Меню Рубрики

Анализ белков в пищевой промышленности

Белки – амфотерные электролиты. При определенном рН среды (изоэлектрическая точка) число положительных и отрицательных зарядов в молекуле белка одинаково. Это одна из основных констант белка. Белки в этой точке электронейтральны, а их вязкость и растворимость наименьшая. Способность белков снижать растворимость при достижении электронейтральности их молекул широко используется для выделения их из растворов, например в технологии получения белковых продуктов.

Гидратация. Белки связывают воду, т. е. проявляют гидрофильные свойства. При этом они набухают, увеличивается их масса и объем. Набухание белка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности белковой макромолекулы гидрофильные , аминные и карбоксильные группы притягивают к себе молекулы воды, строго ориентируя их на поверхности молекулы.

Окружающая белковые глооулы гидратная (водная) оболочка препятствует агрегации, а следовательно, способствует устойчивости растворов белка и препятствует его осаждению.

В изоэлектрической точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этилового спирта. Это приводит к выпадению их в осадок. При изменении рН среды макромолекула белка становится заряженной, и его гидратационная способность меняется. При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студнями. Студни не обладают текучестью, они упруги, обладают пластичностью, определенной механической прочностью, способны сохранять свою форму. Глобулярные белки могут полностью гидратироваться, растворяясь в воде (например, белки молока), образуя растворы с невысокой концентрацией).

Гидрофильные свойства белков, т. е. их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, построенным в основном из молекул белка, является цитоплазма – полужидкое содержимое клетки. Сильно гидратированный студень – сырая клейковина, выделенная из пшеничного теста, она содержит до 65 % воды. Различная гидрофильность клейковинных белков – один из признаков, характеризующих качество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Гидрофильность белков зерна и муки играет большую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебопекарном производстве, при изготовлении мучных кондитерских изделий, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация. Денатурация белков – сложный процесс, при котором под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третичной и а четвертичной структуры белковой макромолекулы. Первичная структура, а следовательно, и химический состав белка не меняются. При денатурации изменяются физические свойства белка, снижается растворимость, способность к гидратации, теряется его биологическая активность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых химических групп, облегчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков. Степень тепловой денатурации белков зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы тепловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислоты, щелочи, спирт, ацетон). Все эти приемы широко используют в пищевой и биотехнологии.

Пенообразование. Под этим процессом понимают способность, белков образовывать высококонцентрированные системы жидкость – газ. Такие системы называют пенами. Устойчивость пены, в которой белок является пенообразователем, зависит не только от его природы, но и от концентрации, а также от температуры. Белки в качестве пенообразователей широко используются в кондитерской промышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, и это влияет на его органолептические свойства. Молекула белков под влиянием ряда факторов может разрушаться или вступать во взаимодействие с другими веществами с образованием новых продуктов. Для пищевой промышленности можно выделить два очень важных процесса: гидролиз белков под действием ферментов и взаимодействие аминогрупп белков или аминокислот с карбонильными группами. Под влиянием протеаз – ферментов, катализирующих гидролитическое расщепление белков, последние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на аминокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий. Частичный гидролиз белка мы наблюдаем при тестоведении, получении ряда мясных и молочных продуктов.

источник

Для определения общего количества белков и других азотсодержащих веществ чаще всего применяется метод Кьельдаля. Сущность метода в том, что навеску продуктов сжигают в концентрированной серной кислоте. Далее все органически вещества распадаются до воды и углекислого газа, а азот превращается в аммиак, который с серной кислотой образует (NH4)2 SO4. Аммиак отгоняют и определяют количество азота. Это количество азота умножают на коэффициент 6,25 и получают общее количество азотсодержащих веществ в продукте в пересчете на белок. Коэффициент 6,25 вычисляем по среднему содержанию азота в молекуле белка: 100/16 = 6,25. Если в белке содержится не 16 % азота, то коэффициент для пересчета на белок будет не 6,25, а другим, например, для кукурузы он равен 6,39.

Для исследования белков их необходимо выделять в чистом виде, что очень трудно, так как они обладают высокой чувствительностью к внешним воздействиям: Для выделения белков из биологических объектов растворимые белки переводят в раствор с помощью определенных реагентов, а нерастворимые белки оставляют в твердом состоянии и удаляют сопутствующие белкам вещества. Полученные растворы представляют собой смеси белков, которые служат для выделения из них отдельных фракций.

Фракционирование белков ведут разными способами: солями, органическими растворителями, хроматографически и др.

Вопросы для самоконтроля:

1. Какими соединениями представлены азотсодержащие вещества в пищевых продуктах?

2. Для каких групп азотсодержащих соединений устанавливаются ПДК в пищевых продуктах и почему?

3. По каким признакам классифицируются аминокислоты?

4. Какую реакцию будут иметь водные растворы диаминодикарбоновых кислот?

5. Какое количество аминокислот и пептидных связей содержится в тетрапептиде?

6. Назовите характерные особенности первичной, вторичной, третичной и четвертичной структур белка.

7. Дайте характеристику изоэлектрической точке белка.

8. По каким признакам и как классифицируются белки?

9. Назовите пищевые продукты, содержащие значительное количество белка.

10. Что такое лимитирующая аминокислота?

11. Почему чем больше соединительной ткани содержится в мясе, тем его биологическая и пищевая ценность ниже?

12. Как увеличить водосвязывающую способность белков? Объясните, это явление.

13. Какие причины могут вызвать дегидратацию белка?

14. Что происходит с белком при его денатурации?

15. Какие процессы происходят с белками при хранении пищевых продуктов?

Учебная литература

1. Грачок М.А. Химические основы сырья и товаров: Учеб. пособие. — Минск: БГЭУ, 1996. — С. 134-144.

2. Журавлева М.Н. Теоретические основы товароведения продовольственных товаров и стандартизации: Учебник для студентов высш. учеб. заведений. — М.: Экономика, 1984. — С. 39-54.

3. Колесник А.А., Елизарова Л.Г. Теоретические основы товароведения продовольственных товаров: Учеб. для вузов. М.: Экономика, 1990. — С. 87-111.

4. Нечаев А.П., Траубенберг С.Е., Кочеткова А.А., Кобелева И.Б. Пищевая химия: Конспект лекций. В 2-х ч.Ч.I. М.: Издательский комплекс МГУПП, 1998. — С. 47-93.

5. Основы биохимии: Учебник/ А.А. Анисимов, А.Н. Леонтьева, И.Ф. Александрова и др.; Под. ред. А.А. Анисимова. — М.: Высшая школа, 1986. — С. 32-177.

6. Писаренко А.П., Хавин З.Я. Курс органической химии: Учебник для нехим. спец. вузов .- М.: Высшая школа, 1985. — С. 310-341.

7. Товароведение продовольственных товаров: Учеб. пособие / Микулович Л.С., Локтев А.В., Фурс Н.И. и др.; Под общ. ред. О.А. Брилевского. — Мн.: БГЭУ, 2001. – С. 66-76.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9709 — | 7629 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Глава 2 РОЛЬ ОТДЕЛЬНЫХ ПИЩЕВЫХ ВЕЩЕСТВ В ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА И В ПИЩЕВЫХ ТЕХНОЛОГИЯХ

БЕЛКИ В ПИЩЕВЫХ ПРОИЗВОДСТВАХ

Белки представляют собой важнейшую составную часть пищи. Недостаточность белков в пище является одной из причин повышенной восприимчивости организма к инфекционным заболеваниям. При недостаточном количестве белков снижается кроветворение, задерживается развитие растущего организма, нарушаются обмен жиров и витаминов, деятельность нервной системы, печени и других органов, замедляется восстановление клеток после тяжелых заболеваний.

За жизнь человека белок обновляется 200 раз. Белок мышечных тканей обновляется на 50 % за 8, внутренних — за 10 сут. Наш организм получает белок только через пищевые продукты.

Что же такое белки, какими свойствами они обладают и какова их роль для нашего организма?

Белки — это органические высокомолекулярные соединения, в состав большинства которых входят пять элементов: N, С, О, Н и S.

Белковые вещества построены из аминокислот; аминокислоты имеют в своем составе аминную NH2 и карбоксильную

СООН-группы. В молекуле белка аминокислоты соединены между собой пептидными связями. Разнообразие белков определяется последовательностью размещения аминокислот в аминокислотной цепочке (первичная структура белка). Кроме того, существуют спиралевидная структура спиралевидной цепочки (вторичная структура), компактная упаковка спиралевидной структуры (третичная структура) и соединение полипептидных цепочек нековалентными связями (водородными, гидрофильными) — глобулы или волокна.

Несмотря на огромное многообразие белковых веществ в природе, в построении нашего организма участвует лишь 22 аминокислоты.

Белки составляют важнейшую часть всех клеток и тканей живых организмов. Существование, жизнь живого организма невозможны без белка.

В животных организмах белки преобладают по своей массе над другими соединениями. Организм человека, например, на 60 % (на сухую массу) состоит из белковых веществ. Причем если жиры и углеводы в той или иной степени взаимозаменяемы, то недостаток белка нельзя ничем компенсировать. Не случайно термин «протеин» (белок) образован от греческого слова «протео», что означает «первенствующий».

В одних тканях тела белка больше, в других — меньше. Так, белок составляет одну тринадцатую часть мозга и одну четвертую часть крови и мышц.

Поступая в организм, белки пищи подвергаются действию ферментов и гормонов и в итоге превращаются в составляющие их аминокислоты.

