Меню Рубрики

Анализ на аминокислоты в белке

Физкульт привет спортсмены, сегодня я продолжу разбор анализов, которые можно сдать для определения своего здоровья, функционального состояния и адекватности физической нагрузки. На этот раз речь пойдет о фракции белков, какие разновидности белков встречаются в нашей крови и за, что отвечают. Поехали.

Это как можно догадаться весь белок, который содержится в крови,а точнее в плазме крови(та часть крови, которая не содержит клеточных элементов(эритроциты,лейкоциты и т.д.)). Т.е. анализ не разделяет белок на отдельные типы соединений, а показывает общую сумму. Этот показатель отражает состояние белкового обмена в организме. Понижения или повышение общего белка очень «не конкретный» показатель, т.к. имеет большой спектр причин. Ведь белки отвечают за большое количество функций в организме: строительную, транспортную, отвечают за осмотическое давление крови, обеспечивает постоянство рН крови и т.д. По этому и причин может быть много.

Содержание в крови: мужчины 14-60 лет 64-83 г/литр, женщины 14-60 лет 64-83 г/литр. Средняя цена анализа 200-300 рублей.

Причины повышения общего белка:

— инфекционный и хронические заболевания

— нарушение функций надпочечников

Причины понижения общего белка:

— неадекватные физические нагрузки

— питание с низким содержание белка

Как правило данный анализ не информативен, если наблюдаются какие-то отклонения то требуется дальнейшее обследование, т.к. причин этому может быть много. Но прежде чем сдавать, убедитесь что у вас рациональное питание, ну или хотя бы адекватное количество белка в рационе — это может существенно повлиять на результаты.

Этот анализ подразумевает собой следующее: в крови имеется общее количество белков(анализ на общий белок), но в этом случае лабораторное исследование разделяет общее количество на отдельные,основные фракции: 1)альбумины(56-66% от общего белка); 2)альфа-глобулины(10-16%); 3)бета-глобулины(7-12%); 4)гамма-глобулины(12-19%). Если проводить аналогию — мы сделали салат и разбираем его на ингредиенты. То же самое и в этом случае: есть общая масса белка в крови и её разделяют на фракции. И в зависимости от пропорций полученных значений, врач делает. Давайте поговорим отдельно про каждую фракцию:

1) Альбумины — это фракция белков которая отвечает за транспорт жирных кислот(например во время липолиза), транспорт солей желчных кислот и билирубина; поддерживает онкотическое давление крови.

Содержание в крови: 18-60 лет 35-52 г/литр.

Обратите внимание. Когда человек находится на диете с целью похудеть, за количеством альбумина нужно следить. Т.к. он переносит жирные кислоты может возникнуть такая ситуация: вы себя загоните в хороший липолиз, т.е. например во время аэробной тренировки жирные кислоты активируются и попадут в кровь, далее их транспортирует к месту действия именно альбумин, но может случится так, что его количества не хватит. Т.е. ж/к будет намного больше чем альбумина. В этом случае кислоты будут циркулировать по кровяному руслу, что может привести к иъ налипанию на сосуды, либо к отложению в печени, что приведёт к жировому гепатозу.
Это одна из причин по которой, не стоит худеть слишком бытро. Примерно 1 кг в неделю, будет достаточно. Пожалейте свой организм.
Как следить? У вас количество альбумина на тощак с утра до тренировки и после тренировки(тоже на тощак, с утра следующего дня)не должны изменяться — в этом случае транспортная система крови справляется. Альбумин можно сдавать отдельным анализом, без всех остальных фракций. Цена вопроса примерно 300 рублей.

2) Альфа-глобулины — ещё одна фракция транспортных белков, они занимаются переносом гормонов, витаминов, углеводорода, микроэлементов, холестерина и т.д. Бывают двух видов: альфа-1-глобулины и альфа-2-глобулины.

Содержание в крови: альфа-1-глобулины 2-5 г/литр, альфа-2-глобулины 4-7 г/литр

3) Бета-глобулины — фракция белков, которая тоже отвечает за транспортную функцию. Транспортирует железо,медь,стероидные гормоны,фосфолипиды и т.д. Ещё один белок крови, который транспортирует вещества в организме.

Содержание в крови: 5-9 г/литр

Обратите внимание. При неадекватных аэробных нагрузках, или слишком частых — функциональное состояние организма будет падать из-за накопившейся усталости,перетренированности или если нагрузка больше возможностей организма. Дезадаптация. Это приведёт к тому, что концентрация бета-глобулинов в крови будет расти. По этому если вы часто применяете аэробные нагрузки, этот анализ будет для вас информативен.
Так же, с ростом возможностей вашего организма, функционального состояния, короче говорят тренированности, этот скачок при неадекватной нагрузке будет меньше. Т.е. если перетренировать офисного работника — бета-глобулины сильно подскочат. Если же профессионального спортсмена — то картина будет совсем иная, рост коенцтраии будет на много меньше.

4) Гамма-глобулины — эти белки защищают наш организм, в их состав входят различные антитела.

Содержание в крови: 8-17 г/литр

Обратите внимание. Т.к. эти белки выполняют защитную функцию в нашем организме, между ними и физической нагрузкой есть прямая взаимосвязь. Тренировочный процесс сам по себе уже стресс для организма, и в процессе тренировки происходят разрушения с которыми борются гамма-глобулины. По этому их количество после тренировки становится меньше. Это ярко отражает уровень нагрузки.

Причины повышения,понижения белковых фракций достаточно разнообразны, но все отклонения(конечно кроме тех, которые вызваны тренировкой) говорят про нарушения белкового обмена, либо воспалительных процессах. Цена вопроса в лаборатории примерно 500 р. В результатах будут как правило 6 показателей: альбумин, альфа-1-глобулин, альфа-2-глобулин, бета-1-глобулин, бета-2-глобулин и гамма-глобулин. Теперь вы знаете как их интерпретировать.

Это белок, который содержится в мышцах и миокарде, его функция переносить(и запасать) кислород внутри клетки для энергообеспечения(тканевое дыхание). В норме количество миоглобина в сыворотке очень низкое, он практически не попадает в кровоток. Но при сильных повреждениях мышц или миокарда его содержание в крови значительно возрастает, выводится из организма почкам, причём если его количество в крови очень велико, то он может вызвать острую почечную недостаточность.

Содержание в крови: мужчины старше 14 лет 12-76 мкг/литр, женщины старше 14 лет 19-92 мкг/литр.

Основная причина повышения уровня миоглобина это повреждения мышц и миокарда. Анализ в принципе имеет взаимосвязь с тренировкой, т.к. если вы слишком сильно тренируетесь и используете чрезмерные нагрузки, то уровень миоглобина будет повышен. Но анализ слишком дорогой, в районе 2000, по этому сдавать его только в том случае, если есть подозрения на повреждение сердца, и в совокупности с другими анализами (тропонин и креатинкиназа МВ). Ещё один момент, чем вы тренированней, тем повышение миоглобина будет меньше после тренировки.

Белок, который так же участвует в регуляции мышечного сокращения и является маркером глубокого повреждения мышц или миокарда.

Содержание в крови: меньше 0,028 нг/мл

Еще один анализ, который показывает повреждение мышц, либо миокарда. Хоть он и имеет взаимосвязь с тренировками, вы теоретически можете надорваться так, что он повысится в сыворотке, но в основном тропонин сдают для диагностирования инфаркта миокарда. Средняя цена 900 рублей, решайте сами стоит сдавать или нет. Но если у вас во время тренировки, или после возникают неприятные ощущения в груди, то можно и сдать, вместе с креатинкиназой МВ.

Это аминокислота, которая является продуктом метаболизма аминокислоты метионина. Синтезируется в организме и в пище не содержится. Повышенное содержание в крови повышает шансы атеросклероза сосудов. Своего рода аналог холестерина, в плане развития атеросклероза. Выглядит это примерно так:

Содержание в крови: мужчины 6,26-15,01 мкмоль/литр, женщины 4,6-12,44 мкмоль/литр.

