трипсином (катализирует разрыв пептидных связей, в образовании которых участвует карбоксильные группы Арг и Лиз), а в другом случае — бромцианом (CNBr) (катализирует разрыв пептидных связей, в образовании которых участвует Мет) были получены два набора пептидных фрагментов. Порядок связывания первых двух фрагментов, образовавшихся в результате действия трипсина, устанавливается на основании того наблюдения, что фрагмент Гли-Ала-Лиз-Лей-Про-Мет (результат расщепления CNBr) имеет последовательность аминокислот на N и С — концах, включающую N и С — концы двух трипсиновых фрагментов. Иными словами, обнаружение накладывающихся участков позволяет установить последовательность расположения пептидных фрагментов, то есть аминокислотную последовательность всего исследуемого пептида.

Исследование последовательности нуклеотидов ДНК — рутинная операция в молекулярной биологии.Этот метод в последнее время вытеснил другие методы исследования первичной структуры белков. Зная последовательность нуклеотидов, можно легко установить последовательность аминокислот (более подробное описание этого метода см. в главе 13).

Метод пептидных карт.Процесс определения аминокислотной последовательности в белке — процедура достаточно длительная. Её можно существенно ускорить в случае выяснения аминокислотной последовательности гомологичного белка[2], если у сравниваемого белка она уже известна. Метод носит название «метод пептидных карт» или «метод отпечатков пальцев». Он включает в себя сочетание хроматографии и электрофореза на бумаге продуктов неполного гидролиза сравниваемых белков. При этом пептидные фрагменты, отличающиеся аминокислотной последовательностью, будут обладать разной подвижностью по сравнению с таковыми у исходного белка (рис.1.21).

Рис.1.21. Сравнение «отпечатков пальцев» (окраска нингидрином) продуктов расщепления трипсином (а) гемоглобина А и (б) гемоглобина S. Пептиды, отличающиеся по подвижности, обведены квадратом. Они включают в себя 98 аминокислот, расположенных на N-конце b-субъединицы гемоглобина. Различие заключается в замене 6-ой аминокислоты (Глю) в составе Hb A на Вал в составе Hb S.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Получены доказательства предположения К. Линдерстрёма-Ланга о существовании 4 уровней структурной организации белковой молекулы: первичной, вторичной, третичной и четвертичной структуры. Техника современной белковой химии разработана настолько хорошо, что позволяет в принципе расшифровать структурную организацию любого белка.

Первичная структура белка. К настоящему времени расшифрована первичная структура десятков тысяч разных белков, что является несомненным достижением биохимии. Однако это число ничтожно мало, если учесть, что в природе около 10 12 разнообразных белков. Под первичной структурой подразумевают порядок, последовательность расположения аминокислотных остатков в полипептидной цепи. Зная первичную структуру, местоположение каждого остатка аминокислоты, можно точно написать структурную формулу белковой молекулы, если она представлена одной полипептидной цепью.

Для определения первичной структуры полипептидной цепи в первую очередь методами гидролиза выясняют аминокислотный состав, точнее, соотношение каждой из 20 аминокислот в образце гомогенного полипептида. Затем приступают к определению химической природы концевых аминокислот полипептидной цепи, содержащей одну свободную NH2-группу и одну свободную СООН-группу.

Методы определения N-концевой аминокислоты. Для определения природы N-концевой аминокислоты предложен ряд методов, в частности метод Сэнджера (F. Sanger), основанный на реакции арилирования полипептида 2,4-динитрофторбензолом (ДНФБ), что приводит к образованию окрашенного в желтый цвет 2,4-динитрофенильного производного N-концевой аминокислоты. Раствор полипептида обрабатывают ДНФБ, который взаимодействует со свободной NH2-группой N-концевой аминокислоты пептида.

Определение N-концевой аминокислоты методом Сенджера

После кислотного гидролиза продукта реакции – динитрофенилпептида только одна N-концевая аминокислота оказывается связанной с реактивом в виде 2,4-динитрофениламинокислоты (стабильной при гидролизе). В отличие от других образовавшихся при гидролизе полипептида свободных аминокислот она желтого цвета. Ее идентифицируют методом хроматографии.