Аминокислоты всасываются через стенки кишечника в кровь. Часть аминокислот посредством тока крови поступает в печень, где происходят их дальнейшие превращения, а большая часть разносится к тканям и органам, где аминокислоты расходуются на построение и обновление клеток, а также на построение и обновление биологически активных веществ — ферментов и гормонов.

Наконец, некоторая часть аминокислот является и источником энергии для организма, главным образом при нехватке углеводов и жиров.

Таким образом, белки являются главным материалом для построения тканей организма.

Организм человека обладает способностью образовывать нужные аминокислоты из других аминокислот, которые, расщепляясь до кетокислот, синтезируются в новые аминокислоты. Однако имеется 8 аминокислот (триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин, фенилаланин), которые организм человека не способен синтезировать, но которые входят в состав белковых веществ человека. Эти аминокислоты носят на-звание «незаменимые», они должны поступать в организм извне, с продуктами питания.

Следовательно, не все продукты, содержащие белки, равноценны: в зависимости от содержания незаменимых аминокислот некоторые имеют’ большую питательную ценность, другие — меньшую. В питании детей дошкольного возраста незаменимые аминокислоты должны составлять 40 % суммы аминокислот, в питании школьников — 30, взрослых — 16 %, т. е. 13. 14 г.

Кроме того, питательная ценность белков зависит от степени усвояемости их организмом. Растительные белки усваиваются организмом хуже, чем животные: белки яиц и молока — на 96 %, белки рыбы и мяса — на 95, белки хлеба из муки I и 11 сортов — на 85, белки овощей — на 80, белки картофеля, хлеба из обойной муки, бобовых — на 70 %.

Человек получает белки с яйцами, рыбой, мясом, молоком, молочными продуктами, а также с продуктами растительного происхождения, в первую очередь с продуктами переработки злаковых.

Растительные белки должны составлять в дневном рационе не более 40 %, так как наиболее полноценными считаются белки животного происхождения.

Большинство растительных белков имеет недостаточное содержание одной или двух незаменимых аминокислот. Так, в белке пшеницы лишь 50 % лизина по сравнению с «идеальным белком» (белок, содержащий все незаменимые аминокислоты в оптимальном соотношении), в белке картофеля и бобовых не хватает метионина и цистита. В ржаном и пшеничном хлебе кроме лизина не хватает треонина, валина и изолейцина. Растительные белки хуже усваиваются, что объясняется содержанием в растительных продуктах большого количества клетчатки, которая снижает их усвояемость (как и других компонентов пищи).

Недостаток белка, как отмечалось ранее, существенно сказывается на состоянии организма.

Вместе с тем следует сказать и об отрицательном влиянии избытка белка в питании. Из-за большой реакционной способности организм переносит избыток белков труднее, чем других пищевых веществ, например жиров и углеводов. Особенно страдают от перегрузки белками печень и почки. Длительный избыток белка в питании вызывает перевозбуждение нервной системы, нарушение обмена витаминов, ожирение организма, заболевание суставов. Все это связано с повышенным поступлением вместе с белками нуклеиновых кислот, накоплением мочевой кислоты — продукта обмена пуринов, превращением избытка белков в жиры и т. д.

Потребность человеческого организма в белках составляет

1,1. 1,5 г в день на 1 кг массы тела человека. Следовательно, потребность взрослого человека в белках в сутки в среднем 100 г

(минимум 70 г). Суточная потребность человека в белке зависит от качества белка, т. е. чем неполноценнее белок, тем выше его суточная норма и, наоборот, чем ближе по составу потребляемые белки к «идеальному», тем ниже эта норма (56. 63 г). В пищевом рационе за счет белка должно быть обеспечено 12. 14 % калорийности.

Основными источниками белка в питании являются мясные, рыбные и зернобобовые продукты. Больше всего белка (%) содержится в сырах — 25, горохе и фасоли — 22. 23, разных видах мяса, рыбы и птицы — 16. 20, яйцах — 13, жирном твороге — 14, крупах — 12. 13, ржаном хлебе — 5. 6, пшеничном — 8, молоке — 2,9, овощах и плодах — не более 2.

Белки пищевых продуктов обладают рядом свойств, которые оказывают определенное влияние на ведение технологических процессов при переработке продуктов. С этими свойствами нельзя не считаться, тем более что многие из них открывают большие возможности в совершенствовании технологий.

Первое свойство — это способность к гидратации, т. е. поглощению и удерживанию влаги, причем не адсорбционно (как, например, у крахмала), а осмотически связанно, более прочно. В нормальных условиях белки способны удерживать 2—3-кратное количество воды.

Набухание обусловлено способностью белков, относящихся к гидрофильным веществам, поглощать воду и при определенных условиях образовывать растворы, называемые студнями. Набухший в воде белок пшеничной муки образует клейковину.

Свойство набухания играет большую роль в пищевых технологиях (зерно при кондиционировании, мука при замесе теста, набухание белков в масличных при производстве растительных масел и т. д.).

Второе свойство белков — денатурация, т. е. изменение пространственной ориентации белковой молекулы, не сопровождающееся разрывом ковалентных связей. Она вызвана повышением температуры, механическим и химическим воздействием и другими факторами и играет важную роль в технологических процессах, связанных с образованием структурных систем полуфабрикатов и готовых блюд (хлеба, макаронных изделий).

Третье свойство белков — ценообразование, т. е. способность образовывать эмульсии в системе жидкость — газ, называемые пенами. Белки как пенообразователи широко используются при изготовлении кондитерских изделий, в частности безе.

И наконец, четвертое свойство — способность белков к гидролизу, т. е. расщеплению на составные части в присутствии кислот или ферментов. Эта способность белков используется в ряде отраслей пищевой промышленности, например при рафинации растительных масел.

источник

ХАРАКТЕРИСТИКА И ИЗМЕНЕНИЕ БЕЛКОВ В ТЕХНОЛОГИЧЕСКОМ ПРОЦЕССЕ

Общая характеристика белков

Общее представление о белках как химических веществах было получено при изучении курса органической химии.

В последние годы проблема обеспечения населения пищевым белком приобретает все большее значение. Необходимо не просто увеличение количества потребляемого белка, но и его рациональное использование.

Белки – это высокомолекулярные органические соединения, являющиеся сополимерами аминокислот, объединенных с помощью пептидной связи CO – NH. Молекулярная масса белков от 6 тысяч и свыше 1 миллиона. Аминокислотный состав белков не одинаков и является важнейшей их характеристикой. В составе пищевых белков насчитывается порядка 20 аминокислот. Поэтому белки отличаются длиной цепи, количеством каждой из 20-ти аминокислоты, порядком их очередности. Отсюда очевидно, что число вероятных аминокислотных последовательностей практически неисчерпаемо.

Белки, содержащие все 8 незаменимые аминокислоты называют полноценными, лишенные одной или нескольких — неполноценными. Степень полноценности зависит также от оптимального их соотношения в белке.

Для аминокислот, а поэтому и для белков характерна диссоциация в зависимости от влияния окружающей среды. Аминокислоты амфотерны, т. е. объединяют свойства кислот и щелочей.

Все белки подразделяются на:

ã простые (протеины);

ã сложные (протеиды), в состав которых входят:

v пигменты – хроиопротеиды.

v нуклеиновые кислоты – нуклеопротеиды.

По пространственному расположению:

ã фибриллярные (склеропротеины);

ã глобулярные (сферопротеины).

Читайте также:  Уровень общего белка в анализе

По количеству цепей в молекуле:

ã олигомеры (больше, чем 1 цепь)

ã протомеры (1 отдельная цепь).

ã альбумины – в воде и разведенных солях Рн = 4-8,5

ã глобулины – в нейтр. растворах солей сильных кислот

ã глутелины – разведенные щелочи и кислоты ( содержат 45% глутаминовой кислоты).

ã проламины – в 50-90%м этаноле (до 45% глут. кислоты и 15% пролина).

ã гистоны – низкомолекулярные, растворимые в оде и кислотах.

Все белки имеют определенную пространственную структуру, которая очень сложная, но построена по определенным закономерностям. Основными уровнями белковой молекулы принята:

ã первичная;

ã вторичная;

ã третичная;

ã четвертичная.

Деление на структуры основано на систематизации видов связей, образующих тот или иной уровень.

В молекуле белка последовательность размещения аминокислот строго обозначена, характерна только для данного вида белка и определяет его природную структуру. Называется такая структура первичной. В основе образования первичной структуры лежит пептидная связь, разрушаемая только при жестком химическом, физическом или термическом воздействии. Напоминаю, что пептидная связь образуется при взаимодействии групп –COOH и -NH3 с отщеплением воды.

Вторичная структура образуется в результате взаимодействия атома водорода одной цепи и атома кислорода другой или той же самой цепи с образованием водородной связи -NH…O = CH-

Из-за большого количества образовавшихся водородных связей цепь белковой молекулы скручивается в спираль. Когда образование водородной связи невозможно из-за возникновения дисульфидных связей или наличия аминокислоты, пролина, образуется изгиб или петля.

Кроме спирали образуется еще и складчатая вторичная структура, характерная для коллагена – фибриллярного белка. Особенности вторичной структуры объясняется разное отношение белков к внешним воздействиям. Так, спираль разрушается легко, тогда как коллаген очень стоек.

Полипептидные цепочки в белке определенным образом группируются и фиксируются в пространстве с помощью взаимодействия белковых групп одной цепи или нескольких. Такая структура также уникальная для каждого вида белка, называется третичной. В ее образовании принимают участие:

ã дисульфидная связь R1-S-S-R2 (между группами SH соседних участков).

Для многих белков характерна четвертичная структура – это объединение нескольких одинаковых по первичной, вторичной, третичной структуре белковых молекул, напр. гемоглобин.