Анализ дорогой, около 2000 рублей, вижу смысл его сдавать тем, кому ставили диагноз атеросклероз. Но обычно люди с запущенными сосудами и сами это знают. Ещё порекомендовал бы тем кто решил тренироваться начать(особенно впервые в жизни), но имеет лишний вес, плохо питается, а проблем и симптомов атеросклероза на себе не ощущал. Дело в том, что если у вас сосуды забиты гомоцистеином(на него ещё может налипать сверху глюкоза) или холестерином, тренироваться вам опасно, особенно высокие нагрузки. Во время тренировки сосуды сужаются и могу схлопнуться, что приведёт к печальным последствиям. А учитывая, что тренера не всегда достаточно квалифицированны, могут об этом вам не сообщить. Будьте аккуратны.

Белок, который содержит в себе молекулы железа. Если упрощенно, то это депо железа, одна молекула ферритина содержит около 4000 молекул железа. Является самым информативным индикатором запаса железа в организме. Анализ используется для диагностики дефицита железа.

Содержание в крови: мужчины 20-250 мкг/литр, женщины 10-120 мкг/литр

Назначение у анализа одно — наблюдение за количеством железа в организме. К снижению железа могут привести многие болезни, как и питание. Если вы плохо питаетесь, то имеет смысл сдать анализ, цена в районе 700 р. После физической нагрузки ферритин может упасть в крови, т.к. какая-то его часть будет использована для синтеза миоглобина.

На этом статься заканчивается, я рассказал анализы на основные белки крови, не затронул правда трансферрин — это переносчик железа. Какие выводы можно сделать? Эти анализы позволят вам оценить как и ваше питание, так и тренировку. Плюс есть показатели состояния сердца и сосудов. Многие маркеры меняют свою концентрацию задолго до появления симптомов болезни, по этому я думаю 1000 рублей не жалко будет хотя бы на анализ общего белка и его фракций.

На этом я с вами прощаюсь, питайтесь правильно, тренируйтесь с умом, не болейти и подписывайтесь на мой канал. Спасибо, с вами был Зайцев Игорь.

источник

КЛАССИФИКАЦИЯ БЕЛКОВ

Огромное разнообразие белков по составу и строению молекул, физико-химическим свойствам и выполняемым функциям не позволяет создать единой классификации белковых веществ. По составу молекул белки подразделяют на два больших класса — протеины и протеиды. Протеины — это типичные полипептиды, образованные только из аминокислот. Протеиды имеют в своем составе полипептидные группировки, с которыми прочно связаны другие соединения неаминокислотной (небелковой) природы.

ПРОТЕИНЫ. Молекулы протеинов заметно различаются по физико- химическим свойствам и это положено в основу их классификации по группам растворимости или выполняемым функциям.

Растворимые в воде протеины называют альбуминами. Типичными представителями альбуминов являются белок куриного яйца — овальбумин, водорастворимые белки зерна пшеницы, ржи, ячменя — лейкозины, легуме-лин из зерна гороха и других зернобобовых культур.

Альбумины содержатся во всех тканях растений и обладают высокой биологической активностью, так как к ним относятся многие белки-фер-менты, белковые ингибиторы ферментов, белки-антивитамины, многие регуляторные белки.

Белки, растворимые в растворах нейтральных солей, называют гло-булинами. Чаще всего для извлечения глобулинов используют 5-10% рас-творы NaCl или KCl.

Глобулины содержатся во всех клетках и тканях живых организмов и выполняют жизненно важные функции. К глобулинам относятся многие ферментные и регуляторные белки, а также запасные белки семян и других органов растений. Многие растительные глобулины выделены в кристаллическом виде и хорошо изучены. Так, из семян сои выделен гли-цинин, из фасоли — фазеолин, из гороха — легумин, из конопли — эдестин, из люпина — конглютин, из картофеля — туберин.

В семенах злаковых растений накапливается очень много запасных белков, растворяющихся в 70% водном растворе этанола, их называют проламинами. Синтез в семенах проламинов — генетическая особенность злаковых растений, тогда как в других растениях эти белки не образуются. Они также не синтезируются в вегетативных органах растений (в том числе и злаковых). Название проламины этой группе белков было дано вследствие того, что при их гидролизе образуется много аминокислоты пролина и аммиачного азота.

Проламины — основные белки клейковины пшеницы и других злако-вых растений. Проламин пшеницы называют глиадином, проламин кукуру-зы — зеином, проламин овса — авенином, проламин ячменя — гордеином, про-ламин ржи — секалином.

Белки, не растворимые в воде, водных растворах солей и спирта, но хорошо растворяющиеся в щелочных растворах (0,1-0,2% раствор NaOH), называют глютелинами. Они содержатся в любых растительных клетках, но особенно их много в семенах злаковых растений. Глютелины входят в состав клейковины. В семенах эти белки выполняют роль запасных веществ, а в листьях глютелины по-видимому являются структурными белками. Наиболее хорошо изучены глютелины пшеницы — глютенины и глютелины риса — оризенины.

Альбумины, глобулины, проламины и глютелины растений состоят из большого набора индивидуальных белков. Методом электрофореза каждая из этих групп белков может быть разделена на 20-30 компонентов, различающихся по электрофоретической подвижности, а методом изо-электрофокусирования — на несколько десятков белковых компонентов.

В хромосомах клеточных ядер содержатся водорастворимые белки — гистоны, играющие важную роль в образовании структуры хроматина, так как связаны с ДНК. Они имеют высокую концентрацию основных ами-нокислот — лизина и аргинина (25-30%), поэтому относятся к щелочным белкам, у которых очень сильно выражены свойства оснований. Основная функция гистонов — упаковка молекул ДНК в ядрах клеток высших организмов. Гистоны H2a, H2б, H3 и H4, взаимодействуя с ДНК, образуют упорядоченные ядерные структуры — нуклеосомы, связь между которыми обеспечивают гистоны H1. Гистоны, богатые аргинином (H3 и H4), у разных организмов очень мало отличаются по их аминокислотным последовательностям, а богатый лизином гистон H1 по составу аминокислот проявляет довольно высокую видовую специфичность.

К протеинам также относятся склеропротеины, представляющие бел-ки, которые нерастворимы в воде и большинстве других растворителей. Они выполняют структурную функцию, образуя длинные параллельные полипептидные цепи, соединенные поперечными связями в прочные структуры. К этой группе белков относятся коллаген сухожилий, миозин мышц, кератин волос, эластин кровеносных сосудов, фиброин шелка.

ПРОТЕИДЫ. В зависимости от химической природы небелковой части протеиды разделяют на несколько групп: гликопротеиды, хромопротеиды, липопротеиды, флавопротеиды, металлопротеиды, нуклеопротеиды и др.

Гликопротеиды. В составе молекул гликопротеидов к белку через аминокислотные остатки присоединены моносахариды или их производные — манноза, галактоза, глюкозамин, глюкуроновая кислота и др. К гли-копротеидам относятся многие ферменты, мембранные белки, защитные белки иммуноглобины и лектины, некоторые запасные белки (вицилин семян фасоли), белок внеклеточного матрикса — ламинин, некоторые ядовитые белки (рицин клещевины).

Читайте также:  Значение с реактивного белка в анализах

Липопротеиды. Они образуются при соединении белков с липидами и являются основными компонентами цитоплазматических, хлоропластных и митохондриальных мембран. При образовании мембранных липопротеидов к C или N-концам полипептидных цепей белка присоединяется гликолипидная или липидная группировка, которая делает эту часть мо-лекулы белка гидрофобной и поэтому способной к взаимодействию с липидными компонентами мембраны. Липидная часть липопротеида обычно представлена фосфатидилинозитом и диацилглицерином.

Нуклеопротеиды. Соединения белков с нуклеиновыми кислотами, играют важную роль в процессах жизнедеятельности организмов, связанных с передачей наследственной информации. Они являются главным веществом хромосом, рибосом и пластидных факторов наслед-ственности.