Для определения N-концевой аминокислоты значительно более широко применяется фенилтиогидантоиновый метод Эдмана благодаря своей высокой чувствительности и возможности многократного использования в одной и той же пробе. Фенилизотиоцианат реагирует со свободной α-NH2-группой N-концевой аминокислоты полипептида с образованием фенилтиокарбамоил-пептида.

Определение N-концевой аминокислоты методом Эдмана

Обработка продукта реакции кислотой приводит к циклизации и освобождению фенилтиогидантоина N-концевой аминокислоты, природу которого устанавливают хроматографически. Укороченный на одну аминокислоту полипептид подвергают дальнейшему анализу.

Эту процедуру ступенчатого расщепления пептида с N-конца можно повторять многократно, идентифицируя последовательно одну аминокислоту за другой. Метод Эдмана используется в качестве химической основы для определения первичной структуры белков и пептидов. Он реализован в специальном приборе – секвенаторе (от англ. sequence – последовательность), работающем в автоматическом режиме и позволяющем определить последовательность аминокислот с N-конца пептида до 50–60 аминокислотных остатков.

Для этих же целей иногда применяют ферменты экзопептидазы, в частности аланин- и лейцинаминопептидазу. Эти ферменты разрывают пептидные связи с того конца полипептида, где имеется свободная NН2-группа, освобождая N-концевую аминокислоту.

Методы определения С-концевой аминокислоты. Для определения природы С-концевой аминокислоты часто используют ферментативные методы. Обработка полипептида карбоксипептидазой, которая разрывает пептидную связь с того конца пептида, где содержится свободная СООН-группа, приводит к освобождению С-концевой аминокислоты, природа которой может быть идентифицирована методом хроматографии.

Предложен также химический метод С. Акабори, который основан на гидразинолизе полипептида:

Определение С-концевой аминокислоты методом Акабори

Гидразин, вызывая распад чувствительных к нему пептидных связей полипептида, реагирует со всеми аминокислотами, за исключением С-концевой аминокислоты, поскольку ее карбоксильная группа не участвует в образовании пептидной связи. При этом образуется смесь аминоацилгидразинов и свободной С-концевой аминокислоты. Последнюю после обработки всей смеси ДНФБ отделяют и идентифицируют хроматографически, для чего образовавшиеся динитрофенилпроизводные аминоацилгидразинов предварительно экстрагируют уксусно-этиловым эфиром.

С-концевую аминокислоту идентифицируют также путем обработки полипептида восстанавливающим агентом, например боргидридом натрия. В простейшей форме эту процедуру можно представить в следующем виде:

Определение С-концевой аминокислоты боргидридом натрия

Видно, что в указанных условиях только одна, а именно С-концевая, аминокислота будет превращаться в α-аминоспирт, легко идентифицируемый методом хроматографии. Таким образом, при помощи указанных методов определяют природу N- и С-концевых аминокислот.

Следующий этап работы связан с определением чередования (последовательности) аминокислот внутри полипептидной цепи. Для этого сначала проводят избирательный, частичный (химический и ферментативный), гидролиз полипептидной цепи на короткие пептидные фрагменты, последовательность аминокислот в которых может быть точно определена описанными ранее методами.

Читайте также:  Белки их свойства и анализ

Ферментативные методы гидролиза основаны на избирательности действия протеолитических (вызывающих распад белков) ферментов, расщепляющих пептидные связи, образованные определенными аминокислотами. В частности, пепсин ускоряет гидролиз связей, образованных остатками фенилаланина, тирозина и глутаминовой кислоты, трипсин – аргинина и лизина, химотрипсин – триптофана, тирозина и фенилаланина. В результате полипептидная цепь расщепляется на мелкие пептиды, содержащие иногда всего несколько аминокислот, которые отделяют друг от друга сочетанными электрофоретическими и хроматографическими методами, получая своеобразные пептидные карты. Далее определяют чередование аминокислот в каждом индивидуальном пептиде. Завершается работа воссозданием первичной структуры полной полипептидной цепи на основании определения последовательности аминокислот в отдельных пептидах.

Дальнейшие задачи – установление последовательности расположения аминокислот в каждом из выделенных пептидов, сопоставление полученных данных и установление первичной структуры всей молекулы.