Каждая из перечисленных структур определяет свойства белковой молекулы. Суммарные свойства неизменного белка называется нативными свойствами.

С другой стороны, каждая из форм очень чувствительна к воздействию внешних факторов и может изменяться под их влиянием, вследствие свойства белка также изменяются.

Белки являются полиамфотерными электролитами из-за наличия карбоксильных и аминных групп на их поверхности. Белок преимущественно является кислотой, чем щелочью, поэтому его изоэлектрическая точка лежит при рН ниже 7.

Величина рН и добавление электролитов влияют на заряд и форму белковой молекулы, поэтому, вероятно, эти факторы могут влиять и на свойства рецептурных систем, в состав которых входит белок – вязкость, объем набухших студней, влагоудерживающую способность.

Характеристика свойств белков

Белки, как сложные полимерные соединения, характеризуются определенными физико-химическим показателями. Это молекулярная масса, наличие полярных групп, определенное значение изоэлектрической точки, оптические свойства, показатель преломления и т. д. Эти свойства проявляются в связи с тем, что белок – химическое вещество с наличием в своем составе определенных химических соединений. Благодаря пониманию того, белок является соединением с определенными общими (для всех белков) и индивидуальными (для отдельных белков) свойствами, появляется возможность их определения в смесях веществ (например, биуретовая реакция). Можно также проводить и индивидуальные реакции, которые в технологическом процессе оцениваются как модификация.

Помимо физико-химических, существуют еще и функциональные свойства белка. Их оценивают как возможность белка – вещества выполнять ту или другую функцию в технологическом процессе. Например, способность белка быть анионом, катионом (в зависимости от рН) определяет его растворимость в определенных условиях или способность выпадать в осадок.

Физико-химические свойства нативного белка – это его объективная характеристика, а функциональные свойства зависят от многих условий, т. е. Их можно корригировать. Технологу необходимо знать, при каких условиях белок максимально проявляет свои функциональные свойства.

Существует понятие и технологические свойства – это общие свойства пищевых продуктов, которые реализуются в технологическом процессе т. к. практически все продукты питания состоят из нескольких пищевых веществ, то технологические свойства этих продуктов проявляются как функциональные свойства их составных частей.

В технологическом плане многие продукты используются с учетом того, что их технологические свойства объясняются присутствием белка как носителя функциональных свойств. Существует много функциональных свойств, желательных в белоксодержащих продуктах. Для наглядности приведем примеры некоторых функциональных свойств, необходимых или желательных в производстве тех или иных продуктов.

Растворимость – достижение необходимой консистенции, создание коллоидной системы.

Водоудерживающая способность – рубленые мясные и рыбные системы, тесто.

Эмульгирующая способность – соусы (майонезы), рубленые мясные изделия, колбасы, забеливатели.

Пенообразующая способность – изделия с пенной структурой, бисквитное тесто, кремы, муссы, самбуки, мороженое и т. д.

Когезионная способность – различные виды теста, фаршевые изделия, панировки.

Текстурность – ( способность расслаиваться, крошиться и т. д.) – песочное, слоеное тесто, текстурированные продукты, хлебобулочные изделия.

Студнеобразующая способность — студни, джем, колбасные изделия.

Функциональные свойства определяются природой белка и характером взаимодействия с другими компонентами пищевой системы.

Функциональные свойства зависят от структуры и состояния белка и могут корригироваться параметрами технологического процесса.

Функциональные свойства обуславливаются поверхностными характеристиками белка на уровне первичной структуры, соотношением межмолекулярных и внутримолекулярных связей различных типов, аминокислотной последовательности, вторичной и третичной структурой, определяющими пространственную доступность.

Методами различного влияния на белок, которые, в общем, называют модификацией, можно достичь изменения целого комплекса физико-химических свойств. Эта проблема очень важна, т. к. открывается возможность целенаправленного регулирования функциональных свойств белка и белковых систем в технологии приготовления продуктов питания.

На современном этапе модификация функциональных свойств белка не очень расширена в технологиях пищевых производств, но технологу нужно знать, что ее использование позволит существенно влиять не только на технологический процесс, но и на рецептурный состав и качество изделий.

Выделяют 3 основных направления регулирования свойств белка:

ã ферментативная обработка;

ã физико-химическая обработка.

Возможности химической модификации связаны, в первую очередь, с деструкцией пептидных целей, гидролизом амидных групп аспарагина и глутамина, изменением структуры белка путем образования новых ковалентных и ионных связей. Химическая модификация позволяет регулировать гидрофильно-гидрофобный баланс белковых систем путем введения с помощью реагентов функциональных дополнительных групп, измерять суммарный заряд белка.

Химическая модификация осуществляется за счет кислотного или щелочного гидролиза белков (солюбилизация), стабилизация белков путем солеобразования, ацилирования, пластеиновой реакции.

Щелочной и кислотный гидролиз нашли широкое применение для солюбилизации белков рыбы в ходе получения белковых рыбных концентратов, в результате чего улучшилась их растворимость, эмульгирующая и пенообразующая способность.

Интенсивность гидролиза зависит от:

ã концентрации кислот и щелочей;

ã субстратного соотношения;

В результате полного гидролиза получают аминокислоты, используемые в современных технологиях.

Путем химической модификации добиваются деструкции глобулина, бобовых и сои, придавая им способность к гелеобразованию, что больше характерно для фибриллярных белков (желатин).

Возможна солюбилизация белков путем солеобразования. Уже отмечалось, что белки могут взаимодействовать как с катионами, так и с анионами путем образования, либо «солевых мостиков», либо путем сорбции ионов на поверхности белка. При этом образуются протеинаты, характеризирующиеся большей растворимостью в сравнении с нативными или обессоленными белками. Это соевые протеинаты, казеинат молока, натриевый копреципитат молока. Наиболее часто из солей – модификаторов используют хлористый натрий и неорганические фосфаты.

Ферментативная модификация белков

В этом случае изменяют структуру белка путем использования ферментов. Благодаря частичному гидролизу, белки достигают повышения его растворимости, эмульгирующей активности, пенообразования.

Особый интерес представляет реакции расщепления и образования пептидных связей под действием протеаз.

Наиболее эффективный метод повышения растворимости белков путем ферментативного гидролиза. Единственное, нужно учитывать, что глубокий гидролиз белков животного происхождения приводит к накоплению пептидов гидрофобного характера (ферменты: пепсин, папаин, проназа).

Ферментативный гидролиз в отличии от химического, не снижает пищевую ценностьбелкови не уменьшает его усваиваемость.

Очень интересна и сочень перспективна недавно открытая пластеиновая реакция – процесс, обратный ферментативному расщеплению, когда под действием протеолитических ферментов заново образуются пептидные связи. Этот процесс используется для повышения биологической ценности и функциональных свойств белков. Проведены опыты по повышению биологической ценности зеина – белка кукурузы путем встраивания в его структуру триптофана, лизина и метионина. Повышают ценность соевых белков, добавляя в них серосодержащие аминокислоты. Добавляя глутаминовую кислоту в некоторые растительные пластеины, добиваются определенного вкуса термообработанного мяса.

Используя пластеиновую реакцию можно исключать нежелательные аминокислоты. Например, фенилаланин вызывает обострение у больных фенилкетанурией. Исключая эту аминокислоту, создают продукты для людей с данным заболеванием.

Физико-химические методы модификации

Эти методы объединяют следующие приемы:

ã комплексообразование с природными полимерами (белками, полисахаридами), мономерными соединениями (углеводами, липидами);

ã механическое действие различного рода;

ã термическую обработку и т. д.

Комплексообразование по типу белок – белковое взаимодействие, как технологический прием известно, давно, только позже была подведена научная база. Это использование зерновых добавок к рыбным ферментам (от 10% до 30% добавляется муки пшеницы), что обеспечивает минимальные потери влаги в процессе тепловой обработки.

Это конъюгаты белков и углеводов, традиционно используемые в технологическом процессе. Известно, что сахароза повышает температуру коагуляции белков яиц, что используется в приготовлении сладких блюд, кондитерских изделий. Углеводы стабилизируют белки животного происхождения против действия низко и высокотемпературной денатурации.

Используя производные пектина, а также ксантин, повышают «силу» клейковины муки.

Жиры, образуя комплексы с белками, также защищают их от денатурации – используется при приготовлении фаршевых колбасных масс.

Физические методы также влияют на модификацию свойств белка. Так степень и способ помола оказывают решающее влияние на качество пшеничной муки.

Изменением температурного режима регулируют влагоудерживающую способность, нежность, сочность изделий.

Высокая степень измельчения мясных и рыбных фаршей, особенно на коллоидных мельницах, приводит к механической деградации миофибрилл, что повышает их водоудерживающую способность и растворимость.

Гидратация, дегидратация, денатурация и деструкция белков пищевых продуктов

Изменение белков пищевых продуктов при производстве полуфабрикатов и блюд, в значительной мере определяет выход изделий, структурно-механические свойства, органолептические показатели и т.д.

Глубина и степень этих изменений зависит от природных свойств белков, характера внешнего воздействия, коллоидного состояния белков и т. д. Наиболее значительные изменения белков пищевых продуктов связаны с их гидратацией, дегидратацией, денатурацией и деструкцией.

На поверхности белковой молекулы имеются полярные группы, которые при контакте с водой адсорбируют ее вокруг полярных групп белка, эта вода прочно удерживается белком и называется адсорбционной.

Адсорбционная вода удерживается белками достаточно прочно и не может служить растворителем для других веществ.