Фосфопротеиды. Это белки, в которых к остаткам серина, треонина, тирозина, имеющим HO-группы, сложноэфирной связью присоединяются остатки ортофосфорной кислоты. Фосфорилирование белков играет важную роль в регулировании активности ряда ферментов: гликогенфосфорилаз (катализирующих фосфоролиз гликогена), гликогенсинтетаз (катализирую-щих синтез гликогена), синтетаз жирных кислот, пируватдегидрогеназы, многих ферментов, образующих систему клеточного деления. Фосфорили-рованию могут подвергаться также и другие белки – регуляторные, защитные, транспортные, запасные.

Металлопротеиды. Имеют в своем составе группировки, содержа-щие атомы металлов. К ним относятся белки, обладающие каталитичес-кими свойствами: цитохромы, пероксидаза, каталаза, глобины (осу-ществляющие связывание и перенос кислоода), в состав которых входит железо; аскорбинатоксидаза, фенолоксидазы, тирозиноксидаза, пластоцианин, содержащие медь; нитратредуктаза, содержащая молибден; нитрогеназа, содержащая молибден и железо; многие другие ферменты.

Известны белки-ферменты, имеющие в своем составе производные витаминов и нуклеотидные группировки, в связи с чем такие белки можно назвать витаминопротеидами и нуклеотидопротеидами. Более подробно они будут рассмотрены в главе «Ферменты».

Систематические исследования аминокислотного состава белков были начаты во второй половине девятнадцатого века, когда были разработаны химические методы определения аминокислот в белковых гидролизатах. Однако значительные успехи в аминокислотном анализе полипептидов были достигнуты после разработки хроматографических методов изучения органических веществ. В современных исследованиях для определения аминокислотного состава белков применяется метод ионообменной хроматографии с использованием аминокислотных анализаторов, которые в автоматическом режиме разделяют смесь аминокислот, полученных в результате гидролиза белков, на ионообменнике, производят их окрашивание и измерение оптической плотности окрашенного раствора, после чего данные спектрофото-метрических измерений выводятся на регистрирующее устройство.

Гидролиз белков проводится в кислой или щелочной среде, а также с помощью протеолитических ферментов. В ходе гидролиза пептидные связи, соединяющие аминокислотные остатки в белке, расщепляются и образуется смесь свободных аминокислот.

Как показали исследования, белки разных видов растений, а также разных органов одного и того же растения могут заметно различаться по содержанию аминокислот (табл. 3 и 4).

В альбуминах по сравнению с проламинами существенно выше концентрация аргинина, глицина, лизина, метионина и триптофана, но значительно меньше содержание лейцина, пролина, тирозина, фенил-аланина.

В специфическом белке эндосперма пшеницы — пуротионине пол-ностью отсутствуют гистидин, метионин и триптофан, но повышено со-держание лизина (15%) и аргинина (18%).

Белки зерна зернобобовых и семян масличных культур по амино-кислотному составу близки к глобулинам, так как на 60-70% состоят из

3. Средний аминокислотный состав белков

некоторых растительных продуктов (%)* .

Аминокислоты Зерно мягкой пшеницы Зерно обычной кукурузы Зерно высо- колизиновой кукурузы Листья клевера Казеин Молока

Аспарагиновая кислота 5,3 6,0 8,4 10,0 7,2

Глутаминовая кислота 30,4 23,8 21,3 11,5 15,0

Фенилаланин 4,3 4,1 5,8 6,8 4,9

Цистин (цистеин) 2,2 2,3 2,5 0,9 0,8

*Вследствие потерь при гидролизе выход аминокислот не равен 100%.

этих белков. Аминокислотный состав белков клубней картофеля, корне-плодов, овощей, плодов и ягод, вегетативной массы растений довольно близок к альбуминам и глобулинам, поскольку эти белки составляют 65-75% общей массы белков указанных растительных продуктов.

Растительные белки — источники незаменимых аминокислот для человека и сельскохозяйственных животных, так как являются основными компонентами пищи или корма. Под действием пищеварительных фер-ментов белки корма гидролизуются до аминокислот, которые затем по-ступают в кровь и используются для синтеза белков организма животных.

Потребность животного организма в незаменимых аминокислотах определяется средним аминокислотным составом синтезируемых белков и, кроме того, учитывается коэффициент использования каждой амино-кислоты, зависящий от химического состава корма, а также особенностей пищеварительной системы и обмена веществ организма данного вида животных. Этот показатель обычно выражают в г в расчете на 100 г белка корма и он выражает необходимую пропорцию аминокислот в кормовом белке.

Если содержание незаменимых аминокислот в кормовом белке точно соответствует установленной пропорции (то есть потребности), то все они

4. Аминокислотный состав очищенных растительных протеинов (%).

Аминокислоты Альбу- мин проса Глобу- лин ячменя Легу- мин сои Зеин куку- рузы Оризе- нин риса Эталон ФАО

Аспарагиновая кислота 4,6 10,9 12,2 4,9 7,6

Глутаминовая кислота 21,2 14,0 20,8 23,4 17,7

Изолейцин 3,1 3,3 5,1 3,3 5,8 4,2

Лейцин 6,0 6,5 6,3 18,6 9,3 4,8

Метионин 1,7 1,1 1,3 0,9 1,9 2,2

Треонин 4,6 5,1 4,5 2,8 4,1 2,8

Триптофан 1,5 1,1 1,4 0,1 1,2 1,4

Фенилаланин 3,3 4,5 4,9 6,9 5,6 2,8

Цистин (цистеин) 2,4 2,3 1,4 1,0 0,5

полностью используются для синтеза белков животного организма и такой кормовой белок называют полноценным. Если же в кормовом белке хотя бы одной аминокислоты содержится недостаточно, то она будет лимитировать синтез белков в животном организме и для образования определённой массы животного белка потребуется восполнять недостаток этой аминокислоты добавлением дополнительного количества корма, что вызы-вает перерасход корма и увеличение затрат на создание одной единицы животноводческой продукции. Кроме того, другие аминокислоты в таких условиях оказываются в избытке и должны превращаться в организме в другие органические вещества. Кормовые белки с низким содержанием незаменимых аминокислот принято называть неполноценными белками.

По средним нормам питания человеку необходимо потреблять 8-10 г полноценного белка в расчете на 1 МДж обменной энергии, содержащейся в пище, коровам — 8-12 г, свиньям — 10-14 г, птице — 12-15 г. (Обменная энергия — часть общей энергии, доступная для использования в процессе обмена веществ организма).

Для каждого вида организмов с учетом их возраста и физиологи-ческого состояния определены оптимальные нормы содержания незаме-нимых аминокислот в кормовых белках. Наиболее часто в качестве эталона полноценных пищевых и кормовых белков используются нормативы, разработанные экспертами Продовольственной и сельскохозяйственной организации ООН (ФАО) и Всемирной организации здравоохранения (ВОЗ). В таблице 4 приведен эталон аминокислотной шкалы, рекомендуемый ФАО/ВОЗ для кормовых белков при кормлении крупного рогатого скота. Пищевая биологическая ценность такого белка принимается за 100%, а другие белки в опытах или с помощью расчетов сравнивают с эталоном.

Более высокую биологическую ценность имеют белки животного происхождения: белок яйца и казеин молока — 100%, белки мяса и рыбы — 95%. Из растительных белков наиболее полноценными являются альбу-мины, их биологическая ценность составляет 85-95%. В альбуминах имеется некоторый дефицит по содержанию метионина и изолейцина. Биологическая ценность глобулинов составляет 80-90%, в них имеется значительный дефицит по метионину и меньший — по изолейцину и триптофану. Последнее не относится к глобулинам сои, в которых отмечается лишь некоторый недостаток метионина.

Биологическая ценность глютелинов — 70-80%, в них понижена кон-центрация триптофана, метионина и лизина. Меньший дефицит по указанным аминокислотам имеют оризенины, у которых биологическая ценность составляет около 90%. К неполноценным белкам относятся проламины, имеющие биологическую ценность 40-50%. В этих белках очень мало содержится триптофана, лизина и метионина и понижена концентрация валина и изолейцина.