В настоящее время выяснение первичной структуры белков является вопросом времени и технического оснащения лабораторий. Полностью выяснена первичная структура многих природных белков и прежде всего инсулина, содержащего 51 аминокислотный остаток (Сэнджер Ф., 1954). Более крупным белком с выясненной первичной структурой оказался иммуноглобулин, в четырех полипептидных цепях которого насчитывается 1300 аминокислотных остатков. За эту работу Дж. Эдельман и Р. Портер были удостоены Нобелевской премии (1972).

Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), α-цепи (141) и β-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. Молекула инсулина, состоящая из двух цепей (А – 21 и В – 30 аминокислотных остатков), образуется из своего предшественника – проинсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Между цепями А и В и внутри А-цепи инсулина образуются дисульфидные (—S—S—) связи. Выяснена первичная структура более 18 инсулинов, выделенных из разных источников. Близкими по первичной структуре оказались инсулины из поджелудочной железы человека, свиньи и кашалота. Единственным отличием инсулина человека является нахождение треонина в положении 30 В-цепи вместо аланина.

Вторым белком, первичная структура которого расшифрована С. Муром и У. Стейном, является рибонуклеаза из поджелудочной железы, катализирующая расщепление РНК. Фермент состоит из 124 аминокислотных остатков с N-концевым лизином и С-концевым валином, между остатками цистеина образуются дисульфидные (—S—S—) связи в 4 участках.

Полностью расшифрована последовательность аминокислот полипептидной цепи фермента лизоцима, имеющего важное защитное и медицинское значение, так как он вызывает лизис ряда бактерий, расщепляя основное вещество их клеточной оболочки. Лизоцим белка куриного яйца содержит 129 аминокислот с N-концевым лизином и С-концевым лейцином.

Отечественными исследователями установлена первичная структура многих белков и полипептидов, в том числе крупного белка РНК-полимеразы, фермента аспартатаминотрансферазы, состоящей из 412 аминокислотных остатков (А.Е. Браунштейн, Ю.А. Овчинников и др.), пепсиногена и пепсина (В.М. Степанов и др.), и др.

Исследования первичной структуры α- и β-цепей гемоглобина способствовали выяснению структуры необычных, так называемых аномальных, гемоглобинов, встречающихся в крови больных гемоглобинопатиями. Иногда развитие болезни, как и изменение пространственной структуры гемоглобина человека, обусловлено заменой лишь одной какой-либо аминокислоты в структуре β-цепей (реже α-цепей) гемоглобина.

Анализ данных о первичной структуре белков позволяет сделать следующие общие выводы.

1 Первичная структура белков уникальна. Каждый индивидуальный гомогенный белок характеризуется уникальной последовательностью аминокислот: частота замены аминокислот приводит не только к структурным перестройкам, но и к изменениям физико-химических свойств и биологических функций.

2 Стабильность первичной структуры обеспечивается в основном пептидными связями; возможно участие дисульфидных связей.

3 В полипептидной цепи могут быть обнаружены разнообразные комбинации аминокислот; в полипептидах относительно редки повторяющиеся последовательности.

4 В некоторых ферментах, обладающих близкими каталитическими свойствами, встречаются идентичные пептидные структуры, содержащие неизменные (инвариантные) участки и вариабельные последовательности аминокислот, особенно в областях их активных центров.

5 В первичной структуре полипептидной цепи детерминированы вторичная, третичная и четвертичная структуры белковой молекулы, определяющие ее общую пространственную конформацию.

Вторичная структура белка. Под вторичной структурой белка подразумевают конфигурацию полипептидной цепи, т. е. способ свертывания, скручивания (складывание, упаковка) полипептидной цепи в спиральную или какую-либо другую конформацию. Процесс этот протекает не хаотично, а в соответствии с программой, заложенной в первичной структуре. Подробно изучены две основные конфигурации полипептидных цепей, отвечающих структурным требованиям и экспериментальным данным: α-спирали и β-структуры.

Благодаря исследованиям Л. Полинга наиболее вероятным типом строения глобулярных белков принято считать α-спираль (рис. 1). Закручивание полипептидной цепи происходит по часовой стрелке (правый ход спирали), что обусловлено L-аминокислотным составом природных белков. Движущей силой в возникновении α-спиралей (так же как и β-структур) является способность аминокислот к образованию водородных связей. В структуре α-спиралей открыт ряд закономерностей. На каждый виток (шаг) спирали приходится 3,6 аминокислотных остатка. Шаг спирали (расстояние вдоль оси) равен 0,54 нм на виток, через 5 витков спирали (18 аминокислотных остатков) структурная конфигурация полипептидной цепи повторяется. Это означает, что период повторяемости (или идентичности) α-спиральной структуры составляет 2,7 нм.