При низком содержании белка в растворе, их молекулы полностью гидратированы (например, молоко, тесто, омлеты и др.).

В концентрированных белковых растворах при дополнительном добавлении воды происходит гидратация белков (добавление воды к измельченному мясу в определенных количествах).

В студнях молекулы белка удерживают много воды вследствие образованной гидратной сетки из белковых молекул и тяжей, но количество воды строго определенно для каждого вида белка.

Чем длиннее и тоньше молекула белка, тем меньше концентрация его для образования студня, поэтому большинство студней обводнены больше, чем концентрированные растворы, это явление используется при варке студней из частей туш с максимальным содержанием соединительной ткани.

При производстве полуфабрикатов во время смешивания компонентов процесс гидратации складывается из растворения и набухания. При этом мягкость изделий повышается, они лучше формуются, улучшается сочность, консистенция, вкус готового изделия (котлетная масса).

Сухие белки муки, крупы, бобовых, которые содержатся в них в виде высохшей цитоплазмы и алейроновых зерен, при контакте с водой набухают, образуя сплошной более или менее обводненный студень.

Кроме того, нужно помнить, что в пищевых продуктах кроме адсорбционно-связанной белками воды, имеется вода осмотически и капиллярно связанная, которая также может оказать существенное влияние на качество кулинарной продукции.

При гидратации белковых веществ различают ограниченное и неограниченное набухание.

Неограниченное — приводит к образованию растворов (молекулы белка отрываются друг от друга и переходят в раствор).

Ограниченное— не заканчивается растворением.

Набухание белков в процессе гидратации имеет выборочный характер относительно растворителя (необходимо вспомнить классификацию белков относительно растворителя).

Так как белки имеют полярные группы, то набухают они в полярных растворителях — вода, спирты.

На степень и кинетику набухания белков в растворителях влияют:

ã наличие электролитов и их концентрация;

Минимальное набухание наблюдается в изоэлектрической точке, так как заряд белковой молекулы минимален. При сдвиге рН среды в ту или иную сторону от изоэлектрической точки усиливается диссоциация основных или кислотных групп белка, увеличивается заряд белковой молекулы и усиливается гидратация белка. В технологической практике это используется для усиления их водосвязывающей способности (маринование мяса).

Различают ионную и молекулярную адсорбцию, что связано с наличием в белке свободных и связанных полярных групп.

Свободные полярные группы (аминогруппы, карбоксильные группы дикарбоновых кислот) диссоциируют в растворе, определяя величину суммарного заряда молекулы. Адсорбирование воды ионизированными свободными полярными группами белка называется ионной адсорбцией. Эта величина может быть изменена изменением рН среды. Связанные (пептидные группы полипептидных цепей, гидроксильные, сульфгидрильные и др.) присоединяют воду за счет молекулярной адсорбции, которая является постоянной величиной.

Растворимость — один из основных, самых важных показателей функциональности белков и технологических свойств белоксодержащих продуктов.

Еще одним свойством является способность белка растворяться под воздействием технологических факторов. То есть возникают ситуации, когда способный к растворению белок находится в условиях плохой растворимости и наоборот. Таким образом, показатель растворимости может корригироваться параметрами технологического процесса.

Нельзя объединять понятия растворимости и гидратации.

Хотя направление обоих процессов одинаково, они по сути разные. Белковая система, состоящая из нерастворимых белков, вполне может быть гидратирована, то есть, перемешена с водой, которая будет удерживаться благодаря силам физической природы. Но при этом белки будут нерастворимы. Изменением рН или введением электролитов гидратированный белок можно перевести в растворимое состояние.

Белки способны к набуханию с образованием высокогидратированных систем, а также образовывать истинные, высокомолекулярные и коллоидные растворы.

Растворимость белковых систем зависит:

ã от степени измельчения фазы (молекулярной массы белка);

ã характера связи фазы с дисперсной средой;

ã характера самой жидкой среды.

Дегидратация – это потеря белками воды. В технологической практике различают обратимую и необратимую дегидратацию.

Обратимая дегидратация —наблюдается при сублимационной сушке. При последующем замачивании гидратная оболочка практически полностью восстанавливается. При сублимационной сушке улетучивается из продуктов капиллярно связанная, осмотическая и большая часть адсорбционно связанной белками воды. Адсорбционно связанная вода удаляется не полностью, поскольку мономолекулярный слой ее на поверхности белковой молекулы очень прочно связан с белком. Эта вода (гидратная) удаляется только при температуре +100°С и выше, что приводит к денатурации белка.

Ее количество достигает 5% от массы сухих белков.

Необратимая дегидратация (невозможно восстановить первоначальные свойства продукта) —происходит при размораживании мяса, рыбы и тепловой обработке продуктов. При быстром размораживании мяса происходит неполное восстановление белковых коллоидных систем, нарушенных в период замораживания. При замораживании и последующем хранении рыбы происходит денатурация белков, поэтому рыбу оттаивают быстро в воде, так как нативная структура ее белков не восстанавливается.

При воздействии тепла происходит необратимая денатурация белков с выделением воды вместе с растворенными в ней веществами, что снижает массу изделий, изменяет ее пищевую ценность и органолептические показатели.

Дегидратация — процесс, противоположный гидратации, то есть это процесс выделения влаги из продукта. Это очень важный технологический процесс, который обеспечивает органолептические показатели белоксодержащих изделий и функциональную активность белковых веществ.

Необратимая дегидратация, как правило, сопровождается денатурацией белков.

Дегидратация может быть целенаправленной, согласно хода технологического процесса, а также результатом влияния различных неблагоприятных факторов, последствием которых является потеря функциональных свойств белков, например растворимости или влагоудерживающей способности.

Так как причинами денатурации является действие тепла, химических веществ, механическое воздействие, течение времени, облучение, то эти же факторы являются и причинами дегидратации. В реальных технологических процессах невозможно точно установить причинно-следственную взаимосвязь денатурации, дегидратации и изменение коллоидного состояния, так как эти процессы идут одновременно и характеризуют технологический процесс с разных сторон.

Одним из факторов дегидратации есть денатурация белков, в результате чего изменяется их агрегатное состояние. Поэтому главным признаком дегидратации есть переходы коллоидного состояния белковых веществ:

гель I рода – гель II рода

Относительно технологии общественного питания эти переходы воспринимаются как изменение консистенции пищевых продуктов.

Типичным примером целенаправленной дегидратации является получение творога из молока, когда повышение концентрации Н приводит к потере казеином агрегативной устойчивости, при этом происходит интенсивный процесс синерезиса, система расслаивается с образованием сырного сгустка. Причина — изменение агрегативной стойкости белков под влиянием химических веществ.

Причиной дегидратации могут быть денатурационные изменения под влиянием тепловой энергии. В технологии большинство процессов основано на эффекте тепловой денатурации белковых веществ и, как следствие, необратимой дегидратации. Одновременно процессы денатурации, коагуляции и агрегации приводят к дегидратации белковых систем. Например, приготовление прозрачных бульонов.

Важная роль в дегидратации принадлежит реакции среды. Одни и те же белки при разных значениях рН имеют разную устойчивость к дегидратации. В изоэлектрической точке (ИЗТ) белки находятся в минимальной степени гидратации, способность их удерживать воду наименьшая. Поэтому факторы, вызывающие дегидратацию в ИЗТ действуют с максимальным эффектом. Это свойство широко используется при получении изолированных белков, белковых концентратов — изменяя рН, добиваются максимальной растворимости белков, переводят их в раствор, затем сепарируют, отделяя нерастворимые частицы, потом подтитровывают до значения ИЗТ, когда он выпадает в осадок, который отцеживают.

Читайте также:  Значение с реактивного белка в анализах

Частичной дегидратацией белков объясняется и потеря мясного и рыбного сока замороженными продуктами в процессе размораживания.

На методе дегидратации базируется производство консервированных продуктов и полуфабрикатов. Посол — приводит к обезвоживанию и повышению части связанной воды, а следовательно к уменьшению количества микроорганизмов. Дегидратация белков происходит при всех видах сушки, а также при биохимических, осмотических и ферментативных процессах — в период посмертного окоченения.

Денатурацией называется изменение нативной пространственной структуры белковой молекулы под влиянием внешних факторов

ã механическая (взбивание, встряхивание);

ã кислотная или щелочная (при сушке и замораживании).

Тепловая денатурация — разрушаются поперечные связи между боковыми цепями, поэтому изменяется конформация полипептидных цепей в белковой молекуле. У глобулярных белков развертываются глобулы и свертываются по новому образцу. Но прочные пептидные и дисульфидные (ковалентные) связи сохраняются. Фибрилярный белок коллаген при тепловой денатурации плавится, так как поперечные связи между полипептидными цепями исчезают и образуется стекловидная масса.

Тепловая денатурация белка возможна при наличии воды, кристаллический белок даже при температуре 100°С устойчив к денатурации.

Чем выше гидратация белка и ниже его концентрация, тем скорее он денатурирует. Денатурированный белок:

1) теряет биологическую активность;

2) теряет способность к гидратации (растворению и набуханию);

3) улучшается его атакуемость ферментами;

4) повышается реакционная способность;

5) изменяются физические свойства;

Снижение гидратации объясняется конформацией глобулы и появлением на поверхности гидрофобных групп вместо гидрофильных.

В нативном белке пептидные связи и многие функциональные группы экранированы гидратной оболочкой и находятся внутри глобулы, после тепловой денатурации улучшается гидролиз белка под воздействием протеолитических ферментов и также чувствительность к химическим реактивам.