Проламины — специфические белки зерна злаковых растений, поэтому у них суммарный белок зерновок так же, как и проламины, имеет довольно низкую биологическую ценность: белок зерна кукурузы — 52-58%, пшеницы, ячменя и проса — 60-70%, ржи и овса — 70-75%. Суммарные белки зерна зернобобовых и семян масличных культур, клубней картофеля, корнеплодов, овощей, плодов и ягод, а также вегетативной массы кормовых трав и других растений вследствие повышенной концентрации глобулинов и альбуминов характеризуются довольно высокой биологической ценностью — 80-90%.

Для оценки биологической ценности белков очень часто используют показатель — индекс незаменимых аминокислот, который рассчитывают по формуле:

где числитель — содержание незаменимых аминокислот в оцениваемом белке, знаменатель — содержание тех же аминокислот в эталонном белке (по ФАО/ВОЗ), n — число аминокислот, 100 — пересчет в проценты.

Указанный способ определения биологической ценности белков удобен тем, что позволяет использовать данные аминокислотного анализа.

Более точные результаты по оценке биологической ценности белков дают методы, основанные на использовании живых организмов. Одним из таких методов является расчет показателя «эффективность белка», который выражается отношением привеса животных к массе потреблённого кормового белка. В этом случае оценка биологической ценности белка производится по интенсивности роста опытных животных.

Для взрослых животных биологическую ценность белка корма оп-ределяют по методу Томаса и Митчелла, который основан на учете отно-шения азота корма, отложенного в теле животного, к общему количеству переваренного азота.

Если содержание белков в растительной массе, используемой для кормления животных, ниже, чем требуется по нормам кормления, то во избежание перерасхода корма и повышения себестоимости животновод-ческой продукции количество белка в корме балансируют путем введения белковых добавок с повышеным содержанием незаменимых аминокислот. По такому же принципу контролируется содержание в кормовом белке незаменимых аминокислот, недостающее до нормы количество какой-либо аминокислоты балансируют добавлением в корм чистых препаратов дефицитных аминокислот или белковой массы с более высоким содер-жанием данной аминокислоты по сравнению с принятым эталоном.

В нашей стране и за рубежом разрабатываются и реализуются научные программы, связанные с созданием новых генотипов растений, отлича-ющихся повышенным содержанием белков с улучшенным аминокислотным составом. Примером тому может служить создание высоколизиновых гибридов кукурузы, у которых уровень урожайности примерно такой же, как и у обычных гибридов, однако в их зерновках накапливается больше белков с повы-шенным содержанием лизина (на 50-80%) и триптофана (на 30-50%).

Высоколизиновые гибриды кукурузы получены от скрещивания обычной кукурузы с генотипами, имеющими гены Опейк-2 и Флаури-2, которые вызывают изменение состава белков зерна: массовая доля спир-торастворимых белков-зеинов, имеющих низкую биологическую ценность, снижается в 2,5-3 раза, а доля других белков (альбуминов, глобулинов и глютелинов) возрастает. В результате таких изменений белкового комплекса зерна биологическая ценность суммарного белка зерна значительно повышается. Использование зерна высоколизиновой кукурузы для кормления животных позволяет существенно повысить их продуктивность и сократить затраты кормового белка на создание одной единицы животноводческой продукции на 20-25%.

Во многих лабораториях проводится селекционно-генетическая работа по улучшению аминокислотного состава белков зерна ячменя на основе скрещиваний с высоколизиновыми формами Хайпроли и Ризо 1508, а также поиск генетических источников высокого содержания белков с улучшенным аминокислотным составом для пшеницы, проса, тритикале и других злаковых культур.

Определенные надежды возлагают на новые методы создания ценных генотипов растений, основанные на использовании достижений гене-тической и клеточной инженерии. Так, например, путем направленного мутагенеза в ген спирторастворимого белка зерна кукурузы α-зеина введены дополнительные кодоны лизина и в результате включения такого модифицированного гена в генотип кукурузы были получены линии с повышенным содержанием лизина в белках зерна.

В 1986 г. Дж.М.Джейнс с помощью ферментов синтезировал ген, кодирующий структуру белка с высокой концентрацией незаменимых аминокислот (80%). В настоящее время разрабатываются способы вве-дения этого гена в генотипы злаковых растений.

Вопросы для повторения:

1. Каковы основные характеристики моноаминомонокарбоновых, моноаминодикарбоновых и диаминомонокарбоновых кислот? 2. Какие стереоизомеры аминокислот синтезируются в живых организмах? 3. В чём состоят структурные и биологические особенности протеино­генных аминокислот? 4. Что выражает понятие «незаменимые амино­кислоты»? 5. В виде каких форм находятся аминокислоты в растворе и как они взаимо-действуют с кислотами, основаниями, азотистой кислотой, формальдегидом? 6. Какие образуются продукгы при взаимо­действии аминокислот с редуцирующими сахарами и кислородом воздуха и как они влияют на товарные свойства растительной продукции? 7. В зависимости от каких факторов изменяется концентра­ция аминокислот в растительных тканях? 8. Из каких структурных компонентов состоят ри-бонуклеотиды и дезоксирибонуклеотиды? 9. Какие конформации молекул имеют разные нуклеотиды? 10. Как образуются нуклеозиды и их фосфорнокислые эфиры? 11. Каковы химические свойства нуклеотидов и какие они выполняют биологические функции? 12. Как называют нуклеотиды и их ди- и трифосфаты? 13. Каковы структурные особенности пуриновых и пиримидиновых оснований, входящих в состав нуклеотидов? 14. Каковы функции белков в живых организмах и сколько их содержится в различных растительных продуктах? 15. В чём состоят основные положения полипептидной теории стоения белков? 16. Чем отличаются белки от пептидов? 4. Какие имеются сведения о первичной структуре белков? 17. Как формируется вторичная, третичная и четвертичная структура белков? 18. В чём состоят особенности структуры олигомерных белков? 19. Чем отличаются нативная и денатурированная конформации белковых молекул? 20. Какие известны катализаторы формирования пространственной структуры полипеп-тидов? 21. Как происходит денатурация белков? 22. Как определяются размеры и форма белковых молекул и какие имеются сведения об этих показателях? 23.Какие применяются методы изучения физико-химических свойств белков? 24. Какие принципы положены в основу классификации белков и какие известны разновидности белковых групп в соответствии с современной классификацией? 25. Как определяют аминокислотный состав белков? 26. Как различаются растительные белки по содержанию аминокислот? 27. Как определяют биологическую полноценность белков? 28. Какие имеются сведения о биологической ценности растительных белков? 29. Какие разрабатываются методы создания генотипов растений с повышенным содержанием незаменимых аминокислот в белках?

Читайте также:  Слишком много белка в анализах

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10300 — | 7840 — или читать все.

источник

Аминокислоты – важные органические вещества, в структуре которых находятся карбоксильная и аминная группы. Комплексное исследование, определяющее содержание аминокислот и их производных в крови позволяет выявить врождённые и приобретенные нарушения аминокислотного обмена.

  1. Аланин (ALA)
  2. Аргинин (ARG)
  3. Аспарагиновая кислота (ASP)
  4. Цитруллин (CIT)
  5. Глутаминовая кислота (GLU)
  6. Глицин (GLY)
  7. Метионин (MET)
  8. Орнитин (ORN)
  9. Фенилаланин (PHE)
  10. Тирозин (TYR)
  11. Валин (VAL)
  12. Лейцин (LEU)
  13. Изолейцин (ILEU)
  14. Гидроксипролин (HPRO)
  15. Серин (SER)
  16. Аспарагин (ASN)
  17. Alpha-аминоадипиновая к-та (AAA)
  18. Глутамин (GLN)
  19. Beta-аланин (BALA)
  20. Таурин (TAU)
  21. Гистидин (HIS)
  22. Треонин (THRE)
  23. 1-метилгистидин (1MHIS)
  24. 3-метилгистидин (3MHIS)
  25. Gamma-аминомасляная к-та (GABA)
  26. Beta-аминоизомасляная к-та (BAIBA)
  27. Alpha-аминомасляная к-та (AABA)
  28. Пролин (PRO)
  29. Цистатионин (CYST)
  30. Лизин (LYS)
  31. Цистин (CYS)
  32. Цистеиновая кислота (CYSA)

Скрининг аминоацидопатий; аминокислотный профиль.