Не все глобулярные белки спирализованы на всем протяжении полипептидной цепи. В молекуле белка α-спиральные участки чередуются с линейными. В частности, если α- и β-цепи гемоглобина спирализованы, например, на 75%, то лизоцима – на 42%, а пепсина – всего на 30%

Рисунок 1 —Структура и параметры α-спирали

Таким образом, стабильность вторичной структуры обеспечивается в основном водородными связями (определенный вклад вносят и главновалентные связи – пептидные и дисульфидные).

В белковой молекуле наиболее важные водородные связи образуются между ковалентно связанным атомом водорода, несущим частичный положительный заряд, и отрицательно заряженным ковалентно связанным атомом кислорода (рис. 2). Примеры водородных связей в белковой молекуле: а) между пептидными цепями; б) между двумя гидроксильными группами; в) между ионизированной СООН-группой и ОН-группой тирозина; г) между ОН-группой серина и пептидной связью.

Рисунок 2 — Образование водородной связи

Другой тип конфигурации полипептидных цепей, обнаруженный в белках волос, шелка, мышц и в других фибриллярных белках, получил название β-структуры. В этом случае две или более линейные полипептидные цепи, расположенные параллельно или, чаще, антипараллельно, прочно связываются межцепочечными водородными связями между NH-и СО-группами соседних цепей, образуя структуру типа складчатого слоя (рис. 3).

Рисунок 3 —β-Структура полипептидных цепей

В природе существуют белки, строение которых, однако, не соответствует ни β-, ни α-структуре. Типичным примером таких белков является коллаген – фибриллярный белок, составляющий основную массу соединительной ткани в организме человека и животных.

Методами рентгеноструктурного анализа в настоящее время доказано существование еще двух уровней структурной организации белковой молекулы, оказавшихся промежуточными между вторичной и третичной структурами. Это так называемые надвторичные структуры и структурные домены. Домен – это компактная глобулярная структурная единица внутри полипептидной цепи. Домены могут выполнять разные функции. Открыто много белков (например, иммуноглобулины), состоящих из разных по структуре и функциям доменов, кодируемых разными генами.

Третичная структура белка. Под третичной структурой белка подразумевают пространственную ориентацию полипептидной спирали или способ укладки полипептидной цепи в определенном объеме.

Первым белком, третичная структура которого была выяснена Дж. Кендрью на основании рентгеноструктурного анализа, оказался миоглобин кашалота. Это сравнительно небольшой белок с М 16700, содержащий 153 аминокислотных остатка, представленный одной полипептидной цепью в виде изогнутой трубки, компактно уложенной вокруг гема (небелковый компонент, содержащий железо) (рис. 4).

Рисунок 4 — Модель третичной структуры молекулы миоглобина. Латинскими буквами обозначены структурные домены, красным цветом — ген

Основная функция миоглобина – перенос кислорода в мышцах.

В настоящее время получены доказательства, что в стабилизации пространственной структуры белков, помимо ковалентных связей (пептидные и дисульфидные связи), основную роль играют так называемые нековалентные связи. К этим связям относятся водородные связи, электростатические взаимодействия заряженных групп, межмолекулярные ван-дер-ваальсовы силы, взаимодействия неполярных боковых радикалов аминокислот, так называемые гидрофобные взаимодействия и т.д.

Третичная структура белка после завершения его синтеза в рибосомах формируется автоматически самопроизвольно при взаимодействии радикалов аминокислот с молекулами воды, и полностью предопределяется первичной структурой.

а — электростатическое взаимодействие; б — водородная связь; в — гидрофобные взаимодействия неполярных групп; г — диполь-дипольные взаимодействия; д — дисульфидная (ковалентная) связь

Рисунок 5-Типы нековалентных связей, стабилизирующих третичную структуру белка

Четвертичная структура белка.Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования. Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных валентными связями, а нековалентными (аналогичными тем, которые обеспечивают стабильность третичной структуры). Каждая отдельно взятая полипептидная цепь, получившая название протомера, мономера или субъединицы, чаще всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входящих в его состав протомеров, т.е. возникает новое качество, не свойственное мономерному белку. Образовавшуюся молекулу принято называть олигомером (или мультимером).