В мало концентрированных белковых растворах при тепловой денатурации молекулы образуют агрегаты за счет дисульфидных и водородных связей – получаются крупные частицы, которые при дальнейшей агрегации расслаивают коллоидную систему и образуются хлопья (бульоны, молоко).

В более концентрированных белковых растворах при тепловой денатурации образуется сплошной гель, удерживающий всю воду (мясо, рыба, яйцо). Обводненные гели при денатурации уплотняются и происходит дегидратация (снижение объема, повышение прочности и так далее). Изменение белковых гелей в сильной степени зависит от рН среды, температура. Чаще всего создание кислой среды снижает дегидратацию белковых молекул и повышает сочность изделий, нежность. Более высокая температура и продолжительное нагревание усиливает денатурацию. Необходимо знать температурный верхний предел стабильности белков, чтобы не вызвать денатурации (при приготовлении яично-молочного льезона, горячий способ приготовления бисквита).

Наиболее термостабильны белки молока и яиц, наименее – мяса и рыбы.

Некоторые вещества повышают температуру денатурации белков (сахароза). Так, белок куриного яйца денатурирует при t = 55°С, меланж – при 70°С, а меланж с сахаром – при 80-83°С.

Иногда при тепловой денатурации не наблюдается видимых изменений белкового раствора, чаще всего это у белков, содержащихся в связанном состоянии в продуктах. Пищевые продукты, доведенные таким образом до готовности, всегда содержат некоторое количество нативного белка.

источник

1. Чем отличается органолептический анализ от сенсорного анализа?

2. Каковы физиологические основы органолептического анализа?

3. Какие известны классы запахов?

4. Что называется дегустацией пищевой продукции и как она осуществляется?

5. Как производится органолептическая оценка качества пищевых продуктов?

1. К какому вкусу наиболее чувствителен человек?

2. Что такое органолептический анализ по определению Комитета по научно-технической терминологии Академии наук РФ?

а) сенсорный анализ пищевых продуктов, вкусовых и ароматизирующих

веществ с помощью обоняния, вкуса, осязания, зрения и слуха;

б) сенсорный анализ с помощью органов чувств, обеспечивающих организму получение информации с помощью зрения, слуха, обоняния, осязания, вкуса, вестибулярной рецепции и интерорецепции (внутренние органы).

а) прямо пропорциональна логарифму величины раздражения;

б) прямо пропорциональна величине раздражения;

в) обратно пропорциональна величине раздражения.

Белки или протеины (от греческого proteios — «первостепенный»).

В природе существует до 10 12 различных белков, составляющих основу 10 6 видов животных организмов, начиная от вирусов и заканчивая человеком. Огромное разнообразие белков обусловлено способностью 20 протеиногенных α-аминокислот (табл.1) взаимодействовать друг с другом с образованием полимерных молекул с молекулярной массой от 5 тыс. до 1 млн. и более дальтон.

Химическое строение и физико-химические свойства аминокислот

Сокра- Удельное Раство-
щенное Строение химического вращение в римость
Название обозна- радикала R водном иэт при 25°С
чение растворе при г/100 г
25°С [аД] воды
Глицин Гли Н — 5,97 24,99
Алании Ала СН3 — +1,6 6,0 16,51

ИЭТ — изоэлектрическая точка.

К простым белкам относятся альбумины, глобулины, проламины, глютелины, гистоны, протамины, протеноиды. В основу классификации положены их растворимость в специфическом растворителе и некоторые химические признаки (основность, кислотность). Эти свойства используются три извлечении белков из анализируемого объекта. Так альбумины водорастворимые белки с высокой гидрофильностью, обладают кислыми свойствами (изоэлектрическая точка (ИЭТ) около 4,7).

Глобулины не растворимы в воде, растворимы в слабосолевых растворах. При их извлечении (экстракции) из различных объектов используют 2-10 %- ый раствор хлорида натрия. Глобулины слабокислые или нейтральные белки (ИЭТ 3,0-7,0).

Проламины растворимы в 60-70%-ном этаноле.

Глютелины находятся, как правило, совместно с проламинами. Они не растворяются ни в солевых растворах, ни в спирте, но экстрагируются гидроксидами щелочных металлов (0,2%-ным раствором) (ИЭТ 5-7).

Протамины и гистоны обладают ярко выраженными основными свойствами из-за большого содержания аргинина (ИЭТ лежит в щелочной области 10,5-13,5) и т.д.

Белки пшеницы и зернобобовых составляют значительную долю потребляемого белка. Их состав приведен в таблице 2.

Белки зерновых и зернобобовых культур при влажности 14 %

Культура Содержание белка, % В том числе в % от общего белка
альбумиины глобулины проламины глютелины
Пшеница 12,5 5,2 12,6 35,6 28,2
Рожь 9,9 25,3 19,2 25,4 16,5
Ячмень 10,3 12,5 12,7 34,4 29,6
Гречиха 10,8 21,7 42,6 12,3
Рис 7,4 10,6 4,6 52,8
Кукуруза 10,3 18,0 13,3 33,9 23,0
Горох 20,5 9,6 85,7 4,8
Соя 34,9 следы следы

Средний элементарный состав большинства белков (%) составляет углерод 50-54, азот 15-18, кислород 20-23, водород 6-8, сера 0-2,5. Содержание белка в различных объектах составляет, % (табл. 3).

Содержание белка в различных пищевых системах

Мышцы, сердце, печень 15-23
Семена зернобобовых (фасоль, соя, горох) 18-28
Семена хлебных злаков: рожь, ячмень 8-13
Пшеница 12-21
Стебли, листья растений 1,5-3,0
Овощи, фрукты 0,5- 1,7

Протеноиды — подгруппа фибриллярных белков. Они не растворимы ни в воде, ни в солевых растворах, ни в разбавленных кислотах и щелочах. В эту подгруппу входят коллаген, кератин, эластин, фиброин.

При исследовании белков могут возникать разнообразные задачи определение структуры белков, их аминокислотного состава, определение общего содержания белков и т.д. При этом следует учитывать, что в технологическом потоке могут происходить различные превращения белков. Изменение нативной структуры (денатурация) происходит у большей часта белков при 60-80° С.

При температуре 40-60° С начинают протекать процессы взаимодействие белков с редуцирующими сахарами, сопровождающиеся образованием карбонильных соединений и темноокрашенных продуктов-меланоидинов (реакция Майяра). Сущность реакции заключается во взаимодействии группы NH2 аминокислот с гликозидными гидроксилами сахаров.

Термическая обработка белоксодержащей пищи при 100-120°С приводит к крушению (деструкции) макромолекул белка с отщеплением функциональных групп, расщеплением пептидных связей и образованием сероводорода, аммиака, углекислого газа и ряда более сложных соединение небелковой природы. Например, образование диметилсульфида СН3-S-СН3, цистеиновой кислоты НО2С-СН(NН2)СН23Н. Могут протекать реакции дезаминирования и дегидратации.

Среди продуктов термического распада белков встречаются соединения, придающие им мутагенные свойства, вызывающие наследственные изменения в ДНК.

В экстрактах, выделенных из жареной рыбы и мяса, найдены продукты пиролиза аминокислот:

В щелочных средах, особенно при высоких температурах, некоторые остатки аминокислот претерпевают ряд специфических превращений. Так аргинин превращается в орнитин, цитруллин, мочевину и аммиак, а цистеин – в цегидроаланин с выделением сероводорода и др. Для идентификации и количественного определения большого многообразия соединений в пищевых объектах применяют как классические гравиметрические и титриметрические методы, так и физико-химические методы анализа (оптические, электрохимические,хроматографические,рентгеноструктурные, методы ядерно-магнитного резонанса и др.). Использование того или иного метода зависит от цели исследования. Практически всем существующим методам анализа белков предшествует достаточно сложный процесс пробоподготовки. Основными этапами которого являются:

1. Разрушение клеточной структуры материала. В результате этого обеспечивается дальнейшее наиболее полное извлечение белков. Выбор тоге или иного способа зависит от объекта и задач исследования. Для этого используют специальные валковые или шаровые мельницы. Применяют также гомогенизаторы различной конструкции. В последнее время широко используют ультразвуковые дезинтеграторы. Применяют также метод «азотной бомбы», заключающийся в насыщении суспендированных клеток газообразным азотом под высоким давлением, которое затем резко сбрасывают, азот, проникший внутрь клеток, выделяется в виде газа и «взрывает» их. В целом, классификация методов разрушения (дезинтеграции) материала, отражающая разнообразие подходов, используемых с этой целью при выделении белков е других соединений, приведена в таблице 4.

Классификация дезинтегрирующих воздействий по их природе

2.Экстракция белков. Когда достигнуто тонкое измельчение материала, к следующему этапу — извлечению белков. Выбирая различные экстрагенты и подбирая режимы экстракции (время, температура и т.п.) можно избирательно перевести в раствор разные группы белков.

Так, например, проводя экстракцию водой, мы переводим в раствор альбумины.

Глобулины — солерастворимые белки, экстрагируются растворами солей апример, 5-10% NаСl.

Проламины — спирторастворимые белки, экстрагируются 60-80% этанолом, а глютелины — разбавленным раствором щелочей (0,1 -0,2%).

Извлечению белков способствует обработка детергентами: додецил сульфатом натрия, дезоксихолатом натрия, тритоном х-100, алкилгликозидами и др.

Детергенты ослабляют гидрофобные белково-липидные и белок — белковые взаимодействия, способствуют разрыву этих связей.

3.Осаждение белков. После экстракции смеси белков проводят их осаждение. Фракционирование белков проводят с помощью:

2)осаждение органическими растворителями (спиртом, ацетоном и др.);

4)осаждение в изоэлектрической точке, путем изменения рН белкового экстракта;

5)осаждение путем тепловой коагуляции и др.