Синонимы английские

Amino Acids Profile, Plasma.

Метод исследования

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Исключить из рациона алкоголь в течение 24 часов до исследования.
  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Полностью исключить прием лекарственных препаратов в течение 24 часов перед исследованием (по согласованию с врачом).
  • Исключить физическое и эмоциональное перенапряжение в течение 30 минут до исследования.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Аминокислоты – органические вещества, содержащие карбоксильные и аминные группы. Известно около 100 аминокислот, но в синтезе белка участвуют только 20. Данные аминокислоты называются «протеиногенными» (стандартными) и по возможности синтеза в организме классифицируются на заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Заменимыми аминокислотами являются аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин, цистеин. Протеиногенные и нестандартные аминокислоты, их метаболиты участвуют в различных обменных процессах в организме. Дефект ферментов на различных этапах трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, оказывать отрицательное влияние на состояние организма.

Нарушения метаболизма аминокислот могут быть первичными (врождёнными) или вторичными (приобретенными). Первичные аминоацидопатии обычно наследуются аутосомно-рецессивно или сцеплено с Х-хромосомой и проявляются в раннем детском возрасте. Заболевания развиваются вследствие генетически обусловленного дефицита ферментов и/или транспортных белков, связанных с метаболизмом определенных аминокислот. В литературе описано более 30 вариантов аминоацидопатий. Клинические проявления могут варьироваться от легких доброкачественных нарушений до тяжелого метаболического ацидоза или алкалоза, рвоты, задержки умственного развития и роста, летаргии, комы, синдрома внезапной смерти новорождённых, остеомаляции и остеопороза. Вторичные нарушения обмена аминокислот могут быть связаны с заболеваниями печени, желудочно-кишечного тракта (например, язвенный колит, болезнь Крона), почек (например, синдром Фанкони), недостаточным или неадекватным питанием, новообразованиями. Ранняя диагностика и своевременное лечение позволяют предупредить развитие и прогрессирование симптомов заболевания.

Данное исследование позволяет комплексно определить концентрацию в крови стандартных и непротеиногенных аминокислот, их производных и оценить состояние аминокислотного обмена.

Аланин (ALA) способен синтезироваться в организме человека из других аминокислот. Он участвует в процессе глюконеогенеза в печени. По некоторым данным, повышенное содержание аланина в крови ассоциировано с повышением артериального давления, холестерина, индекса массы тела, АЛТ.

Аргинин (ARG) в зависимости от возраста и функционального состояния организма относится к полузаменимым аминокислотам. В связи с незрелостью ферментных систем недоношенные дети не способны к его образованию, поэтому нуждаются во внешнем источнике поступления данного вещества. Повышение потребности в аргинине возникает при стрессе, оперативном лечении, травмах. Данная аминокислота участвует в делении клеток, заживлении ран, высвобождении гормонов, образовании окиси азота и мочевины.

Аспарагиновая кислота (ASP) может образовываться из цитруллина и орнитина и являться предшественником некоторых других аминокислот. Аспарагиновая кислота и аспарагин (ASN) участвуют в глюконеогенезе, синтезе пуриновых основ, азотистом обмене, функции АТФ-синтетазы. В нервной системе аспарагин играет роль нейротрансмиттера.

Цитруллин (CIT) может образовываться из орнитина или аргинина и является важным компонентом цикла образования мочевины в печени (орнитинового цикла). Цитруллин входит в состав филаггрина, гистонов и играет роль в аутоиммунном воспалении при ревматоидном артрите.

Глутаминовая кислота (GLU) – заменимая аминокислота, которая имеет большое значение в азотистом обмене. Свободная глутаминовая кислота используется в пищевой промышленности в качестве усилителя вкуса. Глутаминовая кислота и глутамат являются важными возбуждающими нейротрансмиттерами в нервной системе. Снижение высвобождения глутамата отмечается при классической фенилкетонурии.

Глицин (GLY) является заменимой аминокислотой, которая может образовываться из серина под действием пиридоксина (витамина В6). Он принимает участие в синтезе белков, порфиринов, пуринов и является тормозным медиатором в центральной нервной системе.

Метионин (MET) – незаменимая аминокислота, максимальное содержание которой определяется в яйцах, кунжуте, злаках, мясе, рыбе. Из него может образовываться гомоцистеин. Дефицит метионина приводит к развитию стеатогепатита, анемии.

Орнитин (ORN) не кодируется человеческим ДНК и не включается в синтез белка. Данная аминокислота образуется из аргинина и играет ключевую роль в синтезе мочевины и выведении аммиака из организма. Содержащие орнитин препараты применяются для лечения цирроза, астенического синдрома.

Фенилаланин (PHE) – незаменимая аминокислота, которая является предшественником тирозина, катехоламинов, меланина. Генетический дефект метаболизма фенилаланина приводит к накоплению аминокислоты и ее токсических продуктов и развитию аминоацидопатии – фенилкетонурии. Заболевание ассоциировано с нарушениями умственного и физического развития, судорогами.

Тирозин (TYR) поступает в организм с пищей или синтезируется из фенилаланина. Является предшественником нейротрансмиттеров (дофамина, норадреналина, адреналина) и пигмента меланина. При генетических нарушениях метаболизма тирозина возникает тирозинемия, которая сопровождается повреждением печени, почек и периферической нейропатией. Важное дифференциально диагностическое значение имеет отсутствие повышения уровня тирозина в крови при фенилкетонурии, в отличие от некоторых других патологических состояний.

Валин (VAL), лейцин (LEU) и изолейцин (ILEU) – незаменимые аминокислоты, которые являются важными источниками энергии в мышечных клетках. При ферментопатиях, которые нарушают их метаболизм и приводят к накоплению данных аминокислот (особенно лейцина), возникает «болезнь кленового сиропа» (лейциноз). Патогномоничным признаком данного заболевания служит сладкий запах мочи, который напоминает кленовый сироп. Симптомы аминоацидопатии возникают с раннего возраста и включают рвоту, обезвоживание, летаргию, гипотонию, гипогликемию, судороги и опистотонус, кетоацидоз и патологию центральной нервной системы. Заболевание нередко заканчивается летально.

Гидроксипролин (HPRO) образовывается при гидроксилировании пролина под воздействием витамина С. Данная аминокислота обеспечивает стабильность коллагена и является главной его составляющей. При дефиците витамина С нарушается синтез гидроксипролина, снижается стабильность коллагена и возникает повреждение слизистых оболочек – симптомы цинги.

Серин (SER) входит в состав практически всех белков и участвует в формировании активных центров многих ферментов организма (например, трипсина, эстераз) и синтезе других заменимых аминоксилот.

Глутамин (GLN) является частично заменимой аминокислотой. Потребность в нем значительно возрастает при травмах, некоторых желудочно-кишечных заболеваниях, интенсивных физических нагрузках. Он принимает участие в азотистом обмене, синтезе пуринов, регуляции кислотно-щелочного баланса, выполняет нейромедиаторную функцию. Данная аминокислота ускоряет процессы заживления и восстановления после травм и операций.

Гамма-аминомасляная кислота (GABA) синтезируется из глутамина и является важнейшим тормозным нейромедиатором. Препараты ГАМК используются для лечения различных неврологических нарушений.

Бета-аминоизомасляная кислота (BAIBA) является продуктом метаболизма тимина и валина. Повышение ее уровня в крови наблюдается при дефиците бета-аминоизобутират-пируват-аминотрансферазы, голодании, отравлении свинцом, лучевой болезни и некоторых новообразованиях.