Олигомерные белки чаще построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами – от нескольких тысяч до сотен тысяч. В частности, молекула гемоглобина состоит

из двух одинаковых α- и двух β- полипептидных цепей, т.е. представляет собой тетрамер. Молекула гемоглобина содержит четыре полипептидные цепи, каждая из которых окружает группу гема – пигмента, придающего крови ее характерный красный цвет.

Все биологические свойства белков (каталитические, гормональные, антигенные и др.) связаны с сохранностью их третичной структуры, которую принято называть нативной конформацией. Любые воздействия (термические, физические, химические), приводящие к нарушению этой конформации молекулы (разрыв водородных и других нековалентных связей), сопровождаются частичной или полной потерей белком его биологических свойств.

Основными силами, стабилизирующими четвертичную структуру, являются нековалентные связи между протомерами, которые взаимодействуют друг с другом по типу комплементарности – универсальному принципу, свойственному живой природе.

Таким образом, имеются все основания для подтверждения мнения о существовании 4 уровней структурной организации белков. Поэтому выяснение структуры разнообразных белков может служить ключом к познанию природы живых систем. На этом пути научного поиска могут быть решены также многие проблемы наследственных заболеваний человека, в основе которых лежат дефекты структуры и биосинтеза белков.

Некоторые исследователи склонны рассматривать существование пятого уровня структурной организации белков. Это полифункциональные макромолекулярные комплексы, или ассоциаты из разных ферментов, получивших название метаболонов, и катализирующих весь путь превращений субстрата (синтетазы высших жирных кислот, пируватдегидрогеназный комплекс, дыхательная цепь).

Дата добавления: 2015-08-11 ; просмотров: 2848 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Классификация белков

В настоящее время еще не разработана стройная система номенклатуры и классификации белков. Традиционная классификация белков по группам, основанная, скорее, на случайных показателях (физико-химические свойства, форма молекул, локализация и происхождение, аминокислотный состав), уже не отвечает полностью возросшему уровню знаний о их структуре и функциях. Из огромного количества природных белков структура и функции расшифрованы для относительно небольшого числа (не более нескольких сотен), и поэтому структура и функции белков пока не могут служить основой для их рациональной классификации. Пожалуй, только для одной группы белков, обладающих способностью катализировать химические реакции, т.е. ферментов, разработана стройная система номенклатуры и классификации, в основу которой положены типы катализируемых химических реакций и химическая природа реагирующих веществ. Однако полностью идентифицированные до сих пор ферменты также составляют незначительную долю белков (ферментов описано более 3000). Тем не менее, функциональный принцип, рекомендуемый некоторыми авторами, хотя и не может служить универсальной основой для классификации всех белков, представляет определенный интерес. В соответствии с функциональным принципом различают 12 главных классов белков:

1) каталитически активные белки (ферменты);

2) белки-гормоны (хотя есть и стероидные гормоны);

3) белки-регуляторы активности генома;

4) защитные белки (антитела, белки свертывающей системы крови);

10) белки-ингибиторы ферментов;

11) белки вирусной оболочки;

12) белки с иными функциями.

Были предприняты также попытки классифицировать белки, исходя из особенностей вторичной и третичной структуры. В соответствии с этим различают α-, β-, α+β- и α/β-белки. α-Белки содержат только α-спирали (не менее 60%), β-белки – только β-структуры (не менее двух антипараллельных цепей), α+β-белки – те и другие структуры в пределах одной полипептидной цепи (пример – молекулы лизоцима), а класс α/β-белков содержит множество α- и β-структур, чередующихся вдоль полипептидной цепи или домена.

Читайте также:  Что такое анализ фракций белка

Старая классификация белков с краткой характеристикой новых данных о структуре, составе и свойствах отдельных представителей.

Простые белкипостроены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты.

Сложные белки– это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождается небелковая часть или продукты ее распада.

Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др. Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы).

Получены доказательства предположения К. Линдерстрёма-Ланга о существовании 4 уровней структурной организации белковой молекулы: первичной, вторичной, третичной и четвертичной структуры. Техника современной белковой химии разработана настолько хорошо, что позволяет в принципе расшифровать структурную организацию любого белка.