4.Очистка белков. Для очистки белков, их фракционирования широко используют хромато графические методы: адсорбционная, ионообменная, хроматография по сродству (аффинная хроматография), метод гель-фильтрации (метод молекулярных сит), методы изоэлектрического фокусирования, электрофоретическое разделение белков и др.

Широкое распространение получил метод гель-фильтрации. В качестве геля используют препараты сефадексов различных марок, которые отличаются между собой величиной ячеек в гранулах.

Через колонку, заполненную набухшим сефадексом, пропускают исследуемый белковый экстракт. Белки, молекулы которых по своим размерам превосходят размеры ячеек в гранулах сефадекса, проходят между частицами геля и выходят из колонки раньше низкомолекулярных белков, которые задерживаются внутри гранул сефадекса. Происходит разделение белков по молекулярной массе.

Электрофоретическое разделение белков основано на том, что белки, имеющие разные по величине и знаку заряды в электрическом поле постоянного тока, будут двигаться к катоду или аноду. Скорость движения определяется величиной заряда.

Классификация методов связана с типом электролитической системы, типом носителя, конструкцией аппаратуры, а также способом обнаружения разделяемых белковых фракций.

Широкое распространение получил электрофорез в полиакриламидном геле.

Метод изоэлектрического фокусирования (ИЭФ) основан на разделении белков, имеющих разные изоэлектрические точки. ИЭФ осуществляется в процессе их электрофоретического разделения на колонке, по высоте которой создается градиент рН. Белок движется под воздействием электрического поля, пока не достигнет той области колонки, где рН равен изоэлектрической точке данного белка. Суммарный электрический заряд белка становится равным нулю; белок теряет подвижность и концентрируется в этой области в виде узкой зоны. Молекулы различных белков будут образовывать зоны в той или иной части колонки в соответствии со значениями их изоэлектрических точек. ИЭФ позволяет разделять белки, различающиеся значениями изоэлектрических точек на 0,02 единицы.

Применяются и другие разновидности электрического разделения: иммуноэлектрофорез, изотахофорез, метод пептидных карт и ультрацентрифугирование.

Для установления первичной структуры белка (последовательности расположения аминокислотных остатков в одной или нескольких полипептидных цепях) проводят ряд сложных операций (схема 2).

Определение последовательности аминокислотных остатков в индивидуальных пептидах проводят фенилизотиоцианатным методом Эдмана, масс-спектрометрическим, ферментативным, генетическим, методом лазерной ютодиссоциации, обладающего высокой чувствительностью (для анализа достаточно 5 нмоль белка при молекулярной массе 50 кДа).

В методе масс-спектрометрии фрагментацию осуществляют воздействием электронного удара, а разделение фрагментов — в масс-спектрометре. В результате получают масс-спектр фрагментов пептида (рис.2).

Дата добавления: 2014-11-25 ; Просмотров: 1393 ; Нарушение авторских прав? ;

источник

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

методы Определения БЕЛКОВ

по курсу «Технология пищевых производств»

для студентов специальности 260601.65

Саратовского государственного технического университета

Цель работы: изучение методов определения белковых веществ в пищевых продуктах.

Среди азотистых веществ, входящих в состав пищевых про­дуктов, важнейшая роль принадлежит белкам.

Белками или белковыми веществами называются сложные высокомолекулярные полимеры, молекулы которых построены из остатков аминокислот.

Аминокислота – это гетерофункциональное соединение. Простейшая формула аминокислоты: R-CH-COOH-NH2-. — NH2 – аминогруппа, обладает основными свойства белков; — COOH – карбоксильная группа – обладает кислотными свойствами; R – радикал, влияет на пространственную конфигурацию молекул белка. Остатки аминокислот в молекуле белка соединяются при помощи полипептидной связи – CO-NH-. Белки наиболее важные и сложные по химической структуре среди веществ, входящих в пищевые продукты. Полипептидные цепи белков строятся из десятков и сотен молекул, причем не одной, а разных аминокислот, образуя цепь они могут соединяться в различной последовательности, что приводит к огромному многообразию комбинаций аминокислотных остатков в полипептидных цепях.

Состав белков: содержание углерода – 50-55%; водорода – 6,5-7,3%; кислорода – 21,5-23,5%; азота – 15-18%. Также в состав белков входит селен, фосфор.

1) в зависимости от формы молекулы белка: глобулярные и фибриллярные;

2) по строению: простые (протеины) – при гидролизе распадаются до аминокислот и сложные (протеиды) – при гидролизе распадаются на аминокислоты и простетическую группу;

3) по растворимости: растворимые и не растворимые в солевых растворах;

4) по выполняемым функциям: белки выполняют каталитические функции (ферменты); регуляторные (гормоны); структурные (коллаген); двигательные; транспортные (гемоглобин); защитная (иммуноглобулин).

Их основное зна­чение заключается в незаменимости другими компонентами пи­щи. Белки составляют основу процессов жизнедеятельности орга­низма. Необходимость их постоянного обновления лежит в осно­ве обмена веществ.

Белки в организме выполняют структурную (построение тка­ней и клеточных компонентов) и функциональную (ферменты, гормоны, дыхательные пигменты и др.) роль.

Дефицит белка в пищевом рационе повышает восприимчи­вость организма к инфекционным заболеваниям, нарушает про­цессы «кроветворения», обмен липидов, витаминов и др. У детей при белковой недостаточности замедляются рост и умственное развитие.

Длительный избыток белка в питании также отрицательно сказывается на жизнедеятельности организма, вызывая перевозбудимость нервной системы, нарушение обменных процессов, пе­регрузку печени и почек.

В ежедневном рационе взрослого человека белки должны со­ставлять около 14% общей калорийности, сочетаясь в определен­ном соотношении с другими пищевыми веществами.

Известно, что растительные белки усваиваются организмом не полностью по сравнению с животными. Так, белки молока и яиц усваиваются на 96%, белки рыбы и мяса – на 95%, белки хлеба из муки пшеничной I и II сортов — на 85%, белки карто­феля, хлеба из обойной муки, бобовых — на 70%. Учитывая, что растительные белки менее полноценны по составу незаменимых аминокислот, чем животные, потребление определенного количе­ства животных белков совершенно необходимо. Для взрослого человека доля животных белков в среднем должна составлять около 55% общего количества белка в рационе.

Технологические свойства белков.

1. Белки – амфотерные соединения. При определенном значении ph=4,6-4,7 (изоэлектрическая точка белка) число положительных и отрицательных зарядов одинаково. Белки в данной точке электронейтральны, а их растворимость и вязкость наименьшая. Эту способность белка снижать растворимость при достижении электронейтральности широко используют в пищевой промышленности, например при производстве сыра и творога.

2. Гидратация белков. Белки присоединяют воду, то есть проявляют гидрофильные свойства, при этом они набухают, увеличивается их масса и объем, причем набухание может сопровождаться частичным растворением белков. На поверхности молекулы белка содержаться группы: карбоксинальная, аминная, пептидная, эти группы притягивают к себе молекулы воды и образуют защитную гидратную оболочку. В результате молекулы белков не могут соединяться друг с другом, то есть агрегироваться. В изоэлектрической точке данная оболочка разрушается, молекулы белков соединяются друг с другом, а эти агрегаты могут выпадать в осадок. При изменение среды макромолекулы белков становятся заряженными, их способность присоединять воду меняется, при ограниченном набухании белковые растворы образуют сложные смеси, называемые студнями. Набухший в воде белок пшеничной муки образует клейковину. Студни и клейковина обладают свойствами упругости и эластичности, пластичности и ползучести, т. е. свойствами твердого и жидкого тела. Свойство набухания играет большую роль в пищевой технологии (набухание зерна при замочке, муки при замесе теста).

3. Денатурация – это изменение пространственной ориентации белковой молекулы, не сопровождающееся разрывом ковалентных связей. Денатурация может вызываться повышением температуры, механическим и химическим воздействием, ультразвуком, ионизирующим облучением и другими факторами. При этом процессе изменяются физические свойства белка: уменьшается способность к гидратации, снижается растворимость, теряется его биологическая активность, меняется форма макромолекулы. Денатурация белков играет важную роль в технологических процессах, связанных с образованием структурных систем полуфабрикатов и готовых продуктов (хлеба, макаронных, кондитерских и других изделий).

4. Гидролиз белков. Протекает под действием ферментов ступенчато с образование промежуточных продуктов: пептонов, полипептидов, дипептидов, аминокислот. Процесс присоединения группы – OH — к карбоксильной группе.

Читайте также:  Химический синтез и анализ белков

5. Пенообразование – способность белков образовывать эмульсии в системе жидкость-газ, называемые пенами. Белки как пенообразователи широко используются при изготовлении многих кондитерских изделий.

6. Меланоидинообразование – это свойство объясняется взаимодействием аминогруппы белка с карбонильными группами сахаров. Эта реакция сопровождается образованием меланоидинов, то есть веществ, обладающих различным окрашиванием и ароматом.

Массовую долю белка в пищевых продуктах определяют по количеству общего азота методом Кьельдаля. С развитием фото — и спектрофотометрии были разработаны методы количественного определения белка, основанные на его способности давать окра­шенные соединения с некоторыми реагентами. Среди них следует отметить метод Лоури, биуретовый метод. Находят применение также физико-химические методы, в основу которых положены специфические свойства белка: образование различной степени помутнения в зависимости от концентрации белка в растворе сульфосалициловой кислоты (нефелометрический метод), способ­ность белка адсорбировать некоторые красители и другие свойства белка.