Альфа-аминомасляная кислота (AABA) – предшественник синтеза офтальмовой кислоты, являющейся аналогом глутатиона в хрусталике глаза.

Бета-аланин (BALA), в отличие от альфа-аланина, не участвует в синтезе белков в организме. Данная аминокислота входит в состав карнозина, который в качестве буферной системы препятствует накоплению кислот в мышцах во время физических нагрузок, уменьшает мышечную боль после тренировок, ускоряет процессы восстановления после травм.

Гистидин (HIS) – незаменимая аминокислота, которая является предшественником гистамина, входит в состав активных центров многих ферментов, содержится в гемоглобине, способствует восстановлению тканей. При редком генетическом дефекте гистидазы возникает гистидинемия, которая может проявиться гиперактивностью, задержкой развития, трудностями при обучении и в некоторых случаях умственной отсталостью.

Треонин (THRE) – эссенциальная аминокислота, необходимая для синтеза белка и образования других аминокислот.

1-метилгистидин (1MHIS) является производным ансерина. Концентрация 1-метилгистидина в крови и моче коррелирует с употреблением мясной пищи и возрастает при дефиците витамина Е. Повышение уровня данного метаболита возникает при дефиците карозиназы в крови и наблюдается при болезни Паркинсона, рассеянном склерозе.

3-метилгистидин (3MHIS) является продуктом метаболизма актина и миозина и отражает уровень распада белков в мышечной ткани.

Пролин (PRO) синтезируется в организме из глутамата. Гиперпролинемия вследствие генетического дефекта ферментов или на фоне неадекватного питания, повышенного содержания молочной кислоты в крови, заболеваний печени может приводить к судорогам, умственной усталости и другой неврологической патологии.

Лизин (LYS) – эссенциальная аминокислота, которая участвует в формировании коллагена и восстановлении тканей, функции иммунной системы, синтезе белков, ферментов и гормонов. Недостаточность глицина в организме приводит к астении, снижении памяти и нарушению репродуктивных функций.

Альфа-аминоадипиновая кислота (AAA) – промежуточный продукт метаболизма лизина.

Цистеин (CYS) является незаменимой аминокислотой для детей, пожилых и людей с нарушением всасывания питательных веществ. У здоровых людей данная аминокислота синтезируется из метионина. Цистеин входит в состав кератинов волос, ногтей, участвует в формировании коллагена, является антиоксидантом, предшественником глутатиона и защищает печень от повреждающего действия метаболитов алкоголя. Цистин является димерной молекулой цистеина. При генетическом дефекте транспорта цистина в почечных канальцах и стенках кишечника возникает цистинурия, которая приводит к формированию камней в почках, мочеточниках и мочевом пузыре.

Цистатионин (CYST) – промежуточный продукт обмена цистеина при его синтезе из гомоцистеина. При наследственном дефиците фермента цистатионазы или приобретенном гиповитаминозе В6 уровень цистатионина в крови и моче повышается. Данное состояние описывается как цистатионинурия, которая протекает доброкачественно без явных патологических признаков, однако в редких случаях может проявляться дефицитом интеллекта.

Цистеиновая кислота (CYSA) образовывается при окислении цистеина и является предшественником таурина.

Таурин (TAU) синтезируется из цистеина и, в отличие от аминокислот, является сульфокислотой, содержащей сульфогруппу вместо карбоксильной группы. Таурин входит в состав желчи, участвует в эмульгации жиров, является тормозным нейромедиатором, улучшает репаративные и энергетические процессы, обладает кардиотоническими и гипотензивными свойствами.

В спортивном питании аминокислоты и протеины нашли широкое распространение и используются для увеличения мышечной массы. У вегетарианцев же в связи с отсутствием в рационе животного белка может возникнуть дефицит некоторых незаменимых аминокислот. Данное исследование позволяет оценить адекватность таких видов питания и при необходимости провести их коррекцию.

Для чего используется исследование?

  • Диагностика наследственных и приобретенных заболеваний, связанных с нарушением метаболизма аминокислот;
  • дифференциальная диагностика причин нарушений азотистого обмена, выведения аммиака из организма;
  • мониторинг соблюдения диетотерапии и эффективности лечения;
  • оценка пищевого статуса и модификация питания.

Когда назначается исследование?

  • При подозрении на нарушение метаболизма аминокислот у детей, в т. ч. новорождённых (рвота, диарея, метаболический ацидоз, особый запах и окраска пеленок, нарушение умственного развития);
  • при гипераммониемии (увеличении уровня аммиака в крови);
  • при отягощенном семейном анамнезе, наличии врождённых аминоацидопатий у родственников;
  • при контроле за соблюдением диетических рекомендаций, эффективности лечения;
  • при обследовании спортсменов (например, бодибилдеров), употребляющих спортивное питание (протеины и аминокислоты);
  • при обследовании вегетарианцев.

источник

Основной частью протеинов (белков) являются органические соединения, называемые аминокислотами. Нарушение их обмена может привести ко многим заболеваниям печени и почек. Для определения степени усвоения пищевого белка и лежащего в основе многих хронических нарушений метаболического дисбаланса делают анализ крови. Всего есть 20 аминокислот, и клиническими признаками нарушения их обмена есть сочетание умственной отсталости с нарушением зрения у детей, плюс периодически возникающие судороги, различные поражения кожи, изменения запаха и цвета мочи.

Сейчас известно более 70 врождённых нарушений обмена и синтеза аминокислот, и хоть они встречаются довольно редко, но их суммарная частота значительно выше.

Некоторые аминокислоты не синтезируются в организме, поэтому их необходимо вводить с пищей, некоторые – образовываются эндогенно.

Аланин является важным источником энергии для ЦНС и головного мозга; берёт активное участие в метаболизме органических кислот и сахаров; укрепляет иммунитет путём выработки антител. Также может быть сырьём для вырабатывания глюкозы в крови, поэтому аланин — регулятор сахара в крови. При повышенной концентрации может быть подагра, белковая непереносимость, болезнь Кушинга. При чересчур низком уровне возможна кетотическая гипогликемия и хронические болезни почек.

Участвует в выведении из организма конечного азота, и является условно заменимой аминокислотой. При слишком высоком уровне может быть гиперинсулинемия 2 типа. При пониженном — ревматоидный артрит, хроническая почечная недостаточность.

Она есть в составе белков. При повышении её концентрации в моче возможна дикарбоксильная аминоацидурия.

Синтезируется в организме и поступает с пищей; берёт участие в углеводном и белковом обмене, повышает устойчивость организма к гипоксии, стимулирует окислительные процессы, приводит в норму обмен веществ, оказывает дезинтоксикационное воздействие, способствует выведению и обезвреживанию аммиака, и многое другое. При повышенном уровне глутаминовой аминокислоты может быть рак поджелудочной, ревматоидный артрит, подагра. При пониженном уровне в анализе крови — хроническая почечная недостаточность.

Это регулятор обмена веществ, который обладает антистрессовым эффектом, нормализует процессы торможения и возбуждения в ЦНС, повышает умственную работоспособность. Если анализ показывает слишком большую концентрацию в крови, то это может указывать на: гипераммониемию 1 типа, гипогликемию, тяжелые ожоги, голодание, хроническую почечную недостаточность. Пониженный уровень глицина сигнализирует о подагре или сахарном диабете.

Читайте также:  Сколько белка в анализах должно быть

Обезвреживает аммиак, повышает энергообеспечение, стимулирует иммунную систему. При повышенном уровне могут быть нарушение толерантности к белку, болезни печени, дефицит пируват-карбоксилазы, интоксикация аммонием.

Необходим для дезинтоксикации ксенобиотиков; активирует действие гормонов, витаминов, белков, ферментов; берёт участие в обмене серосодержащих аминокислот. При повышенной концентрации могут быть тяжёлые заболевания печени, гомоцистинурия, карциноидный синдром. Анализ показал пониженную концентрацию аминокислоты — в наличии гомоцистинурия, нарушение белкового питания.