Первичная структура белка. К настоящему времени расшифрована первичная структура десятков тысяч разных белков, что является несомненным достижением биохимии. Однако это число ничтожно мало, если учесть, что в природе около 10 12 разнообразных белков. Под первичной структурой подразумевают порядок, последовательность расположения аминокислотных остатков в полипептидной цепи. Зная первичную структуру, местоположение каждого остатка аминокислоты, можно точно написать структурную формулу белковой молекулы, если она представлена одной полипептидной цепью.

Для определения первичной структуры полипептидной цепи в первую очередь методами гидролиза выясняют аминокислотный состав, точнее, соотношение каждой из 20 аминокислот в образце гомогенного полипептида. Затем приступают к определению химической природы концевых аминокислот полипептидной цепи, содержащей одну свободную NH2-группу и одну свободную СООН-группу.

Методы определения N-концевой аминокислоты. Для определения природы N-концевой аминокислоты предложен ряд методов, в частности метод Сэнджера (F. Sanger), основанный на реакции арилирования полипептида 2,4-динитрофторбензолом (ДНФБ), что приводит к образованию окрашенного в желтый цвет 2,4-динитрофенильного производного N-концевой аминокислоты. Раствор полипептида обрабатывают ДНФБ, который взаимодействует со свободной NH2-группой N-концевой аминокислоты пептида.

Определение N-концевой аминокислоты методом Сенджера

После кислотного гидролиза продукта реакции – динитрофенилпептида только одна N-концевая аминокислота оказывается связанной с реактивом в виде 2,4-динитрофениламинокислоты (стабильной при гидролизе). В отличие от других образовавшихся при гидролизе полипептида свободных аминокислот она желтого цвета. Ее идентифицируют методом хроматографии.

Для определения N-концевой аминокислоты значительно более широко применяется фенилтиогидантоиновый метод Эдмана благодаря своей высокой чувствительности и возможности многократного использования в одной и той же пробе. Фенилизотиоцианат реагирует со свободной α-NH2-группой N-концевой аминокислоты полипептида с образованием фенилтиокарбамоил-пептида.

Определение N-концевой аминокислоты методом Эдмана

Обработка продукта реакции кислотой приводит к циклизации и освобождению фенилтиогидантоина N-концевой аминокислоты, природу которого устанавливают хроматографически. Укороченный на одну аминокислоту полипептид подвергают дальнейшему анализу.

Эту процедуру ступенчатого расщепления пептида с N-конца можно повторять многократно, идентифицируя последовательно одну аминокислоту за другой. Метод Эдмана используется в качестве химической основы для определения первичной структуры белков и пептидов. Он реализован в специальном приборе – секвенаторе (от англ. sequence – последовательность), работающем в автоматическом режиме и позволяющем определить последовательность аминокислот с N-конца пептида до 50–60 аминокислотных остатков.

Для этих же целей иногда применяют ферменты экзопептидазы, в частности аланин- и лейцинаминопептидазу. Эти ферменты разрывают пептидные связи с того конца полипептида, где имеется свободная NН2-группа, освобождая N-концевую аминокислоту.

Методы определения С-концевой аминокислоты. Для определения природы С-концевой аминокислоты часто используют ферментативные методы. Обработка полипептида карбоксипептидазой, которая разрывает пептидную связь с того конца пептида, где содержится свободная СООН-группа, приводит к освобождению С-концевой аминокислоты, природа которой может быть идентифицирована методом хроматографии.

Предложен также химический метод С. Акабори, который основан на гидразинолизе полипептида:

Определение С-концевой аминокислоты методом Акабори

Гидразин, вызывая распад чувствительных к нему пептидных связей полипептида, реагирует со всеми аминокислотами, за исключением С-концевой аминокислоты, поскольку ее карбоксильная группа не участвует в образовании пептидной связи. При этом образуется смесь аминоацилгидразинов и свободной С-концевой аминокислоты. Последнюю после обработки всей смеси ДНФБ отделяют и идентифицируют хроматографически, для чего образовавшиеся динитрофенилпроизводные аминоацилгидразинов предварительно экстрагируют уксусно-этиловым эфиром.