Все перечисленные методы могут быть отнесены к ускорен­ным. При относительно небольших затратах времени они харак­теризуются достаточно высокой точностью и простотой определе­ния. В настоящих методических указаниях изложены методы количест­венного определения белка: Кьельдаля, биуретовый, нефелометрический, рефрактометрический и метод формольного титрования.

Определение массовой доли белка методом Кьельдаля

Метод основан на минерализации навески продукта при нагревании с концентрированной серной кислотой в присутствии катализато­ров. При этом углерод и водород органических соединений окис­ляются до диоксида углерода и воды, азот, освобождаемый в ви­де аммиака, соединяется в колбе с серной кислотой, образуя сульфат аммония. Схематично происходящие реакции могут быть представлены следующим образом:

RCHNH2COOH +H2SO4 =СО2+ SO2 + H2O + NH3.

На последующей стадии дистилляции раствор сульфата ам­мония обрабатывают концентрированным раствором гидроксида натрия, при этом аммиак освобождается и улавливается титро­ванным раствором серной кислоты. Избыток серной кислоты оттитровывают раствором гидроксида натрия. Метод Кьельдаля применяют в нескольких модификациях, отличающихся в основ­ном условиями минерализации. Для ускорения процесса вводят различные катализаторы: оксид меди, селен, свинец и другие, повышают температуру кипения серной кислоты добавлением со­лей, сульфата калия или натрия, сочетают добавление катализа­тора и солей при сжигании навески.

Методом Кьельдаля в любой модификации определяется ко­личество общего азота. Массовая доля белка вычисляется умно­жением полученной величины общего азота на переводной коэф­фициент 6,25, исходя из того, что в белках в среднем содержится 16% азота. Условность полученных результатов при таком пере­счете очевидна, так как не весь азот пищевого продукта находит­ся в форме белка и, кроме того, процентное содержание азота в белках подвержено колебаниям как в сторону повышения, так и в сторону понижения от 16%. В некоторых продуктах азотистые вещества небелкового характера достигают значительных коли­честв (мышечная ткань рыбы – 15%, мясо животных – 10–16% от общего количества азотистых веществ).

Следовательно, для получения более точных результатов не­обходимо либо при пересчете общего азота на белок использо­вать различные коэффициенты в зависимости от процентного со­держания азота в белках отдельных продуктов: мясо и овощи – 6,25; пшеница, рожь, горох и др. – 5,7; гречиха, рис – 6,0; моло­ко – 6,37 и т. д., либо белковый азот определять отдельно специ­альными методами.

В колбу Кьельдаля помещают последовательно несколько стеклянных бусинок или кусочков фарфора, около 10 г серно-кислого калия, 0,04 г серно-кислой меди. В бюксу с крышкой отмеривают 5 см3 молока, крышку закрывают и взвешивают. Молоко из бюксы переливают в колбу. Пустую бюксу вновь взвешивают и по разнице между массой бюксы с молоком и массой пустой бюксы устанавли­вают массу взятого молока. В колбу добавляют 20 см3 серной кислоты, вливая осторожно по стенкам колбы, смывая с них капли моло­ка. Колбу закрывают грушеобразной стеклянной пробкой и осторожно круговыми движениями перемешивают содержимое колбы.

Колбу ставят на нагревательный прибор в наклонном положении под углом 45° и осторожно нагревают.

Продолжают нагревание колбы до тех пор, пока не прекратится пенообразование и содержимое колбы не станет жидким.

Затем сжигание продолжают при более интенсивном нагрева­нии. Степень нагревания считают достаточной, когда кипящая кис­лота конденсируется в середине горловины колбы Кьельдаля.

Время от времени содержимое колбы перемешивают, смывая обуглившиеся частицы со стенок колбы. Нагревание продолжают до тех пор, пока жидкость не станет совершенно прозрачной и прак­тически бесцветной (при применении в качестве катализатора оки­си ртути) или слегка голубоватой (при применении и качестве катализатора серно-кислой меди).

После осветления раствора нагревание продолжают в течение 1,5 ч, после чего колбе дают остыть до комнатной температуры. Добавляют

150 см3 дистиллированной воды и несколько кусочков свежепрокаленной пемзы, перемешивают и снова охлаждают.

В коническую колбу отмеривают 50 см3 раствора борной кисло­ты, добавляют 4 капли индикатора и перемешивают. Коническую колбу соединяют с холодильником с помощью аллонжа и резино­вой пробки так, чтобы конец аллонжа был ниже поверхности раствора борной кислоты в конической колбе. Колбу Кьельдаля соеди­няют с холодильником при помощи каплеуловителя, проходящего через одну пробку с делительной воронкой. Градуированным ци­линдром отмеривают 80 см3 раствора гидроокиси натрия (при при­менении в качестве катализатора красной окиси ртути используют раствор гидроокиси натрия, содержащий сульфид натрия) и через делительную (или капельную) воронку вносят его в колбу Кьельдаля. Сразу же после выливания раствора закрывают кран делительной воронки для избежания потери образующегося аммиака.

Содержимое колбы Кьельдаля осторожно смешивают круговы­ми движениями и нагревают до кипения. При этом необходимо избегать пенообразования.

Продолжают перегонку до тех пор, пока жидкость не начнет вскипать толчками. При этом регулируют степень нагрева так, чтобы время дистилляции было не менее 20 мин. Убедиться в полноте перегонки аммиака можно путем дополнительной перегонки в новую порцию борной кислоты (20 см3) в течение 5 мин. Окраска раствора борной кислоты должна оставаться без изменения. При перегонке не допускают нагревание раствора борной кислоты в конической колбе. Слишком сильное охлаждение (ниже +10 °С) также нежелательно, так как оно может вызвать переброс жидкости из конической колбы в колбу Кьельдаля.

Перед окончанием перегонки опускают коническую колбу так, чтобы конец аллонжа оказался над поверхностью раствора борной кислоты, и продолжают перегонку в течение 1-2 мин.

Прекращают нагревание и отсоединяют аллонж. В коническую колбу смывают внешнюю и внутреннюю поверхности аллонжа не­большим количеством дистиллированной воды.

Титруют дистиллят раствором соляной кислоты до перехода зе­леного цвета в серый. При избытке титранта раствор приобретает фиолетовый цвет.

Параллельно проводят контрольный анализ так же, как и основ­ной, применяя 5 см3 дистиллированной воды вместо молока. Коли­чество повторностей контрольного анализа должно быть не ме­нее 5. Контрольный анализ проводится в каждой серии определе­ний количества белка и при каждой замене реактивов.

Проведение ускоренного анализа

В кварцевую пробирку помещают компоненты, указанные в пер­вом абзаце. Осторожно круговыми движениями перемешивают содержимое пробирки. Затем вносят в пробирку 20 см3 перекиси водорода, не допуская вспенивания.

Пробирку ставят в гнездо алюминиевого блока, помещенного на электроплитку. Устанавливают регулятор нагрева плитки в среднее положение. После прекращения вспенивания содержимого пробирки устанавливают регулятор нагрева плитки в положение, соответству­ющее максимуму. Нагревание продолжают до тех пор, пока жид­кость не станет прозрачной и бесцветной или слегка голубоватой. Затем пробирку охлаждают и присоединяют к перегонному аппара­ту (рис. 1).

Рис. 1. Прибор для отгонки аммиака:

1 – плитка электрическая; 2 – колба коническая вместимостью 2000 см3; 3 – воронка делительная; 4 – каплеуловитель; 5 – пробирка кварцевая; 6 – холодильник; 7 – колба коническая вместимостью 250 см3

В коническую колбу вместимостью 250 см3 отмеривают мерным цилиндром 20 см3 раствора борной кислоты, добавляют 3-4 капли раствора двойного индикатора.

Отмеривают мерным цилиндром 60 см3 раствора гидроокиси на­трия и осторожно, не допуская выбросов, переливают его через де­лительную воронку в пробирку. Кран воронки сразу закрывают. Открывают зажим на линии подачи пара из конической колбы вмес­тимостью 2000 см3 и направляют пар в пробирку.

Перегонку ведут до достижения объема конденсата от 50 до 70 см3.

Конденсат титруют раствором соляной кислоты до перехода зе­леного цвета в серый. При избытке титранта раствор приобретает фиолетовый цвет.

Параллельно проводят контрольный анализ, используя вместо молока 5 см3 дистиллированной воды.

Массовую долю белка X в процентах вычисляют по формуле:

,

где 1,4 – количество азота, эквивалентное 1 см3 раствора соляной кислоты с молярной концентрацией с (HCl)=0,1 моль/дм3, мг/см3; N – коэффициент, численно равный величине молярной концентрации раствора соляной кислоты, выраженный мг/см3; V1 – объем раствора соляной кислоты, израсходованный на титрование дистиллята в основном анализе, см3;

V0 – объем раствора соляной кислоты, израсходованный на титрование дистиллята в контрольном анализе, см3; 6,38 – коэффициент пересчета массовой доли общего азота на массовую долю общего белка; m – масса молока, взятая на анализ, г.

За окончательный результат испытания при анализе по Кьельдалю принимают среднее арифметическое результатов двух параллельных определений, допускаемое расхождение между которыми не должно превышать 0,03%.

Определение массовой доли белка биуретовым методом

Спе­цифической реакцией на содержание белка является биуретовая реакция, так как ее дают полипептидные связи. Она получила свое название от производного мочевины — биурета, который об­разует в щелочном растворе медного купороса окрашенное комп­лексное соединение. Интенсивность окрашивания пропорциональ­на содержанию пептидных связей, а, следовательно, и концент­рации белка в растворе.