Одна из незаменимых аминокислот: может синтезироваться самим организмом. Когда анализ показывает повышенную концентрацию — возможен сепсис. Пониженная — сигнализирует о микседеме, ревматоидном артрите, гипотиреоидизме, поликистозе почек, гипотермии, хронической почечной недостаточности, фенилкетонурии, карциноидном синдроме.

Также незаменимая аминокислота, которая является одним из основных компонентов синтеза и роста тканей тела, стимулирует координацию, активность и умственную деятельность. Валин необходим для восстановления повреждённых тканей и метаболизма в мышцах. При недостатке данной аминокислоты нарушается координация, повышается чувствительность кожи к раздражителям. При повышенном уровне возможно острое голодание, карциноидный синдром, недостаточное белковое питание. Если анализ крови показывает пониженный уровень — печёночная энцефалопатия.

Эта аминокислота уменьшает боль, улучшает память и способность к обучению, влияет на настроение, подавляет аппетит. Повышение концентраций сигнализирует от фенилкетонурии, преходящей тирозинемии новорожденных, сепсисе, вирусном гепатите, печёночной энцефалопатии, гиперфенилаланинемии.

Также принадлежат к перечню незаменимых аминокислот, и действуют вместе. Являются источниками энергии и защищают мышечные ткани. Изолейцин определяет психическую и физическую выносливость, и регулирует процессы энергообеспечения организма; необходим для выработки гемоглобина, регулирует в крови уровень сахара. Крайне важен при психических заболеваниях, проблемах с психикой, и при физических нагрузках. Лейцин способствует восстановлению кожи, мышц, костей, так как стимулирует гормон роста.

Врачи считают, что анализ на аминокислоты необходим всем младенцам, так как он позволяет вовремя выявить проблему и начать её решение.

Кроме того, спортсменам, людям, имеющим повышенную физическую активность, вегетарианцам, и сидящим на диете также нужно знать, что их организм особенно нуждается в аминокислотах, поэтому важно время от времени делать анализ крови на их концентрацию и соотношение.

За 4 часа до взятия крови нельзя ничего кушать, поэтому родителям придётся хорошо всё объяснить ребёнку, или потерпеть его плач для его же блага, если он совсем маленький. Доктор прокалывает пятку, набирает необходимое количество крови, и придавливает место прокола ватным шариком. В случае образования гематомы могут быть назначены согревающие компрессы. Обычно анализ делается около 16 дней. Потом назначается соответствующее данному случаю решение.

источник

Аминокислоты — органические соединения, являющиеся основной составляющей частью протеинов (белков). Нарушение обмена аминокислот является причиной многих заболеваний (печени и почек). Анализ аминокислот (мочи и крови) является основным средством оценки степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе многих хронических нарушений.

Биоматериалом для комплексного анализа на аминокислоты в Лаборатории Гемотест может служить кровь или моча.

Исследуется следующие незаменимые аминокислоты: аланин, аргинин, аспарагиновая кислота, цитруллин, глутаминовая кислота, глицин, метионин, орнитин, фенилаланин, тирозин, валин, лейцин, изолейцин, гидроксипролин, серин, аспарагин, α-аминоадипиновая кислота, глутамин, β-аланин, таурин, гистидин, треонин, 1-метилгистидин, 3-метилгистидин, γ-аминомасляная кислота, β-аминоизомасляная кислота, α-аминомасляная кислота, пролин, цистатионин, лизин, цистин, цистеиновая кислота.

Аланин – важный источник энергии для головного мозга и центральной нервной системы; укрепляет иммунную систему путем выработки антител;активно участвует в метаболизме сахаров иорганических кислот. Может быть сырьем для синтеза глюкозы в организме, это делает его важным источником энергии и регулятором уровня сахара в крови.

Снижение концентрации: хронические болезни почек, кетотическая гипогликемия.

Повышение концентрации: гипераланинемия, цитруллинемия (умеренное повышение), болезнь Кушинга, подагра, гипероротининемия, гистидиемия, дефицит пируваткарбоксилазы,лизинурическая белковая непереносимость.

Аргинин является условно заменимой аминокислотой. Участвует в цикле переаминирования и выведения из организма конечного азота, то есть продукта распада отработанных белков. От мощности работы цикла (орнитин — цитруллин — аргинин) зависит способность организма создавать мочевину и очищаться от белковых шлаков.

Снижение концентрации :3 дня после оперативного вмешательства на брюшной полости, хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации: гипераргининемия, в некоторых случаях гиперинсулинемии II типа.

Аспарагиновая кислота входит в состав белков, играет важную роль в реакциях цикла мочевины и переа-минирования, участвует в биосинтезе пуринов и пиримидинов.

Снижение концентрации: 1 сутки после оперативного вмешательства.

Повышение концентрации: моча – дикарбоксильная аминоацидурия.

Цитруллин повышает энергообеспечение, стимулирует иммунную систему, в процессах обмена веществ превращается в L-аргинин. Обезвреживает аммиак, повреждающий клетки печени.

Повышение концентрации цитруллина: цитруллинемия, болезни печени, интоксикация аммонием, дефицит пируват-карбоксилазы, лизинурическое нарушение толерантности к белку.

Моча — цитруллинемия, болезнь Хартнупа, аргининосукцинат-ацидурия.

Глутаминовая кислота является нейромедиатором, передающим импульсы в центральной нервной системе. Играет важную роль в углеводном обмене и способствует проникновению кальция через гематоэнцефалический барьер. Снижение концентрации: гистидинемия, хроническая почечная недостаточность.

Повышение концентрации: рак поджелудочной железы, подагра, глутаминовая ,ацидурия, ревматоидный артрит. Моча – дикарбоксильная аминоацидурия.

Глицин является регулятором обмена веществ, нормализует процессы возбуждения и торможения в центральной нервной системе, обладает антистрессорным эффектом, повышает умственную работоспособность.

Снижение концентрации: подагра, сахарный диабет.

Повышение концентрации: септицемия, гипогликемия, гипераммониемия 1 типа, тяжелые ожоги, голодание, пропионовая ацидемия, метилмалоновая ацидемия, хроническая почечная недостаточность. Моча – гипогликемия, цистинурия, болезнь Хартнупа, беременность, гиперпролинемия,глицинурия, ревматоидный артрит.

Метионин незаменимая аминокислота, помогающая переработке жиров, предотвращая ихотложение в печени и стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Способствует пищеварению, обеспечивает дезинтоксикационныепроцессы, уменьшает мышечную слабость, защищает от воздействия радиации,полезна при остеопорозе и химической аллергии.

Снижение концентрации: гомоцистинурия, нарушение белкового питания.

Повышение концентрации: карциноидный синдром, гомоцистинурия, гиперметионинемия, тирозинемия, тяжелые заболевания печени.

Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Необходим для иммунной системы, участвует в дезинтоксикационных процессах и восстановлении пече-ночных клеток.

Снижение концентрации: карциноидный синдром, хроническая почечная недостаточность.

Повышение концентрации: спиральная атрофия хориоидной оболочки и сетчатки, тяжелые ожоги,гемолиз.

Фенилаланин — незаменимая аминокислота, в организме она может превращаться в тирозин, который, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина. Влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит.

Повышение концентрации: преходящая тирозинемия новорожденных, гиперфенилаланинемия,сепсис, пе-ченочная энцефалопатия, вирусный гепатит, фенилкетонурия.

Тирозин является предшественником нейромедиаторов норадреналина и дофамина.Участвует в регуляциинастроения; недостаток тирозина приводит к дефициту норадреналина, что приводит к депрессии. Подавляет аппетит, уменьшает отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза, также участвует в обмене фенилаланина. Тиреоидные гормоны образуются при при-соединении к тирозину атомов йода.

Снижение концентрации: поликистоз почек, гипотермия, фенилкетонурия, хроническая почечная недоста-точность, карциноидный синдром, микседема, гипотиреоидизм, ревматоидный артрит.

Повышение концентрации: гипертирозинемия, гипертиреоидизм, сепсис.