С-концевую аминокислоту идентифицируют также путем обработки полипептида восстанавливающим агентом, например боргидридом натрия. В простейшей форме эту процедуру можно представить в следующем виде:

Определение С-концевой аминокислоты боргидридом натрия

Видно, что в указанных условиях только одна, а именно С-концевая, аминокислота будет превращаться в α-аминоспирт, легко идентифицируемый методом хроматографии. Таким образом, при помощи указанных методов определяют природу N- и С-концевых аминокислот.

Следующий этап работы связан с определением чередования (последовательности) аминокислот внутри полипептидной цепи. Для этого сначала проводят избирательный, частичный (химический и ферментативный), гидролиз полипептидной цепи на короткие пептидные фрагменты, последовательность аминокислот в которых может быть точно определена описанными ранее методами.

Ферментативные методы гидролиза основаны на избирательности действия протеолитических (вызывающих распад белков) ферментов, расщепляющих пептидные связи, образованные определенными аминокислотами. В частности, пепсин ускоряет гидролиз связей, образованных остатками фенилаланина, тирозина и глутаминовой кислоты, трипсин – аргинина и лизина, химотрипсин – триптофана, тирозина и фенилаланина. В результате полипептидная цепь расщепляется на мелкие пептиды, содержащие иногда всего несколько аминокислот, которые отделяют друг от друга сочетанными электрофоретическими и хроматографическими методами, получая своеобразные пептидные карты. Далее определяют чередование аминокислот в каждом индивидуальном пептиде. Завершается работа воссозданием первичной структуры полной полипептидной цепи на основании определения последовательности аминокислот в отдельных пептидах.

Дальнейшие задачи – установление последовательности расположения аминокислот в каждом из выделенных пептидов, сопоставление полученных данных и установление первичной структуры всей молекулы.

В настоящее время выяснение первичной структуры белков является вопросом времени и технического оснащения лабораторий. Полностью выяснена первичная структура многих природных белков и прежде всего инсулина, содержащего 51 аминокислотный остаток (Сэнджер Ф., 1954). Более крупным белком с выясненной первичной структурой оказался иммуноглобулин, в четырех полипептидных цепях которого насчитывается 1300 аминокислотных остатков. За эту работу Дж. Эдельман и Р. Портер были удостоены Нобелевской премии (1972).

Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), α-цепи (141) и β-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. Молекула инсулина, состоящая из двух цепей (А – 21 и В – 30 аминокислотных остатков), образуется из своего предшественника – проинсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Между цепями А и В и внутри А-цепи инсулина образуются дисульфидные (—S—S—) связи. Выяснена первичная структура более 18 инсулинов, выделенных из разных источников. Близкими по первичной структуре оказались инсулины из поджелудочной железы человека, свиньи и кашалота. Единственным отличием инсулина человека является нахождение треонина в положении 30 В-цепи вместо аланина.

Вторым белком, первичная структура которого расшифрована С. Муром и У. Стейном, является рибонуклеаза из поджелудочной железы, катализирующая расщепление РНК. Фермент состоит из 124 аминокислотных остатков с N-концевым лизином и С-концевым валином, между остатками цистеина образуются дисульфидные (—S—S—) связи в 4 участках.

Полностью расшифрована последовательность аминокислот полипептидной цепи фермента лизоцима, имеющего важное защитное и медицинское значение, так как он вызывает лизис ряда бактерий, расщепляя основное вещество их клеточной оболочки. Лизоцим белка куриного яйца содержит 129 аминокислот с N-концевым лизином и С-концевым лейцином.

Отечественными исследователями установлена первичная структура многих белков и полипептидов, в том числе крупного белка РНК-полимеразы, фермента аспартатаминотрансферазы, состоящей из 412 аминокислотных остатков (А.Е. Браунштейн, Ю.А. Овчинников и др.), пепсиногена и пепсина (В.М. Степанов и др.), и др.

Исследования первичной структуры α- и β-цепей гемоглобина способствовали выяснению структуры необычных, так называемых аномальных, гемоглобинов, встречающихся в крови больных гемоглобинопатиями. Иногда развитие болезни, как и изменение пространственной структуры гемоглобина человека, обусловлено заменой лишь одной какой-либо аминокислоты в структуре β-цепей (реже α-цепей) гемоглобина.

Анализ данных о первичной структуре белков позволяет сделать следующие общие выводы.