Биуретовую реакцию дают все белки, пептоны и полипепти­ды, начиная с тетрапептидов.

Эта реакция длительное время использовалась как качественная реакция на белок. В дальнейшем она стала применяться для количественного определения белка в различных объектах. Биуретовый метод применяют в различных модификациях, раз­личающихся условиями экстрагирования белка, способами вне­сения биуретового реактива и техникой колориметрирования.

Ниже приводится биуретовый метод определения массовой доли белка в муке в модификации Дженнингса, экспериментальная проверка которого выяви­ла ряд его преимуществ перед другими модификациями.

Биуретовый реактив – 15 см3 10 н. раствора КОН и 25 г сегнетовой соли, взятой с погрешностью ±0,01 г, растворяют примерно в 900 см3 дистиллирован­ной воды в мерной колбе вме­стимостью 1000 см3. Медленно добавляют при постоянном перемешивании 30 см3 4 %-ного раствора CuSO4, отмерен­ных цилиндром, и доводят объем колбы до метки дистил­лированной водой.

Взвешивают около 1,5 г муки с погрешностью ±0,001 г и помещают в сухую коническую колбу вместимостью 250—300 см3, снабженную пробкой. Отмеривают цилиндром с ценой деления 0,1 см3 под тягой 2 см3 четыреххлористого углерода для извлечения жира из образца, добавляют пи­петкой 100 см3 биуретового реактива. Закрытую пробкой колбу встряхивают на механическом встряхивателе в течение 60 мин. Далее вытяжку центрифугируют в течение 10 мин при частоте вращения

4500 мин-1. Прозрачный центрифугат помещают в кю­веты фотоэлектроколориметра с толщиной слоя раствора 5 мм. Измерение оптической плотности производят при длине волны 550 нм.

По величине оптической плотности белковой вытяжки опреде­ляют содержание белка в навеске (мг) с помощью калибровоч­ной кривой

(рис. 2). Рассчитывают массовую долю белка (в %) на сухие вещест­ва муки.

Запись в лабораторном журнале

Величина оптической плотности (D)

Содержание белка в навеске муки

(по калибровочной кривой)(n/1000)………………г

Массовая доля белка в 100 г сухих веществ(М)…%

Построение калибровочной кривой – для по­строения калибровочной кривой подбирают образцы муки с раз­личной массовой долей белка в диапазоне, встречающемся в реальных условиях (от 8 до 20%). Интервал в содержании белка образцов должен находиться в пределах не более 1%. Количест­во образцов не должно быть менее 10. С увеличением их числа точность определений возрастает.

Затем приведенным выше методом Дженнингса определяют оптическую плотность белковых вытяжек всех образцов.

При построении кривой на оси абсцисс откладывают величи­ны оптической плотности, а на оси ординат – содержание белка в навеске в мг.

Рис. 2. Калибровочная кривая (биуретовый метод)

Определение массовой доли белка нефелометрическим мето­дом

Метод основан на измерении интенсивности светового пото­ка, рассеянного твердыми или коллоидными частицами, находящимися в растворе во взвешенном состоянии. По интенсивности светорассеяния, определяемой нефелометром, судят о концентра­ции исследуемого вещества.

В настоящее время находят широкое использование фото­электрические нефелометры.

Растворы высокомолекулярных соединений, например раство­ры белков, способны при определенных условиях в присутствии некоторых химических реагентов опалесцировать. Одним из та­ких реагентов является сульфосалициловая кислота. Концентра­ция белка в этом случае может быть определена по интенсивно­сти опалесценции.

Продукты гидролиза белка – пептоны, аминокислоты и дру­гие азотосодержащие вещества – не опалесцируют.

Экспериментальной проверкой установлено, что нефелометрический метод с использованием сульфосалициловой кислоты отличается быстротой, высокой точностью, простотой и хорошей корреляцией с методом Кьельдаля.

Около 0,5 г исследуемой муки взвешивают с погрешностью ±0,001 и помещают в коническую колбу вместимостью 250—300 см3, снабженную пробкой. В колбу добавляют из бюретки 50 см 0,05 н. раствора гидроксида натрия. Закрытую пробкой колбу встряхивают на механическом встряхи­вателе в течение 15 мин. Затем вытяжку центрифугируют 10 мин при частоте вращения 6000 мин-1. 5 см3 прозрачного центрифугата пипеткой переносят в мерную колбу на 50 см3 и содержимое колбы доводят до метки сульфосалициловой кислотой.

При нефелометрическом анализе получение правильных ре­зультатов в значительной мере зависит от методики получения суспензии, в частности от порядка смешивания растворов, скоро­сти смешивания. Поэтому после добавления сульфосалициловой кислоты колбу быстро переворачивают 2—3 раза (не более), раствор наливают в кювету с толщиной слоя 5 мм и измеряют величину оптической плотности раствора при длине волны 550 нм. Замеры следует производить сразу после добавления кислоты, так как частицы белка быстро агрегируют.

Массовую долю белка определяют по калибровочной кривой

(рис. 3). Построение ее ведут так же, как и при биуретовом методе.

Запись в лабораторном журнале аналогична записи, данной к биуретовому методу. По полученным данным делают заключение.

Рис. 3. Калибровочная кривая (нефелометрический метод)

Метод основан на установлении разности показателей преломления исследуемого вещества и раствора, полученного после осаждения белков раствором хлористого кальция при кипячении.

Отмеривают пипеткой 5 мл исследуемого вещества (молока) в пробирку, добавляют 5-6 капель 4%-ного раствора хлористого кальция. Пробирку закрывают пробкой и помещают в баню с кипящей водой на

10 мин. Затем содержимое фильтруют через складчатый фильтр. В прозрачном фильтрате, а также в исходном молоке определяют на рефрактометре показатель преломления при 200С. Содержание белка в молоке (в %) рассчитывают по формуле

,

где а – содержание белка, %; – показатель преломления молока

при 200С; – показатель преломления фильтрата при 200С;

0,002045 – коэффициент, позволяющий выразить полученную разность показателей преломления, % от общего белка.

Метод формольного титрования

Сущность реакции формалина на белок заключается в том, что альдегидная группа формалина взаимодействует с аминогруппой белка, которая теряет свои основные свойства, в связи с чем кислые свойства белка усиливаются. Количество титруемых карбоксильных групп будет эквивалентно количеству связанных формальдегидом аминных групп.

Схематично эти реакции могут быть представлены в следующем виде:

Образующаяся в этой реакции метиленаминокислота является сильной кислотой. Процесс титрования этой является сильной кислотой. Процесс титрования этой кислоты щелочью протекает таким образом:

Отмеривают пипеткой 10 мл исследуемого молока и вносят его в коническую колбу вместимостью 100 мл, добавляют 10-12 капель 1%-ного спиртового раствора фенолфталеина и титруют 0,1 н. раствором NaOH до слабо-розового окрашивания, не исчезающего при взбалтывании. После этого в колбу приливают из бюретки 2 мл 30-40%-ного раствора формалина, свежее нейтрализованного щелочью до слабо-розового окрашивания по фенолфталеину.

Содержимое колбы взбалтывают, молоко обесцвечивается, записывают показание бюретки и продолжают титрование до окраски жидкости, соответствующей окраске молока до прибавления формалина.

Показания бюретки вновь записывают и устанавливают количество миллилитров щелочи, пошедшее на второе титрование. Затем рассчитывают содержание белка в молоке.

V1 – количество 0,1 н. раствора NaOH, израсходованное до прибавления формалина, мл;

V2 – общее количество 0,1 н. раствора NaOH, израсходованное после прибавления формалина, мл;

(V2-V1) – количество 0,1 н. раствора NaOH, пошедшее на нейтрализацию карбоксильных групп, мл;

(V2-V1)·1,92 – общее количество белка в молоке, %;

(V2-V1)·1,51 – содержание казеина в молоке, %.

Примечание. 1,92 и 1,51 – экспериментально установленные коэффициенты для пересчета оттитрованных карбоксильных групп на процентное содержание белка в молоке.

СОДЕРЖАНИЕ И ОФОРМЛЕНИЕ ОТЧЕТА О РАБОТЕ

Отчет о лабораторной работе оформляется каждым студентом. Текст пишется темными чернилами, эскизы могут выполняться карандашом, графики результатов экспериментов строятся в масштабе.

Содержание отчета излагается в порядке, указанном в работе, и должно включать:

— название работы, цель работы, краткое содержание;

Законченные и оформленные отчеты студенты предъявляют преподавателю до начала выполнения следующей работы.

1. Каково значение белков для организма человека. Их классификация.

3. Каков принцип определения, белка по методу Кьельдаля и каковы его достоинства и недостатки?

4. В чем заключается принцип биуретового метода определения белка?

5. В чем заключается принцип нефелометрического метода определения белка?

6. В чем заключается принцип нефелометрического метода определения белка?

7. В чем заключается принцип рефрактометрического метода определения белка?

8. Методика определения белков в молоке методом формольного титрования.

1. Пищевая химия: Лабораторный практикум: учеб. пособие для вузов /

2. Лабораторный практикум по общей технологии пищевых производств / под ред. . М.: Агропромиздат,

3. Фалунина практикум по общей технологии пищевых продуктов / . М.: Пищевая промышленность, 19с.

4. Назаров технология пищевых производств /

. М.: Легкая и пищевая технология, 19с.

др.; под ред. . 4-е изд., исправ. и доп. СПб.: ГИОРД,

6. Руководство по методам анализа качества и безопасности пищевых продуктов / под ред. , . М.: Брандес, Медицина, 19с.

источник