Валин незаменимая аминокислота, оказывающая стимулирующее действие. Необходима для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме, может быть использован мышцами в качестве источника энергии.

Снижение концентрации: гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, гипервалинемия,недостаточное белковое питание, карциноидный синдром, острое голодание.

Лейцин и изолейцин — защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц. Способны понижать уровень сахара в крови и стимулировать выделение гормона роста.

Снижение концентрации: острое голодание, гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, ожирение, голодание, вирусный гепатит.

Гидроксипролин содержится в тканях практически всего организма, входит в состав коллагена, на долю которого приходится большая часть белка в организме млекопитающих. Синтез гидроксипролина нару- шается при дефиците витамина С.

Повышение концентрации: гидроксипролинемия, уремия, цирроз печени.

Серин относится к группе заменимых аминокислот, участвует в образовании активных центров ряда ферментов, обеспечивая их функцию. Важен в биосинтезе других заменимых аминокислот : глицина, цистеина, метионина, триптофана.Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

Снижение концентрации: недостаточность фосфоглицерат дегидрогеназы, подагра.

Повышение концентрации серина: непереносимость белка. Моча – ожоги, болезнь Хартнупа.

Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной

системе; препятствует как чрезмерному возбуждению, так и излишнему торможению, участвует в процессах синтеза аминокислот в печени.

Повышение концентрации: ожоги, болезнь Хартнупа, цистиноз.

Альфа-аминоадипиновая кислота — метаболит основных биохимических путей лизина.

Повышение концентрации: гиперлизинемия, альфа-аминоадипиновая ацидурия, альфа-кетоадипиновая ацидурия, синдром Рея.

Глутамин выполняет ряд жизненно важных функций в организме: участвует в синтезе аминокислот, углеводов, нуклеиновых кислот, цАМФ и ц-ГМФ, фолиевой кислоты, ферментов, осуществляющих окислительно-восстановительные реакции (НАД), серотонина, н-аминобензойной кислоты; обезвреживает аммиак; превращается в аминомасляную кислоту (ГАМК); способен повышать проницаемость мышечных клеток для ионов калия.

Снижение концентрации глутамина: ревматоидный артрит

Повышение концентрации: Кровь – Гипераммониемия, вызванная следующими причинами: печеночная кома, синдром Рея, менингит, кровоизлияние в мозг, дефекты цикла мочевины, недостаточность орнитинтранскарбамилазы, карбамоилфосфатсинтазы, цитруллинемия, аргининсукциновая ацидурия, гиперорнитинемия,гипераммониемия, гомоцитруллинемия (HHH syndrome), в некоторых случаях гиперлизиемия 1 типа, лизинурическая белковая непереносимость. Моча – Болезнь Хартнупа, генерализованная аминоацидурия, ревматоидый артрит.

β-аланин – является единственной бета-аминокислотой, образуется из дигидроурацила и карнозина.

Повышение концентрации: гипер-β -аланинемия.

Таурин — способствуют эмульгированию жиров в кишечнике, обладает противосудорожной активностью, оказывает кардиотропное действие, улучшает энергетические процессы, стимулирует репаративные процессы при дистрофических заболеваниях и процессах, сопровождающихся нарушением метаболизма тканей глаза, способствует нормализации функции клеточных мембран и улучшению обменных процессов.

Снижение концентрации таурина: Кровь — Маниакально-депрессивный синдром, депрессивные неврозы

Повышение концентрации таурина: Моча — Сепсис, гипер-β-аланинемия, недостаточность фолиевой кислоты (В9), первый триместр беременности, ожоги.

Гистидин входит в состав активных центров множества ферментов, является предшественником в био-синтезе гистамина. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.

Снижение концентрации гистидина: Ревматоидный артрит

Повышение концентрации гистидина: Гистидинемия, беременность, болезнь Хартнупа, генерализован-

Треонин — это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме, важна для синтеза коллагена и эластина, помогает работе печени, участвует в обмене жиров, стимулирует иммунитет.

Снижение концентрации треонина: Хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации треонина: Болезнь Хартнупа, беременность, ожоги, гепатолентикулярная дегенерация.

1-метилгистидин основное производное ансерина. Фермент карнозиназа превращает ансерин в β-аланин и 1-метилгистидин. Высокие уровни 1-метилгистидина, как правило, подавляют фермент карнозиназу и увеличивают концентрации ансерина. Уменьшение активности карнозиназ также встречается у пациентов с болезнью Паркинсона, рассеянным склерозом и у пациентов после инсульта. Дефицит витамина Е может привести к 1–метилгистидинурии, вследствие увеличения окислительных эффектов в скелетных мышцах.

Повышение концентрации: хроническая почечная недостаточность, мясная диета.

3-метигистидин является показателем уровня распада белков в мышцах.

Снижение концентрации: голодание, диета.

Повышение концентрации: хроническая почечная недостаточность, ожоги, множественные травмы.

Гамма-аминомасляная кислота — содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге. Лиганды рецепторов ГАМК рассматриваются, как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезнь Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия. Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Бета (β) — аминоизомасляная кислота — небелковая аминокислота является продуктом катаболизма тимина и валина. Повышение концентрации: различные типы новообразований, болезни, сопровождающиеся усиленным разрушением нуклеиновых кислот в тканях, синдром Дауна, белковое недоедание, гипер-бета-аланинемия, бета-аминоизомасляная ацидурия, отравление свинцом.

Альфа (α) -аминомасляная кислота является основным промежуточным продуктом биосинтеза офталь-мовой кислоты. Повышение концентрации: неспецифические аминоацидурии, голодание.

Пролин — одна из двадцати протеиногенных аминокислот, входит в состав всех белков всех организмов.

Снижение концентрации: Хорея Хантингтона, ожоги

Повышение концентрации: Кровь – гиперпролинемия тип 1 (недостаточность пролиноксидазы), гиперпролинемия тип 2 (недостаточность пирролин-5-карбоксилат дегидрогеназы), недостаточность белкового питания у новорожденных. Моча – гиперпролиемия 1 и 2 типов, синдром Джозефа (тяжелая пролинурия), карциноидный синдром, иминоглицинурия, болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация).

Цистатионин — cepоcoдержащая аминокислота, участвует в биосинтезе цистеина изметионина и серина.

Лизин – это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов, оказывает противовирусное действие, поддерживает уровень энергии, участвует в формировании коллагена и восстановлении тканей, улучшает усвоение кальция из крови и транспорт его в костную ткань.

Снижение концентрации: карциноидный синдром, лизинурическая протеиноваянепереносимость.

Повышение концентраций: Кровь – гиперлизинемия, глутаровая ацидемия тип 2. Моча – цистинурия, гиперлизинемия, первый триместр беременности, ожоги.

Цистин в организме является важной частью белков, таких как иммуноглобулины, инсулин и соматостатин, укрепляет соединительную ткань. Снижение концентрации цистина: белковое голодание, ожоги.Повышение концентраций цистина: Кровь — сепсис, хроническая почечная недостаточность. Моча – Цистиноз, цистинурия, цистинлизинурия, первый триместр беременности.

Цистеиновая кислота — серосодержащая аминокислота. Промежуточный продукт обмена цистеина и цистина. Принимает участие в реакциях переаминирования, является одним из предшественников таурина.

В организме человека синтезируется лишь половина необходимых аминокислот, а остальные амино-кислоты – незаменимые (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, трип-тофан, фенилаланин) — должны поступать с пищей. Исключение из рациона какой-либо незаменимой аминокислоты из рациона ведет к развитию отрицательного азотистого баланса, клинически проявляющегося нарушением функций нервной системы, мышечной слабостью и другими признаками патологии обмена веществ и энергии.

Показания к назначению анализа:

  • Диагностика заболеваний, связанных с нарушением аминокислотного обмена.
  • Оценка состояния организма человека.

Необходимо соблюдать общие правила подготовки. Кровь на исследование необходимо сдавать натощак. Между последним приёмом пищи и взятием крови должно пройти не менее 8 часов.

Мочу для исследования собрать среднюю утреннюю порцию.

источник