1 Первичная структура белков уникальна. Каждый индивидуальный гомогенный белок характеризуется уникальной последовательностью аминокислот: частота замены аминокислот приводит не только к структурным перестройкам, но и к изменениям физико-химических свойств и биологических функций.

2 Стабильность первичной структуры обеспечивается в основном пептидными связями; возможно участие дисульфидных связей.

3 В полипептидной цепи могут быть обнаружены разнообразные комбинации аминокислот; в полипептидах относительно редки повторяющиеся последовательности.

4 В некоторых ферментах, обладающих близкими каталитическими свойствами, встречаются идентичные пептидные структуры, содержащие неизменные (инвариантные) участки и вариабельные последовательности аминокислот, особенно в областях их активных центров.

5 В первичной структуре полипептидной цепи детерминированы вторичная, третичная и четвертичная структуры белковой молекулы, определяющие ее общую пространственную конформацию.

Вторичная структура белка. Под вторичной структурой белка подразумевают конфигурацию полипептидной цепи, т. е. способ свертывания, скручивания (складывание, упаковка) полипептидной цепи в спиральную или какую-либо другую конформацию. Процесс этот протекает не хаотично, а в соответствии с программой, заложенной в первичной структуре. Подробно изучены две основные конфигурации полипептидных цепей, отвечающих структурным требованиям и экспериментальным данным: α-спирали и β-структуры.

Благодаря исследованиям Л. Полинга наиболее вероятным типом строения глобулярных белков принято считать α-спираль (рис. 1). Закручивание полипептидной цепи происходит по часовой стрелке (правый ход спирали), что обусловлено L-аминокислотным составом природных белков. Движущей силой в возникновении α-спиралей (так же как и β-структур) является способность аминокислот к образованию водородных связей. В структуре α-спиралей открыт ряд закономерностей. На каждый виток (шаг) спирали приходится 3,6 аминокислотных остатка. Шаг спирали (расстояние вдоль оси) равен 0,54 нм на виток, через 5 витков спирали (18 аминокислотных остатков) структурная конфигурация полипептидной цепи повторяется. Это означает, что период повторяемости (или идентичности) α-спиральной структуры составляет 2,7 нм.

Не все глобулярные белки спирализованы на всем протяжении полипептидной цепи. В молекуле белка α-спиральные участки чередуются с линейными. В частности, если α- и β-цепи гемоглобина спирализованы, например, на 75%, то лизоцима – на 42%, а пепсина – всего на 30%

Рисунок 1 —Структура и параметры α-спирали

Таким образом, стабильность вторичной структуры обеспечивается в основном водородными связями (определенный вклад вносят и главновалентные связи – пептидные и дисульфидные).

В белковой молекуле наиболее важные водородные связи образуются между ковалентно связанным атомом водорода, несущим частичный положительный заряд, и отрицательно заряженным ковалентно связанным атомом кислорода (рис. 2). Примеры водородных связей в белковой молекуле: а) между пептидными цепями; б) между двумя гидроксильными группами; в) между ионизированной СООН-группой и ОН-группой тирозина; г) между ОН-группой серина и пептидной связью.

Рисунок 2 — Образование водородной связи

Другой тип конфигурации полипептидных цепей, обнаруженный в белках волос, шелка, мышц и в других фибриллярных белках, получил название β-структуры. В этом случае две или более линейные полипептидные цепи, расположенные параллельно или, чаще, антипараллельно, прочно связываются межцепочечными водородными связями между NH-и СО-группами соседних цепей, образуя структуру типа складчатого слоя (рис. 3).

Рисунок 3 —β-Структура полипептидных цепей

В природе существуют белки, строение которых, однако, не соответствует ни β-, ни α-структуре. Типичным примером таких белков является коллаген – фибриллярный белок, составляющий основную массу соединительной ткани в организме человека и животных.

Методами рентгеноструктурного анализа в настоящее время доказано существование еще двух уровней структурной организации белковой молекулы, оказавшихся промежуточными между вторичной и третичной структурами. Это так называемые надвторичные структуры и структурные домены. Домен – это компактная глобулярная структурная единица внутри полипептидной цепи. Домены могут выполнять разные функции. Открыто много белков (например, иммуноглобулины), состоящих из разных по структуре и функциям доменов, кодируемых разными генами.

Дата добавления: 2014-11-25 ; Просмотров: 1282 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник